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Abstract Notch signaling is critical during multiple stages of T cell 

development in both mouse and human. Evidence has emerged in 

recent years that this pathway might regulate T-lineage differentia-

tion differently between both species. Here, we review our current 

understanding of how Notch signaling is activated and used during 

human T cell development. First, we set the stage by describing the 

developmental steps that make up human T cell development be-

fore describing the expression profiles of Notch receptors, ligands 

and target genes during this process. To delineate stage-specific 

roles for Notch signaling during human T cell development, we sub-

sequently try to interpret the functional Notch studies that have 

been performed in light of these expression profiles and compare 

this to its suggested role in the mouse.   
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1 Human T cell development 

T cell development in postnatal life is a prolonged developmental 

process in which bone-derived multipotent hematopoietic progenitor 

cells seed the thymus (thymus seeding progenitors, TSPs) to become 

gradually reprogrammed into fully mature and functional T lympho-

cytes. The distinct developmental steps, as schematically illustrated 

in Figure1, are synchronized with the migration of the developing 

thymocytes towards specific niches in the thymus that provide the 

necessary stage-specific environmental factors that are needed for 

further differentiation (Petrie and Zuniga-Pflucker, 2007). In recent 

years, much progress has been made with respect to the identifica-

tion and characterization of these early T cell progenitors (ETPs) in 

human. Within the pool of intrathymic CD34
+
CD1a

-
 uncommitted T 

cell progenitors (population B, Figure 1) (Blom and Spits, 2006), 

Crooks and colleagues characterized 3 distinct subsets of progenitor 

cells that can be discriminated based on differential CD7 expression 

(Hao et al., 2008). The CD34
+
CD1a

-
CD7

-
 subset seems to be the 

most immature subset of progenitors as it is mainly, but not exclu-

sively, composed of CD38
-/low

 progenitor cells, consistent with their 

potential to generate lymphoid, myeloid and even erythroid cells 

(Hao et al., 2008; Weerkamp et al., 2006a). In contrast, 

CD34
+
CD1a

-
CD7

int
 cells have lost myeloid and erythroid potential 

and thus resemble lymphoid primed progenitors that were earlier 

identified in umbilical cord blood by the same laboratory (Hao et al., 

2001; Hoebeke et al., 2007). Both the CD7
-
 and CD7

int
 subset ex-

press CD10, and both populations have been identified in cord blood 

and adult bone marrow, raising the possibility that the human thy-

mus can be colonized by both types of progenitor cells (population 

A, Figure 1) (Six et al., 2007; Doulatov et al., 2010; Galy et al., 

1995). While CD34
+
CD7

int
CD10

+
 cells in the bone marrow have 

been proposed to be T-lineage committed prethymically (Klein et 

al., 2003), and while there is evidence from an in vitro xenograft 

model that only CD7
int

 cells can colonize the thymus (Haddad et al., 

2006), no in vivo models have been successfully used to demonstrate 

thymus homing from either subset (Six et al., 2007; Doulatov et al., 

2010). In addition, the selective homing of CD7
int

 cells does not fit 

with earlier experiments in which CD34
+
CD7

-
 progenitor cells were 
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successfully used to study human T cell development using the same 

xenograft foetal thymus organ culture (FTOC) model (Taghon et al., 

2002; Hoebeke et al., 2007), raising the possibility that few, but 

physiologically relevant and sufficient, CD7
-
 cells can enter the 

thymus. Furthermore, it remains to be established whether both 

CD7
-
 and CD7

int
 cells enter as separate entities or if one subset leads 

to the development of the other. While it seems unlikely that CD7
int

 

cells give rise to more multipotent CD7
-
 cells, the reverse cannot be 

excluded, especially since Notch activation results in induction of 

CD7 expression (Jaleco et al., 2001; De Smedt et al., 2002; Van de 

Walle et al., 2009; Magri et al., 2009; Van de Walle et al., 2011). 

Moreover, there is evidence that extrathymic CD7
int

 progenitor cells 

still contain myeloid potential (Doulatov et al., 2010; Hoebeke et al., 

2007), in contrast to the phenotypically similar population within the 

postnatal thymus (Hao et al., 2008). However, the apparent discrep-

ancies might be due to the technical approaches used. Since sus-

tained Notch signaling is required to suppress B cell development 

(Taghon et al., 2005; Krueger et al., 2006), it is possible that 

CD34
+
CD7

int
 progenitors have just initiated the T-lineage specifica-

tion program as they still display B-lineage differentiation potential 

in vitro. Further studies using clonal approaches will be required to 

fully resolve this issue. 

