School of Computing Science,
University of Newcastle upon Tyne

Notations for the Specification and
Verification of Composite Web
Services

Woodman, S.J., Palmer, D.J., Shrivastava, SKK.,
and Wheater, S.M.

Technical Report Series

CSTR-849

June 2004

Copyright(©)2004 University of Newcastle upon Tyne
Published by the University of Newcastle upon Tyne,
School of Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, UK.

Notations for the Specification and Verification of Composite Web Services

S.J.Woodman, D.J.Palmer, S.K.Shrivastava S.M.Wheater
School of Computing Science Arjuna Technologies
University of Newcastle upon Tyne, Nanotechnology Centre,
Newcastle upon Tyne, UK Newcastle upon Tyne, UK
{s.j.woodman, d.j.palmer, stuart.wheater@arjuna.com

santosh.shrivastava}@ncl.ac.uk

Abstract more semantic information about each web service in order
to be able to reason about a composition which has been
Availability of a wide variety of Web services over the created manually.
Internet offers opportunities of providing new value added There are two perspectives that can be taken when con-
services built by composing them out of existing ones. Sersidering composite services: that of the provider of the web
vice composition poses a number of challenges. A com-services, and that of the service composer who wishes to
posite service can be very complex in structure, containing create a value added service by utilising existing services.
many temporal and data-flow dependencies between theitUsing current technology, the web service provider will de-
constituent services. Furthermore, each individual service ploy a service and expose the interface to the service using
is likely to have its own sequencing constraints over its op- Web Service Definition Language (WSDL). The WSDL de-
erations. It is highly desirable therefore to be able to val- scription of a service contains a specification of the opera-
idate that a given composite service is well formed: prov- tions which a service exposes and binding information de-
ing that it will not deadlock or livelock and that it respects tailing how to invoke the operations in terms of protocols
the sequencing constraints of the constituent services. Withand addressing. Although this level of detail is sufficient
this aim in mind, the paper proposes simple extensions tofor constructing simple web services applications it is in-
web service definition language (WSDL) enabling the or- sufficient when it comes to creating complex services and
der in which the exposed operations should be invoked toreasoning about their composition [15].
be specified. In addition, the paper proposes a composition To a service composer, it is desirable to be able to verify
language for defining the structure of a composite service. that the composition is well formed: for example that it does
Both languages have an XML notation and a formal basis not contain any deadlocks or livelocks which would cause
in the pi-calculus (a calculus for concurrent systems). The the composition to not terminate under certain conditions;
paper presents the main features of these languages, an@nd that the composition uses each web service “correctly”.
shows how it is possible to validate a composite service byltis possible to verify the former using formal notations and
applying the pi-calculus reaction rules. model checkers but for the latter it is necessary to describe
what is meant by “correctly”. One aspect of using a web
service correctly is invoking the operations in the order in
1. Introduction which the provider intended. However, the WSDL descrip-
tion of a web service does not specify any ordering infor-
Creating new services by Combining a number of exist- mation for the operations which are exposed by the service.
ing ones is becoming an attractive way of developing value To allow a service composer to verify this aspect of cor-
added web services. This pattern is not new but it does posé€ctness of the composition, the ordering information must
some new challenges which have yet to be addressed bye provided by the web service in addition to the WSDL
current technologies and tools for web service composition. description.
Ideally, it is desirable to automatically compose a service
capable of achieving a goal specified by a client request.1.1. Motivating Example
However, in the near future this is unlikely to be possible
due to the lack of semantic information provided by current It is useful at this point to present an example to fur-
web services. The first step in this direction is to provide ther explain the motivations and clarify the role played

[| [[] e | [|

order : payment_authorise
k
order_response payment_authorise_response Order
dispatch T payment_capture 1
dispatch_response payment_capture_response Payment
Authorise
Li 9

Payment
Capture

Dispatch

User Bank
N

payment_authorise

payment_authorise_exception

U

Exception
|] | N W

Figure 1. Sequence Diagrams for the shop) o
and bank web services Figure 2. UML Activity diagram for a compos-

ite order service

by each party. The example contains two web services
provided by third parties, one by a shop and one by a fails. This composition is illustrated by the UML Activity
bank. Both are simplified for brevity and ease of un- diagram in Fig. 2.
derstanding. The shop web service exposes two opera- In this simplified example it is possible to see
tions,order anddispatch both of which are RPC (Re- that there are two “execution traces” which are possi-
mote Procedure Call) style services accepting requests andhle through the composition dependant on whether the
generating responses. To use the service correctly, thgpayment_authorise operation returns a success re-
dispatch operation must be invoked after tloeder sponse or an exception. Clearly neither of these contain
operation. The bank web service also exposes two operaany livelocks or deadlocks. However, in the general case
tions,payment_authorise andpayment_capture . this may not be easy to infer as the size and complexity of
These operations must be invoked in the above or-a composition increases. It is also trivial to see that this
der, but in addition,payment_authorise must re- composition utilises the shop and the bank web services
turn a response message rather than an exception becorrectly adispatch is always invoked aftesrder and
fore payment_capture can be invoked. Should payment _capture is correctly dependant on the output of
payment_authorise return an fault, itis invalid to in- payment_authorise . Again however, as the number
voke thepayment_capture operation. UML Sequence of tasks in the composition increases and as complex inter
Diagrams showing the legal sequences of operations fortask dependencies are introduced this will become harder to
each service are shown in Fig. 1. state by studying the composition. It is highly desirable to
A service composer wishes to utilise the shop and bankbe able to automatically verify that an arbitrary composition
web services to provide a single point of access to cus-correctly uses all of its component services.
tomers who wish to purchase items from the shop. The In this paper we present three aspects of service speci-
composer wishes to ensure that despite the different re-ication and verification: Firstly, we present a simple lan-
sponses from each of the services, the composition al-guage for capturing the order in which the operations of a
ways uses the services according to the specifications deweb service should be invoked to achieve a goal; Secondly
fined above and does not contain any deadlocks or livelockswe describe a language for the specification of composite