Within the CD34
+
CD1

-
 uncommitted pool of progenitors, the third - 

and by far largest - subset of thymocytes expresses high levels of 

CD7 and mainly comprises T/NK progenitors, resembling DN2a 

cells in the mouse (Yui et al., 2010). During postnatal life, these 

cells are most likely derived from Notch-primed CD34
+
CD1a

-
CD7

-
 

and/or CD34
+
CD1a

-
CD7

int
 cells as they do not seem present within 

the bone marrow or peripheral blood (our own unpublished observa-

tions). In addition, these cells display high expression levels of T-

lineage specific genes and have faster T-lineage kinetics compared 

to the other uncommitted subsets, indicating that these cells have 

been specified toward the T-cell lineage (Hao et al., 2008; Van de 

Walle et al., 2009). Further differentiation induces T-cell commit-

ment which is complete when the immature T cell marker CD1a is 

expressed (population C, Figure 1) (Blom and Spits, 2006).  
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Fig 1. Schematic overview of the different developmental stages that characterize human T 

cell development. Gene expression levels are indicative for the change in expression for each 

individual gene from one stage to the other, but do not provide insights into the differential ex-

pression levels between these genes. Data for GATA3 in population H is not provided due to the 

high difference in expression between CD4 and CD8  T cell populations.    
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During these specification and commitment processes, TCR rear-

rangements at the TCRD, TCRG and TCRB loci are initiated (Dik et 

al., 2005) and are fully active in the subsequent immature single pos-

itive CD4 (ISP4) subset of developing thymocytes as also illustrated 

by their high levels of RAG and PTCRA (coding for pT expression 

(population D, Figure 1), corresponding to murine DN3a cells 

(Taghon et al., 2006). In-frame rearrangements that yield a TCR- 

and TCR- chain will mainly result in the generation of 

TCR+
CD3

+
 T cells (population I, Figure 1), while a functional 

TCR- chain will pair with the surrogate TCR chain, pT, to in-

duce the process of-selection. This event is characterized by the 

acquisition of CD28 expression (population E, Figure 1, correspond-

ing to murine DN3b cells) (Taghon et al., 2006; Taghon et al., 2009; 

Blom and Spits, 2006), extensive but temporarily Notch-dependent 

proliferation and rapid differentiation into CD4
+
CD8+

 double 

positive (DP) thymocytes (population F, Figure 1). It is important to 

note that some of the immature CD4
+
CD3

-
CD28

-
 ISP4 cells also ex-

press CD8 homodimers, indicating that in human CD4
+
CD8+

 

DP thymocytes do not necessarily represent true -lineage DP 

thymocytes that passed through the-selection checkpoint (Taghon 

et al., 2009; Joachims et al., 2006; Carrasco et al., 1999). Subse-

quently, CD4
+
CD8+

 DP cells initiate rearrangement of the TCR- 

chain, as revealed through the onset of sterile T-early  transcript 

(TEA-C expression (Figure 1), to generate a fully functional TCR-

 complex (population G, Figure 1). Finally, positive and negative 

selection determines which cells further mature into CD4
+
 or CD8

+
 

SP TCR T cells (population H, Figure 1) (Plum et al., 2008).  

2 Notch signaling profile 

As in the mouse, the Notch signaling pathway is involved in various 

stages of T cell development in human. Given the fact that the Notch 

signaling pathway is composed of several receptors and ligands that 

can activate a broad range of different target genes, we will first de-
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scribe our current understanding of the expression patterns of these 

components during human T cell development. This will serve as 

point of reference for interpreting the functional studies that have 

been performed thus far. 

Migration through the thymus is critical for developing thymocytes 

to receive the appropriate stage-specific developmental cues for fur-

ther differentiation. As a result, characterization of the expression of 

Notch ligands by stromal cells at specific sites of the thymus will 

provide a hint of the possible involvement of these Notch signal ini-

tiating components during human T cell development. In collabora-

tion with the Kyewski lab (Gotter et al., 2004), we recently deter-

mined the expression pattern of Notch ligands in human cortical and 

medullary thymic epithelial cells (cTEC and mTEC, respectively) 

using quantitative PCR (Q-PCR) and flow cytometry, thereby 

providing insights into the Notch ligands that possibly support early 

stages of human thymocyte development (as shown by expression in 

cTECs) and those that may be involved in the final maturation stages 

of T cell development (as shown by expression in mTECs) (Van de 

Walle et al., 2011). Both approaches revealed a predominant expres-

sion of JAG2, in 70-90% of both TEC subsets as defined using flow 

cytometry. Between 10 and 20% of cTECs expressed DLL4. In con-

trast, only very low amounts of Delta-Like-1 protein were detected 

in no more than 10% of cTECs and JAG1 was mainly expressed by 

mTECs, as revealed through Q-PCR only due to lack of suitable an-

tibodies. A schematic overview of these expression patterns is pre-

sented in Figure 2. From this, one could predict that Jagged2 might 

play a major role during human T cell development. Unfortunately, 

the generation of a Jagged2 deficient human thymic microenviron-

ment is currently impossible, although approaches using hES cells 

might become feasible in the future (Green et al., 2011). As dis-

cussed further, the specific expression of DLL4 in cTECs is con-

sistent with its requirement for the induction of T-lineage differen-

tiation in TSPs, as is the medullary expression of the weak Notch 

ligand JAG1 as Notch signaling does not seem to play an obvious 

role in the final maturation stages of T cell development.  
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Fig.2 Overview of the expression of the Notch signaling components during human T cell de-

velopment. The size of the Notch ligands and receptors is a measure for their expression level. 

The expression levels for the Notch downstream target genes are indicative for the change in 

expression for each individual target gene from one stage to the other, but do not provide in-

sights into the differential expression levels between these genes. Data for IL7R in population H 

is not provided due to the high difference in expression between CD4 and CD8  T cell popula-

tions.    

While the expression data for the Notch ligands seems mostly con-

sistent with data in the mouse, with perhaps the exception of the 

high Jag2 expression levels that still need confirmation at the pro-

tein level (Heinzel et al., 2007), some differences can be observed 

between both species with respect to the expression patterns of the 

Notch receptors. While TSPs (population A) express both NOTCH1 

and NOTCH2, but not NOTCH3, uncommitted CD34
+
CD1

-
 human 

postnatal thymocytes (population B) express, in addition to 

NOTCH1 and NOTCH2, also significant levels of NOTCH3, and this 

expression persists into the DP stages of T cell development (popu-

lations C-G) before shutting down in mature CD4 and CD8 SP cells 

(population H) (Van de Walle et al., 2009; Ghisi et al., 2011). While 
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we recently confirmed these findings at the protein level (Van de 

Walle et al, manuscript in preparation), the kinetics of NOTCH3 ex-

pression in human are earlier compared to those observed during 

mouse T cell development, raising the possibility that this receptor 

may be actively involved during the initial Notch dependent stages 

of human T-lineage differentiation. However, NOTCH1 is also 

clearly expressed during the early steps of T cell development until 

the human -selection checkpoint (populations B-D), raising the 

possibility that this remains the major Notch receptor during these 

early stages of T cell development, analogous to the situation in 

mouse (Suliman et al., 2011; Shi et al., 2011; Radtke et al., 1999; 

Wolfer et al., 2002; Wilson et al., 2001). Also NOTCH2 mRNA can 

clearly be detected throughout T cell development (Van de Walle et 

al., 2009), but at levels around 10-fold lower compared to NOTCH1 

and NOTCH3, predicting lower chances to interact with Notch lig-

ands on the surrounding stromal cells. 

Strikingly, we observed significant differences in the expression pro-

files of the major Notch target genes NRARP, DTX1, HES1, MYC 

and PTCRA during human T cell development (illustrated graphical-

ly in Figure 2) (Taghon et al., 2009; Van de Walle et al., 2009). 