which would prevent termination. web services as a business process; the language permits or-
The composition of these services could be chestration of the process using workflow management sys-

as follows. Invoke the order operation, fol- tems in either a centralised or distributed, peer-to-peer fash-

lowed by the payment_authorise opera- ion. Both languages have a formal basis in thealculus,

tion. If payment_authorise succeeds then enabling us to prove, using reduction semantics ofsthe

payment_capture anddispatch may be invoked. If calculus, that a given composite service is free from dead-
payment_authorise fails then the composition also locks, livelocks and it invokes the operations of the third

party web services in the correct order. was started in January 2003. The Working Group is char-
The remainder of this paper is structured as follows: Sectiontered to create the definition of a choreography, language(s)
2 gives an overview of the current state of the art; Section for describing a choreography, as well as the rules for com-
3 describes a language for defining composite services; theposition of, and interaction among, such choreographed
sequencing constraints which can be exposed by a web seVeb services. At this time the Working Groups First Work-
vice are described in Section 4 and Section 5 shows howing Draft Specification is still in preparation.

the two languages complement each other and uses the pre- |n [11] a technique is presented to allow automatic com-
vious example to formally show that the composition is well position of web services to achieve a goal. This approach
formed. Finally, further work is presented and conclusions js based on Mealy Finite State Machines (MFSMs), a finite

are drawn in Sections 6 and 7. state machine with input and output queues. Each service
which can form part of the composition must be described
2. Related Work by a MFSM and the goal of the desired composition must

also be described by a MFSM. The former part can be con-

Web Services technology is evolving rapidly. In the fol- sidgred similar to exposing sequencing cpnstraint; but with
lowing section notable, recent or ongoing efforts will be dis- a different formal background. The algorithm provided for

cussed with emphasis on those aspects that are relevant fgutomatically creating the composition is an effective one
service composition and validation but relies on the specifying the desired composition as a

The Business Process Execution Language for Web Ser-MFSM' a requirement which may not always be desirable.

vices (BPEL4WS) [1] provides a standard for specify- In mar:.y. respectsh,. tﬂ‘? adpﬂfo."" ch is similla rto thg D'IAMLd'
ing both business process behaviour (service composition)S Coalition [9] which is defining an ontology and relate

and business process interactions (sequencing constraintsj2nguage for describing web services with the aim of being

BPEL4WS attempts to describe business process interac-able tc_) compose them automa_tically [24, 20]._This technol-
tions using the mutually visible message exchange of eac ogy wil undou_btgdl_y pllay an |m.p0rtant role in the future
of the parties involved in the protocol, such descriptions are ut at pr esentis n Its mfanpy W'th a lack of tools support
called business protocolsAnother facet of BPEL4AWS is and rapidly changing specifications.
the specification oéxecutable processesich describe the The results based on Mealy machines presented in [12],
structure of a composition in sufficient detail to be executed suggest that there is a lack of understanding of the rela-
by an enactment engine. Both of the aspects of BPEL4WStionship between local properties of web services, and the
are encoded in XML using a rich set of structured program- global properties of a composition created from them. It is
ming style constructs. However, BPEL4WS is lacking a for- shown that unexpected behaviour can occur when messages
mal, well understood basis and due to this and the rich set ofare queued and distributed decisions taken. It is possible
constructs, specifications written in BPELAWS are not read- for a service to use an interceptor to ensure that the opera-
ily susceptable to automatic verification. When considering tions it exposes are invoked in the correct order [25]. This
a subset of BPEL4WS, it has been shown in [13] that veri- Work relies on a language based on CSP to describe the le-
fication of safety and liveness conditions can be achieved. 92l sequences of operations but has the disadvantage that it
The purpose of Web Service Conversation Languageis Only able to model two party interactions rather than the
(WSCL) [4] is to provide a standard for specifying business multi-party interactions presented here.
level conversations. WSCL provides an XML schema for Our work makes complementary contributions to those
specifying business level conversations that take place at autlined above. As we discuss in the next section, our
single Web service. The WSCL notion of a conversation is a language notations represent an advance over the current
series of messages exchanged between a service-consumgrdustrial practice as represented by BPEL4AWS. We draw
and a service-provider. The WSCL specification models aupon our earlier work on business processes specifica-
conversation as a finite state machine where state changeion languages and enactment (orchestration) environments
are triggered by interactions. An interaction is the exchange[23, 26]. We allow the service composer to make use of a
of one or two documents between a service-consumer andyraphical notation for defining the composition as a busi-
a service-provider. WSCL is simple, and analysable, but ness process which we believe to be more intuitive and ex-
does have some limitations, such as only being capable ofpressive than an FSM notation. A clear separation is drawn
modeling two party conversations and does not define howbetween the specification of sequencing constraints for in-
to specify an executable process. There are no signs thatlividual web services and that of the composition of those
WSCL has been widely adopted or that an updated versionservices. We also allow the verification, albeit not automatic
will be published. composition, that a composition respects those constraints
The Web Services Choreography Working Group [5] is placed on the constituent services. Although simple, our
an initiative by the World Wide Web Coalition (W3C) and languages are expressive enough to be able to model com-

plex interaction patterns within a composition and capture
elaborate sequencing constraints [23, 14]. Message queue-
ing is not considered in this paper but we believe that our
m-calculus based approach to service composition can aid
understanding of the global properties of a service, when
those properties are concerned with the order of invocation
of operations.