NRARP is the only Notch target gene that is already expressed in ex-

trathymic progenitors (population A) and its expression is main-

tained in uncommitted postnatal thymocytes (population B) before 

declining upon T cell commitment (population C). In contrast, DTX1 

is absent in TSPs (population A) but is specifically upregulated in 

early uncommitted T cell progenitors (population B) before immedi-

ately declining again upon T-lineage commitment (population C). At 

present, it is unclear which CD34
+
CD1

-
 subpopulations are respon-

sible for DTX1 expression, but such information will be of interest 

for characterizing the cells that receive the first Notch triggers 

(Sambandam et al., 2005). A smaller, second wave of DTX1 expres-

sion can be observed just before-selection (population D), in 

DN3a-like cells that express high levels of another Notch target gene 

PTCRA, which appropriately is only expressed in these TCR rear-

ranging cells, awaiting the functional production of a TCR- chain 

to induce-selection and further differentiation. While HES1 and 

MYC are also induced upon initiation of T cell development in 

CD34
+
CD1

-
 uncommitted thymocytes, their expression, in contrast 
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to DTX1, is maintained in CD34
+
CD1

+
 committed and subsequent T 

cell progenitors until the cells receive a preTCR signal and pass 

through the-selection checkpoint. Following this-selection 

checkpoint, no significant expression of any of these Notch down-

stream targets can be detected, consistent with the requirement for 

the initiation of TCRA gene rearrangements as documented through 

the induction of expression of sterile TEA-C transcripts, a process 

that is inhibited through Notch signaling (Van de Walle et al., 2009; 

Taghon et al., 2009). The only exception to this is NOTCH3, a gene 

that can be upregulated downstream of Notch1 signaling (Palomero 

et al., 2006; Weng et al., 2006; Van de Walle et al., 2011). In con-

trast to NOTCH1, NOTCH3 expression is again upregulated follow-

ing-selection before being shut off in mature SP CD4 and CD8 

cells.  

Although we could show that HES1, DTX1, NRARP, MYC, PTCRA 

and NOTCH3 are also Notch dependent in human thymocytes, albeit 

to different degrees (Van de Walle et al., 2009; Taghon et al., 2009), 

their highly diverse expression profiles suggest that additional regu-

latory mechanisms must be involved in controlling their expression. 

IL7R was also suggested to be a direct Notch target during human T 

cell development (Gonzalez-Garcia et al., 2009; Magri et al., 2009), 

but nobody thus far has been able to show any short-term Notch-

dependent effects on IL7R expression in primary human thymocytes 

((Gonzalez-Garcia et al., 2009; Magri et al., 2009) and our own un-

published observations). In addition, this gene also displays a unique 

expression pattern during human T cell development that is distinct 

from any of the other Notch target genes (Figure 2). As suggested 

initially, differential Notch-dependency of these downstream target 

genes may partially explain their differential expression patterns, 

however, it cannot account for all of the observed differences as for 

instance the profiles of DTX1 and NRARP, on the one hand, and that 

of PTCRA, on the other hand, are too distinct. This is also exempli-

fied by NOTCH3, which can be a Notch1 downstream target gene, 

especially during the early stages of T cell development (Van de 

Walle et al., 2011; Weerkamp et al., 2006b; Neves et al., 2006), but 

the absence of expression of any other Notch downstream target 

gene, as well as of the Notch1 receptor itself at that same develop-

mental stage, indicate that other molecular mechanisms are driving 
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this expression. The need for additional regulatory inputs, such as 

feed-forward mechanisms that take over following a Notch-

dependent initial induction, is also obvious from the fact that Notch 

signaling by itself, as provided in an OP9 coculture system through 

excess expression of DLL1, is not sufficient to maintain the same 

expression levels of most of these genes compared to their ex vivo 

isolated counterparts (Van de Walle et al., 2009). The exceptions to 

this are DTX1 and NRARP, not accidently the most Notch-dependent 

target genes that we could find (Van de Walle et al., 2009; Taghon et 

al., 2009). Thus, it remains to be investigated if perhaps auto-

regulatory mechanisms, as documented for HES1 (Hirata et al., 

2002), or other transcriptional regulators, as also illustrated previ-

ously in the mouse (Ikawa et al., 2006), regulate these processes. 

Given the recent finding that mir-150 is involved in turning off 

NOTCH3 expression upon human T cell maturation (Ghisi et al., 

2011), it will also be critical to investigate the involvement of non-

coding RNAs or other epigenetic phenomena in these settings. 

 

Strikingly, with the exception of the apparent global silencing of 

Notch target genes following-selection, the differential expression 

of the human Notch target genes is very distinct from what is ob-

served during mouse T cell differentiation as all of these genes are 

gradually upregulated during the initial stages of murine T cell de-

velopment before peaking at the DN3a stage (Taghon et al., 2006; 

David-Fung et al., 2006; Tydell et al., 2007; Weng et al., 2006). 

These findings suggest that the Notch signaling pathway, and its in-

dividual components, are used differently during T cell development 

in both species. As discussed below, we believe that at least some of 

these apparent discrepancies help to explain some of the functional 

differences that have been observed with respect to the role of Notch 

signaling during mouse and human T cell development since the 

same target genes have to integrate in different stage-specific regula-

tory networks.    
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3. Stage-specific Notch signaling requirements 

The use of conditional knockout mice has significantly advanced our 

understanding of the role of these individual Notch signaling com-

ponents during mouse T cell development. However, such an ap-

proach hasn’t been easily accessible thus far in a human setting, with 

the exception of the recently generated Notch receptor specific anti-

bodies that haven’t been widely used yet (Wu et al., 2010; Li et al., 

2008). In anticipation also of gene-targeting studies in human em-

bryonic stem cells (Hockemeyer et al., 2009; Hockemeyer et al., 

2011) that can subsequently be used for studying the function of any 

desired gene during T cell development (Vandekerckhove et al., 

2011; Timmermans et al., 2009; Galic et al., 2006), human Notch 

studies have been limited to the use of less specific tools, such as 

pharmacological -secretase inhibitors (GSIs), or ‘all or nothing’ ap-

proaches, for instance using stromal cocultures in the presence or 

absence of a Notch ligand and overexpression studies using intracel-

lular Notch (ICN) or the dominant-negative mutant of Mastermind-

like-1 (DNMAML1). We will now discuss the functional implemen-

tation of these studies in light of the expression patterns of the indi-

vidual Notch signaling components at specific stages of human T 

cell development. 

3.1 Induction of T-lineage specification 

In the mouse, the Delta-Like-4/Notch1 interaction is considered to 

be the main driving force for the Notch-dependent initiation of T cell 

development since both Notch1 and Dll4 conditional deletion studies 

have provided unambiguous evidence for this (Koch et al., 2008; 

Radtke et al., 1999; Wilson et al., 2001; Hozumi et al., 2008; 

Feyerabend et al., 2009), in contrast to for instance DLL1 (Hozumi 

et al., 2004) or Notch3 (Suliman et al., 2011; Shi et al., 2011) 

knockout approaches. Absence of either Notch1 or Dll4 inhibits T 

cell development and results in differentiation of other hematopoiet-

ic lineages instead, such as B, NK and myeloid cells. In human, it is 

clear from ICN (De Smedt et al., 2002) and DNMAML1 (Taghon et 
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al., 2009) overexpression experiments, GSI inhibition data (De 

Smedt et al., 2005; Van de Walle et al., 2009) and stromal cocultures 

data (De Smedt et al., 2004; La Motte-Mohs et al., 2005; Lefort et 

al., 2006; Benne et al., 2009; Awong et al., 2009; Van de Walle et 

al., 2011) that Notch is equally important in humans to induce T cell 

development at the expense of other hematopoietic cell types. In this 

setting, Notch seems to act as a rheostat in which graded levels of 

signaling affect the hematopoietic lineage outcome (De Smedt et al., 

2005; Lefort et al., 2006; Jaleco et al., 2001). Both functional studies 

using GSI (De Smedt et al., 2005; Van de Walle et al., 2009) and the 

Notch target gene expression profile (Figure 2, (Van de Walle et al., 

2009; Taghon et al., 2009)) suggest that a strong Notch signal is re-

quired for driving the T-lineage specification process (Van de Walle 

et al., 2009). DTX1, HES1 and MYC are specifically upregulated in 

uncommitted CD34
+
CD1

-
 thymocytes compared to extrathymic pro-

genitors, while NRARP expression is maintained (Figure 2). Given 

that only NOTCH1 and NOTCH2 seem to be expressed by TSPs, 

and that Delta-Like-4-mediated Notch1 activation induces a stronger 

Notch signal compared to when induced by Jagged2, it seems very 

likely that the Delta-Like-4/Notch1 interaction is also responsible 

for initiating human T-lineage specification, despite the abundant 

JAG2 expression by human TECs and the potential of the protein to 

induce and support T cell development in human hematopoietic pro-

genitor cells (Van de Walle et al., 2011). 