prepare

3. Specifying Composition Figure 3. A task showing the input and output
parts and messages
3.1. Language Features

In addition to being able to verify that a composition
is well formed and uses the constituent services correctly,Well as tasks. A graphical representation of a task is given
it is also desirable to be able to enact a composite ser-in Fig. 3. It depicts a task (called prepare) that has one in-
vice in a distributed, peer-to-peer manner [10]. Centralised Put message (1) with two data parts énd i), correspond-
coordination is sufficient for some classes of applications. ing to themessages andparts defined in the WSDL
There are others which benefit from peer-to-peer style en-description of the operation. This task represents one invo-
actment. Value added services provided by Virtual Organi- cation of a web service called prepare. The input message
sations (VOs) are gaining in popularity and fall into this cat- must have all of its input parts available before the task can
egory. This is due to trust and organisational issues whichstart (invoking the web service). A task terminates in one
may prevent the service being enacted from one location. ©f the named output states (called outcomes) when the web
Industry led efforts aimed at specifying composition lan- service returns a response. One of these outcomes is con-
guages for web services detailed earlier, take a centralisedidered normal and all others are considered fault outcomes
view of composition and subsequent execution. For exam-following the convention of WSDL. In Fig. 3, Orepresents
ple, the use of shared variables in BPEL4WS makes it very@n output message ang Fepresents a fault message. Each
difficult to coordinate the execution in a distributed manner. outcome of a task has a distinct set of parts, which can be
Also, many of these languages specify complicated con-used as input by subsequent tasks or output by a composing
trol flow mechanisms, making it difficult to analyse such Processes. The output messagelOFig. 3 has two named
compositions. The composition language that we proposeParts @ and @. The fault message;Fhas one fault part
has been developed with both of these drawbacks in mind:f1. If the format of the inputs and outputs does not match
it contains elements to allow distributed enactment of the Precisely, it is possible to perform simple transformations
Composition and the Simp|e data flow Sequencing model isOn the data to overcome this. It is pOSSibIe for an input or
based on the-calculus to allow analysis of compositions. Output message to be “empty”, i.e. contain no parts, which
Fault tolerance is necessary to maintain app"cation Spe_mOdels methods which take no parameters and void return
cific consistency in the face of failures such as proces-types respectively.
sor crashes, network related failures and application ex- The control structure of a process is described in terms
ceptions. The fault tolerance requirements of composite of inter-task dependencies linking tasks together to form a
services have been split into the requirements at the approcess. Two types of inter-task dependency can be used
plication level and at the system level (execution environ- to control the execution of a composition: temporal depen-
ment). The composition language provides notations anddencies and data dependencies. Temporal dependencies are
structures for meeting application level fault-tolerance re- used to control the execution of a task based on other tasks
guirements through exceptions, alternative tasks and com-or processes being in particular states. Such a state could
pensating tasks, whereas the execution environment is rebe “started” or “completed” with particular outcome. Tem-
sponsible for meeting system level fault tolerance. The exe-poral dependencies are represented by dotted arrows in the
cution environment is described in [27] and is based on thegraphical representation of the composition. Data depen-
OPENflow workflow engine [23]. dencies describe where a task acquires its input from, such
The composition language has two core concepts: a taskas the output of another task or the input into the composing
and a process. A task in a composition is the basic unit of process. Data dependencies are represented by solid arrows
work and corresponds to an invocation of a web service op-in the graphical representation. A task can have an arbitrary
eration. When tasks are composed together they are said toix of data and temporal dependencies describing when it
form a process. However, processes can be composed rezan be executed (grouped as “input dependencies”). A pro-
cursively, that is a process can contain other processes asess can have a similar mix of dependencies controlling its

POrder orderTask (not shown). The P_C_Task representing pay-
ment_capture has just one dependency, on the output of the
‘ P_A_Task. When the input dependencies for each task are
fulfilled they will execute, invoking the web service oper-
ation detailed in the operation attribute of the taskDefini-
tion element. When each service is invoked, the parameters
i are renamed according to the sinkPartName attributes. For
EC‘H brevity namespaces and address data for the services has

paymentAuthorise paymentCapture

been omitted.

<processDefinition name="POrder" ... >
<subProcesses>

Figure 4. Composite Order service utilising .
third party bank and Shop services operation="paymentAuthorise" ... >

<inputDependencies>
<dataDependency sourceProcess="POrder"
sourcePartName="accountNum"

sinkPartName="accountToDebit”... />
start but also controlling its completion. Such dependencies <dataDependency sourceProcess="orderTask"
which control completion are called “output dependencies” sourcePartName="amount"
. . sinkPartName="debitAmountInSterling” ... />
and specify how the output of the process is constructed </ inputDependencics>
from the data used by its constituent tasks. It is possible to </taskDefinition>
provide an element of fault tolerance through redundancy <taskDefinition name="P_C_Task"
by using multiple alternate data dependencies. Combina- Op?rati;“:"szme?tcapt“e" e
. . <inpu ependencies>
tions of such alternate data and temporal dependencies can <dp ° L "
. ; ataDependency sourceProcess="P_A_Task

be used to describe complex process structures as discussed sourcePartName="authNun"
in [23, 26] sourceMessageType="output”

. . sinkPartName="authorisationCode” ... />
. The .graphlcal representation of the gxample presented </inputDependenciess
in Section 1, comprising of four tasks linked by data de- </taskDefinition>

pendencies is shown in Fig. 4. The order task and the
payment_authorise task in the composition both have in-
put dependencies on the input to the composite service (la-
belled id1 and id2). This means that when the input mes- It is possible and likely in some application domains

sage, i is received from the client, these input dependen-that composite services could be very large, involving many
cies will be available, and if all of a tasks input depen- tasks and complex inter-task dependencies. To make such

dencies are fulfilled it will begin execution. In this case, compositions easier to create, maintain and understand it is
the order task can begin execution as its only input depen-desirable to be able to modularise them and reuse the def-

dency is fulfilled. When the order task completes, the re- initions where possible. To achieve this, it is possible to
sults will be propagated to payment_authorise and dispa’[cl‘feference other, external process definitions from within a
along the dependencies shown. This action completes thédrocess. Such referenced process definitions may include
input dependencies for payment_authorise so it is able tofrequently used modules of compositions, which are defined
execute. Such behaviour continues until the output depen-separately and referenced by a number of different composi-
dencies of the outer process (POrder) are fulfilled. In this tions. Examples include a fragment to log into a frequently
scenario, the normal output message, o will be complete af-used web service or interact with a transaction manager.