3.2 Induction of T-cell commitment. 

Interestingly, following this strong Notch signal that induces the T-

cell specifying transcriptional program (Taghon et al., 2005; 

Weerkamp et al., 2006a; Van de Walle et al., 2011), a reduction in 

the expression of the target genes DTX1 and NRARP, but not HES1 

and MYC, is observed in human thymocytes as they become T-

lineage committed progenitors. Since those two genes are very sen-

sitive to small changes in Notch signaling intensities (Van de Walle 

et al., 2009), this suggests that Notch signal strength is reduced dur-

ing this transition. In addition, given that both Nrarp and Deltex1 are 

considered to be negative regulators of the Notch signaling pathway, 
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silencing of the genes that code for these proteins might be suffi-

cient, and perhaps critical, to allow further Notch-dependent human 

T cell differentiation, during which the Notch signal is still suffi-

ciently strong to allow expression of other Notch targets. Consistent 

with that idea, various experiments from different labs have shown 

that a reduction in Notch signal strength in uncommitted 

CD34
+
CD1

-
 human T-lineage progenitor cells allows and perhaps 

even enhances further differentiation into DP thymocytes (Van de 

Walle et al., 2009; Magri et al., 2009; Dontje et al., 2006). While our 

lab used graded dosages of GSI in the OP9-DLL1 coculture system, 

similar results were obtained when human CD34
+
CD1

-
 uncommitted 

thymocytes were plated on OP9 cells expressing JAG1 (Dontje et 

al., 2006), the weakest Notch1 ligand (Van de Walle et al., 2011) but 

with the potential to induce HES1 expression (Neves et al., 2006; 

Van de Walle et al., 2011). In such conditions of weakened Notch 

activation, human T-lineage progenitor cells can differentiate fully 

into CD3
+
TCR+

 thymocytes ((Dontje et al., 2006) and our own 

unpublished results). Given that JAG2, but not JAG1, is abundantly 

expressed by human cTECs that are mediating these stages of T cell 

development, and given that Jagged2 is a weaker activator of Notch1 

compared to Delta-Like-4, a change in ligand-mediated Notch1 acti-

vation from Delta-Like-4 to Jagged2 might be responsible for reduc-

ing Notch activation upon T cell commitment in vivo. Alternatively, 

a local reduction in Delta-Like-4 density may also be regulating this 

process. Importantly, one also has to consider that the additional 

presence of the Notch3 receptor in these cells may alter the balance 

of Notch signaling activity. While Delta-Like-4 does not seem to be 

a good ligand for this receptor in the mouse (Suliman et al., 2011), it 

remains to be investigated whether Delta-Like-4 and/or Jagged2 can 

bind and activate Notch3 in humans. This is particularly important 

since Notch3 has been suggested to be a negative regulator of 

Notch1 activation (Beatus et al., 1999), suggesting that Notch3 acti-

vation might be another mechanism to down-modulate Notch1 activ-

ity. Thus, multiple changes in Notch receptor/ligand interactions can 

occur that might regulate the reduction in Notch signaling activity 

that seems involved in supporting the further development of T-

lineage specified human T cell progenitors.  
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Strikingly, even in the absence of Notch signaling, uncommitted 

human thymocytes can generate CD8 expressing DP cells – even 

CD3
+
TCR-+

 cells when provided with a rearranged TCR chain, 

although very inefficient due to lack of Notch-dependent prolifera-

tion and/or survival (Taghon et al., 2009). While we do not wish to 

imply that Notch signaling is no longer involved in further T cell 

differentiation (as also discussed further in this review), it does illus-

trate that other molecular mechanisms might be more important for 

driving further developmental progression. This may involve the ac-

tivity of critical T-lineage transcription factors such as TCF-1, 

GATA-3 and BCL11b (Verbeek et al., 1995; Weber et al., 2011; 

Ting et al., 1996; Taghon et al., 2001; Taghon et al., 2007; Hosoya 

et al., 2009; Li et al., 2010a; Li et al., 2010b; Ikawa et al., 2010). 