ter the dispatch task has completed (fulfilling the output de- Resource availability may be at a premium on the node
pendency between dispatch and POrder), or the fault meswhich is enacting the composite service. In order to allow
sage, f will be complete after the payment_authorise taskefficient resource management there are two stages at which
has terminated with a fault message (fulfilling the output de- the composition designer can choose to instantiate the tasks
pendency between payment_authorise and POrder). A segand sub processes within it: Early or late. When Early (tra-
ment of the XML notation of the POrder composite service ditional) instantiation is used, all of the tasks, sub processes
is shown below, consisting of the tasks payment_authoriseand externally referenced processes are loaded into the exe-
and payment_capture. It is possible to see the task defini-cution environment and initialised when the composite ser-
tion and dependency structure. The payment_authorise taskice is instantiated following a client request. This leads to
(P_A_Task) has an two input dependencies, one from thea static system which is easier to reason about but more dif-
composing process POrder and one from the output of theficult to modify. Late instantiation results in the tasks, sub

</subProcesses>
</processDefinition>

Engine 1 Engine 2
O
e =
i o W=
o7 St
Figure 5. Using a late instantiating task to per- O ras () web Senice
form recursion /74 Invocation +~}p Nolifcation

Figure 6. Distributed orchestration of a com-

processes and externally referenced processes not being in- . :
posite service

stantiated until they are able to run, i.e. when all of their
input dependencies are satisfied. Late instantiation implies
that only those parts of large process definitions that are
needed will be instantiated, giving more efficient resource 3.3. Semantics
usage.

Many structures within a composite service will require
a form of recursion to perform a task a number of times
often not known until runtime. Using late instantiated pro-
cesses, depicted as a process with a dotted border, allows th
designer to achieve this. It is possible for a late instantiated
service to refer to itself and instantiate another instance of
itself under certain conditions giving the desired recursive
behaviour [23]. For instance, gin Fig. 5 refers to itself,
causing repeated execution gf tintil tg completes with
the lower outcome.

To allow reasoning about a composition with respect to
' deadlocks, livelocks and respecting sequencing constraints
of the constituent services, the composition language has
formal basis in ther-calculus [19]. It is possible to
translate from the XML format of the language to the
calculus format. In ther-calculus format, tasks are rep-
resented as-calculus processes, and dependencies linking
the tasks, represented bycalculus channels. (An overview
of w-calculus is given in the Appendix.) Channels repre-
sent data dependencies, as temporal dependencies are repre-
] sented implicitly using the operators ofcalculus directly.
3.2. Orchestration As each task in the composition language is analogous to an
invocation of an operation of a web service, this invocation
Orchestration of composite services defined in the com-is also modelled as the sending of a message along a channel
position language can be carried out using a workflow man-to the web service. The receipt of a response or exception
agement system. Our current execution environment isfrom the web service is modelled as the receipt of a mes-
DECS [27], a workflow enactment engine, built on top of sage along a channel from the web service. The composite
the J2EE architecture [17] which allows flexible coordina- service as a whole is modelled as a parallel composition
tion of composite services. That is, the orchestration canof all of these processes. For readability, a notational con-
either be centralised or can be distributed where each envention has been adopted whereby the channels are named
gine communicates with each other in a peer-to-peer man-as the processes which they connect, for example, papc
ner. When decentralised orchestration is employed, eachs a channel between thmyment_authorise and the
engine is responsible for part of the execution of the com- payment_capture tasks. The channels which represent
posite service. Each engine will invoke the constituent ser-a connection to a web service are written as an abbreviation
vices for its part of the composition and send notification of the operation name such as o for order, appended with an
messages to other engines when certain events occur. Sucaibbreviation of the type of message it is (input - i, output -
notifications only contain the minimal amount of data nec- o, exception - €). The names that are sent down each chan-
essary for the other engines to continue enacting their partnel represent either wsdl:messages or wsdl:parts and where
of the composition (see Fig. 6.). This gives rise to increasednecessary, an internal actior) can perform transformation
security and organisational autonomy as each engine is onlyon these messages to extract/combine them. The full range
aware of the data necessary for it to continue execution.of pi-calculus constructs: sequence (.), parallel composition
The composition language can be mapped onto other exe{ |), choice (+) and replication(!) are used to define the flow
cution environments. We currently provide such a mapping control within the composition. In [19] itis shown that these
to JOpera, a centralised workflow management system [22].operators are sufficient to model the communication in any

system, or in this case, composition.

The pi-calculus format of the composition from Fig. 4
is shown below. It consists of 5 pi-calculus processes com-F4 = (popa(an)|opa(am)).T.pai<req>.(pao(rsp).T-pape<rn>
posed in parallel to form theystem PO (the outer com- +pae(flt).T.papo<ec>).0
posite service), Order (O), payment_authorise (PA), pay-
ment_capture (PC) and dispatch (D). The names which B B
are sent down the channels represent the input/output de- ~ ©'¢ = pape(rn).7.pei<req>.peo(rsp).7.ped<ac>.0
pendencies between the tasks, for example order# (on),
account# (an), amount (am), delivery_day (dd), excep-
tion_code (ec), invoice# (in), reference# (rn) and authori-
sation# (ac).