Such mechanisms might also be recruited to silence the Notch target 

genes DTX1 and NRARP, while the Notch signaling activity itself, as 

measured by the amount of ICN that is released, remains at its initial 

signaling strength. This could be another mechanism through which 

Notch target genes are regulated differentially. While this has to be 

investigated further, the function of these Notch target genes during 

T cell development also remains unclear. Understanding this should 

also help to explain their specific expression profile at this early 

stage of human T cell development. In each case, Notch does not 

seem to be essential to induce human T-cell commitment in previ-

ously T-lineage specified progenitors in the absence of exogenous, 

non T-lineage, cytokines that can drive alternative lineage potential 

(De Smedt et al., 2005; De Smedt et al., 2007; Taghon et al., 2009; 

Magri et al., 2009). Given that the only function of the thymus is to 

give rise to T cells, it rather seems that the high initial levels of 

Notch signaling in human are important to expand the initial pool of 

uncommitted T-lineage specified progenitors that are generated from 

the limited number of TSPs.  

Strikingly, the peak of DTX1 and NRARP expression in uncommit-

ted human thymocytes is in sharp contrast to the gradual increase in 

expression that is observed for all Notch target genes up to the DN3a 

stage during mouse T cell development. Consistent with that, also 

functional studies with mouse T-lineage progenitors reveal that 

strong Notch signaling remains essential for inducing murine T cell 

commitment and further differentiation into DP -lineage cells. 
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Reduction (Lehar et al., 2005) or complete inhibition (Schmitt et al., 

2004; Feyerabend et al., 2009) of Notch signal strength  results in al-

ternative lineage differentiation or cell death when initiated with un-

committed progenitor cells. It is intriguing that this ‘lock-down’ of 
T-lineage commitment in mouse and human is so differentially de-

pendent on Notch signaling. While it is difficult to compare Notch 

signaling intensities across species, one explanation could be that the 

required signaling thresholds to mediate these events are different 

between mouse and human.  

3.3 TCR rearrangements,-selection and beyond. 

Importantly, Notch signaling remains essential following human T 

cell commitment to support TCR rearrangements and proliferation 

of the cells. At this point in development, thymocytes start to ex-

press the necessary genes to allow gene recombination at the TCRD, 

-G and –B loci, such as IL7R and the RAG genes, as well as PTCRA 

to allow immediate induction of preTCR signaling and subsequent 

-selection upon the generation of an in-frame TCR- chain. Con-

sistent with a clear requirement for Notch signaling to support hu-

man TCR- chain rearrangements (De Smedt et al., 2005), also 

PTCRA expression seems Notch dependent, although we could only 

observe a small reduction in PTCRA expression upon Notch inhibi-

tion in human thymocytes using GSI (Van de Walle et al., 2009) or 

DNMAML1 overexpression (Figure 3). While a conserved CSL 

binding site has been detected in both human and mouse (Reizis and 

Leder, 2002), PTCRA expression in human seems at least equally 

dependent on other regulatory inputs since its expression drops 7-

fold in conditions of excess Notch stimulation compared to ex vivo 

isolated cells (Van de Walle et al., 2009). Somewhat inconsistent 

with this critical role for Notch in the generation of a human preTCR 

complex is the notion that expression of RAG1 and -2, genes equally 

required to generate a functional rearranged TCR- chain, is en-

hanced upon removal of Notch signaling (Figure3 and (Van de 

Walle et al., 2009)). In our current experimental setting, this may 

however also reflect the requirement for removal of Notch signaling 
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following-selection to allow TCR gene rearrangements. Whether 

or not Notch is involved in TCR rearrangements of the TCRD and –
G gene segments is presently unclear. As such, the precise role for 

Notch signaling during all of these recombination processes remains 

to be established. It is intriguing to observe that NOTCH3 displays a 

very similar expression profile as both RAG genes, suggesting that 

this receptor might be involved in their regulation. As mentioned 

above, since Notch1 and Notch3 have been proposed to play oppos-

ing roles with respect to the activation of Notch target genes (Beatus 

et al., 1999), the interplay between both receptors might be involved 

in the apparent differential Notch dependency of for instance 

PTCRA on the one hand and RAG1 and RAG2 on the other hand. 