As PO represents a process in the composition language, COMP = (PO|O|PA|PC|D)

its structure is different from that of a-calculus process))) -
which represents a task in the composition. PO begins by Section 5 discusses how to verify that such a composition

sending two messages along different channels in parallel!S free of (_:Ieadlocks and (_:yclic_ dependencies whilst utilising
on (order#) is sent along th&o channel from PO to or- the constituent web services in the correct manner.
der (0); an account# (an) is sent along ghwa channel
from PO to payment_authorise (pa). The PO process therd. Sequencing Constraints
waits to receive messages which will form its output. There
is a choice of messages which can form the output, either4.1, Language Features
receiving a delivery_day (dd) from the dispatch (D) pro-
cess along channel dpo, or receiving an exception_code (ec) |n order to be able to verify that a composition described
along the papo channel which connects payment_authorisg,y the composition language uses the third party services in
(pa) to PO. The final 0 in the process signals that the procesgne correct way, it is necessary for these services to expose
is complete and in this case, also that the composite servicgqgitional semantic information describing what “the cor-
is complete. rect way” is. The language described in this section intends
to define the order in which the operations of a web service
should be invoked, or theequencing constraintshich are
PO = (poo<on>|popa<an>).(dpo(dd)+papo(ec)).0 placed on a service. Such constraints should be: flexible
- to be able to model any possible sequence of operations;
m-calculus processes which represent tasks in the com-complete - so that all legal sequences are represented; con-
position language all follow the same structure: they wait to cise - to avoid ambiguities which might be introduced by a
receive their input, send a message to the web service thatomplex language.
they are invoking, receive the response from the web service It is possible to think of the sequencing constraints
and finally send messages to other "downstream” processeglaced on a web service as the “protocol” that the web ser-
which have dependencies on them. For instance, the Orvice supports. Descriptions of protocols are not new and
der process (O) waits to receive an order# (on) along thethere are many common descriptions that are used [21],
channel from PO named poo. The process then performs arowever these tend to be intended for human readability and
internal action to signify that the input data is transformed not machine interpretation.
into a request (req) for the web service. This request is sent The sequencing constraints are defined by the web ser-
along the input channel for the web service (oi) and then vice provider and exposed in the WSDL definition of the
the response gathered from the output channel of the welservice by utilising the extensibility elements in WSDL.
service (receiving rsp along 00). Again, an internal action There are only five language constructs necessary to de-
denotes the deserialisation of the response and parts of thecribe any possible sequence of messages:
response are propagated to downstream tasks. In this case,
the propagation involves Sending an amount (am) to pay_ (] Sequence: perform a” Chlld elementS in Sequence W|th
ment_authorise along thesa channel and, in parallel, an one starting only when the preceding one has com-
invoice number to dispatch along thé channel. The ter- pleted
minating O shows that the process is complete, but in this
case does not signify that the composite service is complete.

D = (od(in)|pcd(ac)).7.di<req>.do(rsp).T.dpo<dd>.0

e Choice: perform exactly one of the child elements

e Parallel: perform all of the child elements in parallel
and complete when all parallel executions have com-
O = poo(on).T.0i<req>.00(rsp).T.(opa<am> | od<in>).0 pleted

e Multiple: perform the child elements an arbitrary num- <protocolType name="pay">

ber Oftlnqes <serviceInput operation="payment_authorise" ...>
. . <choice>
e Nothing: do nothing. <serviceFault/>
<sequence>
The language constructs are used to describe the order in <serviceOutput/>
. . . . <serviceInput operation="payment_capture" ...>
which the service is expecting events to happen. The events <serviceOutput/>
are described in terms of four communication primitives: </serviceInput>
</sequence>
</choice>

e Send: The service will send a message.

</serviceInput>
i . . . </protocolType>
e Receive: The service will receive a message. o) o)
When considering asynchronous services it is possible

¢ Service: the server side view of a call. There are three that the web service designer has specified full WSDL for
elements associated with a Service: servicelnput, ser-their service, i.e. the WSDL describes the messages which
viceOutput and serviceFault. A Servicelnput receives will be produced as well as consumed. If this is the case,
the input to a call. ServiceOutput and ServiceFault cor- it is possible to define the sequencing constraints in terms
respond to replying to the client with either the output of that single WSDL document. However, most services
or fault message defined in the WSDL description are not defined in this manner so it is necessary to provide
an alternative method for specifying the sequencing con-
straints. To achieve this the language allows one participant
to be defined as the “inverse” of another. For instance, the
send operation which is not defined in one WSDL docu-
ment is the inverse of a receive defined in another WSDL
Initially the Service and Invoke primitives may seem a lit- document. Whether or not this other document exists is not

tle unintuitive. However, they correspond to the Client (In- relevant to the interaction constraints. This simply allows
voke) and Server (Service) ends of a Remote Procedure Calfhe language to deal with incomplete but legal WSDL.
(RPC). It is possible to model an RPC simply in terms of Itis anissue for the author of the sequencing constraints
send and receive but ambiguities can occur when using thisto decide what level of detail they wish to provide. Some
method. For example, it becomes difficult to associate re-may wish to simply model the client and server interac-
ceive operations with the corresponding send operation iftion, preserving the encapsulation offered by the web ser-
multiple send operations occur in parallel. Explicitly de- vice. Other designers may wish to expose the sequencing
scribing RPCs using the invoke and service primitives re- which happens behind the scenes in communicating with
moves these ambiguities and reduces the complexity of theother services. The latter offers advantages in scenarios
verification process. such as asynchronous multi-party interactions. It allows the
The sequencing constraints for the bank web service de-client of a service to fully reason about the service that they
scribed before are shown below in the XML format. They are using and gives a form of causality where asynchronous
consist of one “protocol” called pay which begins by a messages are received from other services than that invoked.
client invoking the payment_authorise operation. This is The language provides constructs for both options to a ser-
described by the element servicelnput as it is an RPC stylevice designer and does not constrain them to model only
service exposed by the bank. Following this invocation Simple interaction involving two parties [14] .
the sequencing constraints allow a choice of activities: a When conversations take place, the participants involved
serviceFault can occur which equates to an exception be-could be known before the protocol starts, this is referred
ing emitted from the payment_authorise operation. Shouldto as having statically bound participants. Alternatively the
a serviceFault occur, the protocol implicitly terminates as participants may be discovered as the protocol progresses,
there are no activities left (all other activities are ruled out this is referred to as having dynamically bound participants,
by the choice). The alternative to the serviceFault in the this discovery being deduced from the content of messages
choice element is a sequence of activities occurring. Thesewithin the conversation. Naturally, conversation may have
are initiated by a serviceOutput activity, in this case the a mixture of both statically and dynamically bound partici-
“normal” output from payment_authorise being returned. pants. Dynamically bound participants is a common occur-
Following this, the protocol expects the payment_capturerence in more complicated protocols, such as in Web Ser-
operation to be invoked and will then return a response fromvices Coordination and Web Services Transaction (WS-C
this operation via the serviceOutput element. The proto- and WS-T) [6, 7]. In WS-C, an application may be passed
col is then in a terminating state as no more actions are ex-a context containing the address of the coordinator to use.
pected. The language allows the specification of such scenarios con-

e Invoke: A client side view of a call. InvokeOutput
is analogous to sending the call request and Invokeln-
put/InvokeFault are used to model receiving the result
or fault from a call

taining late binding of services using optional attributes 5. Verification of the Composition
on the communication primitives. Providers of sequenc-
ing constraints should ensure that the participants which are aAs described in Section 1 it is desirable to be able to ver-

dynamically bound play no part in the conversation before jfy that the composition meets certain correctness require-
they are bound to a concrete service. ments such as:

4.2. Semantics e Is free of deadlocks

The sequencing constraints language has a formal basis e Is free of livelocks
in the w-calculus and there is a-calculus representation
which can be derived from the XML format. This repre-
sentation uses similar constructs to those described at the
beginning of this section for the language constructs (se-
guence, parallel, replication and choice). Each of the par-

e Respects the sequencing constraints placed on con-
stituent services

To achieve this, it is possible to apply the reaction rules de-

. ' . : fined by pi-calculus. These rules prescribe how a system
ticipants in the protocol is connected by multiple channels A 4
denoted in pi-calculus can react and change depending on

(one chqnngl per _opgranon exposed by the service). Thethe messages which are sent and received. A pair of actions
communication primitives described above are modelled 8S, o said to be complimentary when they perform a send and

sending the parts which comprise a wsdl:message along," .o oo tho come channel. If they are both unguarded

a channel to an operation. The naming convention is the .) .
. o and not in the same summation (and so alternatives to each
same that was described for the Composition Language -
other) they are termed a redex. The firing of such a redex

calculus representation, ie. an abbreviation for the operation g L 4
. X . constitutes a reaction in the system causing the system to
name appended with the message type (input - i, output - o, .
move from one state to another, i€— s’. The new state

exception -). is equivalent to the old state with the actions that formed the
redex removed.
SHOP = oi(req).T.co<rsp>.(0+di(req). To analyse the system it is hecessary to create a “global
view” of the system, containing both the composition and

.do<rsp>.0) - . g :
the sequencing constraints for the services which are be-
ing used. To achieve this, a parallel composition is created
BANK = pai(req).r.(pao<rsp>. which is a union of the composition and a replicated version

of the sequencing constraints which were defined earlier. It
is necessary to replicate the sequencing constraints as mul-
+pae<fit>.0) tiple instances of the same services may be consumed by

Ther-calculus above corresponds to the UML sequence the same composition.
diagrams shown in Fig. 1. The shop service is expect-
ing to receive a request over theder operation channel.

It will then return a response over tloederResponse
channel. Following this, the user is not obliged to call
any other operations as indicated by the terminating 0 in
the choice element (+). However, to confirm the order,
the user must invoke thdispatch operation by send-
ing a request over theispatch channel. The shop
will then return a response over tspatchResponse
channel. The bank service can be described in a similar
way, except that should a fault message be sent along the

paymentAuthoriseException channel it is not legal 2. From every state, it is eventually possible to reach the
to invoke any other operations. However, if a response is completion state

returned over thpaymentAuthoriseResponse chan-

nel, paymentCapture may be invoked by sending a re- Where the completion state is defined as: the composition
guest along the input channel and a response will be re-has been reduced to an empty expression, i.e. no terms are
turned along the response channel. This is again modelledeft, and the sequencing constraints have been reduced to
as a choice between performing more operations if a mes-either an empty expression or are still in the starting state.
sage is received along the response channel and doing nothRoint 1 above shows a lack of deadlocks and point 2 indi-
ing (O) if a fault is received along the exception channel. cates a lack of livelocks within the global picture.

pci(req).7.pco<resp>.0

SYSTEM = (COMP|!SHOP|!BANK)

In order to show that the composition meets the require-
ments identified above we apply the pi-calculus reaction
rules to this system. Whilst doing this it is necessary to
show the following:

1. Following any reaction, either another reaction can oc-
cur or the system is in a completion state

Informally, the global picture models three aspects: checking in these situations as the state space which must
Firstly, the third party web services offered by the service be checked can become larger than is easy to reason about
provider are modelled by the sequencing constraints placedy inspection.
on them; secondly, the structure of the composition is mod-
elled by the channels connecting differenttalculus pro-
cesses in the composition language; thirdly, the interaction6- Further Work
between the composition and the third party services are

captured by the “external channels” in the composition lan- Many services are designed such that different logical
guage. Showing that following any reaction, there is an- meanings of messages are separated into multiple mes-
other reaction possible proves that there are no deadlock%ages_ However, some services are designed in ways that
in the system. Such deadlocks could be because of poorly, message can convey multiple meanings. For instance, the
formed structure within the composition, or could be be- LoginResponse message type used in the xCBL Order Man-
cause of a mismatch between the composition and the sezgement Use Case [8] can indicate both success and failure
quencing constraints (the composition does not respect theyf the login. It would be desirable to be able to offer a dif-
sequencing constraints). In order to show that the system isgrent sequence of operations dependant on the content of a
free of livelocks it is necessary to show that no cycles exist message, i.e. be able to inspect the message. We are investi-
which would prevent eventual termination. gating ways of achieving this and assessing the implications
To formally illustrate the reaction rules, below is a par- on the formal model of both the sequencing constraints and
tial view of the system after the first reaction has oc- the composition. Initial results indicate that it may be pos-
curred. The first reaction which was possible involved sipje to utilise the type system of pi-calculus to achieve this.
the outer process (PO) performing two operations in par- ¢,rrent tools support for verification of pi-calculus are
allel, sending the order# (on) to O along theo channel e infancy. Most do not support the complete language

and sending the account# (an) to PA alonghipa chan- 4 require a complex and error prone input syntax. We

nel. The O and PA processes performed the complemen . i estigating using variouscalculus model checkers

tary receives to the sends performed by PO and thus thgs 1, automatically validate composite services. Itis also

terms formed a redex. This redex caused the transformatlorbossible to map our languages onto Promella and then use

SysTEM — sy sTEM'where the redex is removed. (In the o 5N model checker [16]. In the future we hope to be

interest of brevity, not all processes are shown below.) able to integrate one of these into the tool used to create the
composition and automatically validate the composition at
creation time.

PO’ = (dpo(dd)+papo(ec)).0
O’ = oi<req>.o0(rsp).7.(opa<am> | od<in>).0 7. ConCIUding Remarks
PA’ = opa(am)).r.pai<req>.(pao(rsp).t.papc<rn>+ A composite service can be very complex in structure,

containing many temporal and data-flow dependencies be-
tween their constituent services. Furthermore, each indi-
vidual service is likely to have its own sequencing con-
straints over its operations. It is highly desirable therefore
to be able to validate that a given composite service is well
.do<rsp>.0) formed: proving that it will not deadlock or livelock and
that it respects the sequencing constraints of the constituent
services. With this aim in mind, the paper has proposed sim-
ple extensions to web service definition language (WSDL)
enabling the order in which the exposed operations should

Following this reaction, it is clear by inspection that an- be invoked to be specified. In addition, the paper proposed
other can occur - the sending of request message along tha composition language for defining the structure of a com-
oi channel to the SHOP from O and causing the reaction posite service. Both languages have an XML notation and
systeM’ — system”.When continually applying the a formal basis in the pi-calculus (a calculus for concurrent
reaction rules to the system, there are often several statesystems). The formal verification procedure was demon-
which can be reached from a given state. This happens, forstrated by applying the pi-calculus reaction rules to a sys-
example, when a task has alternative outcomes such as notem containing the composite service and sequencing con-
mal and an exception. The use of a model checker easestraints for each web service.

pae(flt).T.pipo<ec>).0

SHOP = oi(req).7.0o<rsp>.(0+di(req).7

SYSTEM' = (PO'|0'|PA'|PC|D|!SHOP|!BANK)

Acknowledgements [16] G.J. HolzmannDesign and Validation of Computer Proto-

cols Prentice Hall, 2002.

Discussions with Gustavo Alonso and Ricardo Jimenez- [17] S. Microsystems. Java 2 Enterprise Edition.
Peris clarified our ideas. This work is part-funded by the http://java.sun.com/j2ee/. _ _
European Union under Project IST-2001-37126: ADAPT [18] R. Milner. The Polyadic pi-Calculus: A Tutorial. lbogic

(Middleware Technologies for Adaptive and Composable [19]
Distributed Components) and by the UK EPSRC under

and Algebra of Specificatior1993.
R. Milner. Communicating and Mobile Systems: the Pi-
Calculus Cambridge University Press, 1999.

grant GR/S63199: Trusted Coordination in Dynamic Vir- [20] s. Narayanann and S. Mcllraith. Simulation, Verification

tual Organisations. The authors also wish to thank the and Automated Composition of Web ServicesPhoc 11"
anonymous reviewers for their valuable comments. Int'l World Wide Web Conference (WWW-10jay 2002.
[21] OMG. Unified Modelling Language. http://www.uml.org.
[22] C. Pautasso and G. Alonso. JOpera: a Toolkit for Efficient
References Visual Composition of Web Services. Technical Report TR-
)) 432-2003, ETH-Zurich, 2003.

[1] Business Process Execution Language for Web [23] F Ranno, S. Wheater, and S. K. Shrivastava. A System for
Services (BPEL4WS) version 1.1. http://www- Specifying and Co-ordinating the Execution of Reliable Dis-
106.ibm.com/developerworks/library/ws-bpel/. tributed Applications. IrProc of ** Conf. on Distributed

[2] Etrtofl;/ndls: .tProof /too:cs f(;).r/tmolbllehtdllstrlbuted systems. Applications and Interoperable Systems (DAIS; S§ptem-

p:/www.it.uu.se/profundis/tools.shtml. ber 1997.
[3] ;thtg'//www it uu se/r(';/'lsoez:lrgl/group/mobility/r¥1v\?vrtl)<ben0hl [24] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic Compo-
: CoH . : sition of Web Services using Semantic Descriptions\Web
[4] \rﬁ\fpt? //va\?vrvv\';g org/c')l'nli\z//?/\r/ziltlloor; Language (WSCL) 1.0. Services: Modeling, Architecture and Infrastructure work-
: S) . shop in ICEIS 2003Angers, France, April 2003.
[5] \r/]\:teb_// Serv:lsces /Zo(égfre;)ghrar;hy Working Group. [25] M. Venzke. Automatic Validation of Web Services. Pnoc
p-IIWwWW.W3.0rg wsfenorr.) 8!" CaberNet Radicals Workshp@ctober 2003.

[6] WS-Coordination (Ws-C). http://www- .
106.ibm.com/developerworks/library/ws-coor/. [26] S. M. Wheater, S. K.. Shrivastava, and F. Ranno. A CORBA

[7] WS-Transaction (WS-T). http:/Aww- Cpmpllant Transactlon'fll Workflow System_fornlnternet Ap-
106.ibm.com/developerworks/webservices/library/ws- plications. InProc. Intl Conference on Distributed Sys-
transpec/. tems Platforms and Open Distributed Processing (Middle-

[8] XxCBL - XML Common Buisness Library. ware '98) September 1998. _
http://www.xcbl.org/. [27] S. J. Woodman, D. J. Palmer., S: K. Shrivastava, and S. M.

[9] A. Ankolenkar, M. Burstein, J. Hobbs, and O. L. et al. Wheater. A System for the Distributed Enactment of Com-
DAML-S: Web Service Description for the Semantic posite Web Services. Technical Report DIT-03-056, Univer-
Web. InThe First International Semantic Web Conference sity of Trento, 2003.

(ISWC) Sardinia (ltaly), June 2002.
[10] B Benatalla_h_, M. Dumas, Q. Sheng, ar_ld_ A._Ngu. Declarfs\- Appendix: r-calculus
tive composition and peer-to-peer provisioning of dynamic
web services. IrProc. 18" International Conference on) .
Data EngineeringFebruary 2002. The m-calculus [19] is an algebra for describing and
[11] D.Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and analysing the behaviour concurrent systemsr-8alculus
M. Mecella. Automatic Composition of E-services That Ex- system is described in terms of processes, channels and
port Their Behavior. IriProceedings of the®l International names. Processes are independent of each other and com-
Conference on Service-Oriented Computing (ICSOC'2003) municate using channels which connect them. Each channel
Trento, ltaly, 44-58 2003. Springer LNCS, Vol. 2910. 5 referred to by a name and the communication unit along
[12] T B_u“an’ X. Fu, R Hull, and S Su. Conversat'on Spec'f'.ca' a channel is a name. A name is the most primitive unit of
tion: A New Approach to Design and Analysis of E-Service o .
Composition. InProc. 12" Int'l World Wide Web Confer- add_ressmg imr-calculus. Processes are built from the fol-
ence (WWWO03May 2003. lowing action terms and operators:
[13] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compata-
bility Verification for Web Service Choreography. Rroc. e Send f<a>.P] - Send the name a along channel named
of IEEE International Conference on Web Services (ICWS x and then execute process P.
2004) June 2004. . .
[14] A. Group. Deliverable D6: Service Specification Language. ® Receive {(v).Q] - Receive name b down the channel
Technical report, 2003. named x and then execute Q. This has the effect of
[15] J. Hanson, P. Nandi, and S. Kumaran. Conversation Sup- binding all occurrences of x in process Q.
port for Business Process Integration PArmceedings of @
Int'l Enterprise Distributed Object Computing (EDOC(2) e Choice [p1+ p2] - Execute exactly one of the processes

September 2002. P1 and P2. The execution of one half of this expression

precludes the other half from ever being executed. This occurring is that the alternatives (denoted by ...) have been
operator is associative and commutative. discarded and any communication that they would have per-

el » h formed has been pre-empted. We have now performed one
o Paralle Comp05|t|on1{1 | P2] - Execute the processes computation step in the system and the system is in a new
P1 and P2 in parallel. These two processes may com-

. : . . state.
munlcate_ with ea_ch_ other via named_ channels. This In many cases there may be multiple states which a pro-
operator is associative and commutative.

cess can be transformed into. For example, following pro-
e Sequencer: . P2] - Execute Process P1. When it com- CESSP=(2<a>.Q)| (¢(b)-1) | (x(c).5) there are two transfor-
pletes execute process P2. mations possiblee—p’or p—p”. In the process P, name
a is being sent along the channel x but can only be received
e Replication [P] - Execute an infinite number of copies by one of the other two parallel compositions. Therefore
of P in parallel. Itis possible to use replication to sim- after state P, the following states are= Q| {a/b} R | (z(c).5)
ulate recursion and therefore not necessary to includewhich assumes that the name a is received by the middle
a separate operator. composition causing a substitution of a for b in process R;
.) L or P” =Q| (=(b).R) | {a/c}s Where a has been received by the
There are two special actions that exist in thealculus o composition and is substituted for ¢ in process S.
which Sho“"?‘ be considered: and 0. F!rstly, th_@ act'|on It is possible to apply the reaction rules recursively, that
denotes an internal unobservable action. This action mayiq apply them to the state P’ that process P has moved into
perform transformations of data or other such actions which following the previous computation step. If this is followed
are not externally visible. Secondly, the 0 operator signifies to its natural conclusion, it can be shown that the system is

explicit termination, for instance:.q.o means execute pro- qee of deadlocks and livelocks. This is achieved by reduc-

Cess P’, when it cor_npletes, exec_ute Process Q and then StOIi’ng the system using the reaction rules and showing that one
The 0 is often omitted for brevity, simply writing.Q but of the following always holds:

where it adds clarity or cannot be implied from the context

itis included. 1. Following any reaction, another reaction can occur.
Two forms ofr-calculus exist: monadic and polyadic. In

the monadic form ofr-calculus, only one name may be sent 2. Every process in the system is either in its initial state

along a channel in an execution step. For instance,>.r or a termination state where no action terms remain.

is allowed butz.<ab>.P is not, assuming that a and b are

separate names. The polyadic formsmtalculus allows

multiple names to be sent and received along a channel in

one computation step. It can be shown that the polyadic

form is necessary and that the natural monadic abbrevia-

tion z.<a>.z.P iS not equivalent to the polyadic term

z.<ab>.P [18]. This paper deals with the polyadic form of

m-calculus.
Computation inr-calculus is defined by a set of reac-

tion rules which describe how a system P can be trans-

formed into P’ in one computational step-{r’). Ev-

ery computation step in the-calculus consists of commu-

nication between two terms (which may be part of sepa-

rate processes or the same process). Communication may

only occur between two terms which are unguarded (that

is they are not part of a sequence prefixed by an action

yet to occur) and not alternatives to each other. Consider

P=(..42(0).Q)|(...+z<a>.R), When the system is in its ini-

tial state P, two parallel processes are executing, and the

latter sends the name a along the channel x. The former pro-

cess receives a along channel x as the sending and receiving

terms are complementary and unguarded (said to form a re-

dex). The action of receiving a has the effect of substituting

afor b in the process Q and the transformationr’ has oc-

curred wherer’ = {a/b}Q | R. The substitution is denoted by

{a/b} in the process P’. A side effect of this communication