While both assumingly compete for interaction with CSL, they 

might attract other co-activators that differentially affect the tran-

scriptional activity of each Notch receptor specific activation com-

plex. Notch1 and Notch3 differ with respect to their trans-activation 

domain but little is known about its functional importance. Chroma-

tin-immunoprecipitation studies should be able to provide some in-

sights into this in the near future. 

     

 

Fig. 3. Inconsistent Notch-dependent regulation of genes critical for preTCR formation during 

human T cell development.  

During the rearrangement processes, thymocytes do not cycle due to 

a high risk of DNA damage that could be induced by the recom-

binase activity of the RAG proteins that are present in the cells at 

that particular stage. As such, repression of RAG expression through 

Notch signaling makes sense as Notch activity generally induces 

proliferation in immature thymocytes. Whether or not Notch signal-

ing is required for survival of the TCR rearranging cells during these 
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stages has not been thoroughly investigated in humans. While it is 

clear that Notch signaling is critical for the long-term survival of 

human thymocytes, it is not well-established whether this is mediat-

ed directly through Notch signaling events that regulate glucose me-

tabolism as shown for mouse DN3 thymocytes (Ciofani and Zuniga-

Pflucker, 2005), or rather indirectly due to the lack of other critical 

survival signals such as for instance provided through TCR signaling 

(De Smedt et al., 2005). Expression of MYC, coding for an important 

transcriptional regulator of genes involved in cellular growth and 

survival, does seem to be Notch-dependent during these stages of 

human T cell development, suggesting that Notch at least partially 

regulates these cellular processes during early human thymocyte de-

velopment. However, while a slight increase in the frequency of 

apoptotic cells has been observed upon Notch removal in the OP9 

stromal coculture system (Magri et al., 2009), such an increase in 

cell death is less obvious when a more physiological system with a 

thymic microenvironment is used, suggesting that other survival sig-

nals besides Notch might prove to be more important (De Smedt et 

al., 2005). Given that the mouse experiments that revealed a re-

quirement for Notch signaling in regulating the glucose metabolism 

were performed in the OP9 coculture system (Ciofani and Zuniga-

Pflucker, 2005), it would be of interest to confirm these findings in a 

thymic environment. Intriguingly, Notch1 deletion in vivo at the 

DN2 to DN3 transition of mouse T cell development does permit 

survival of preTCR deficient -lineage DN4-like cells that resem-

ble post-selection thymocytes, suggesting that other signals beside 

Notch mediate in vivo survival of these immature cells (Wolfer et 

al., 2002). On the other hand, complete inhibition of canonical 

Notch signaling using continuous DNMAML1 expression in DN3 

thymocytes in vivo does reveal a more severe effect on early thymo-

cyte survival (Maillard et al., 2006). It seems unlikely that the dif-

ferential outcome between both approaches involves any Notch3 ac-

tivation that could provide compensatory Notch signals (Shi et al., 

2011). Nevertheless, the critical role that Notch signaling seems to 

play at this stage of mouse T cell development, together also with its 

requirement to support TCR- rearrangements (Wolfer et al., 2002) 

and to positively regulate PTCRA expression, fits with the peak in 

Notch target gene expression that is observed in these DN3a thymo-

cytes. Thus, if we consider the peak of Notch signaling intensity, de-
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termined by the expression level of downstream target genes, as a 

measurement for deciphering the stage at which Notch activity 

might play its most significant role during T cell development, this 

might help to explain why this pathway seems to play a less critical 

role in the survival of early human thymocytes, compared to in 

mouse.  

Also at the-selection checkpoint, Notch does not seem as strin-

gently required for the differentiation of human thymocytes com-

pared to in mouse. In the absence of Notch signaling prior to suc-

cessful TCR- rearrangement, thymocytes that receive an 

exogenously provided TCR- chain will further differentiate into 

CD8+
 DP thymocytes that will subsequently rearrange the TCR- 

chain to become TCR-+
CD3

+
 cells (Taghon et al., 2009). While 

Notch does seem critical for appropriate proliferation of the cells in 

the OP9 coculture system - we cannot exclude that this apparent 

Notch-dependent proliferation is a result of lack of other prolifera-

tive signals that are present in vivo - such further differentiation in 

the absence of Notch has not been observed in the mouse (Ciofani et 

al., 2004; Taghon et al., 2006; Garbe et al., 2006). Consistent with 

above, this may also be the result of a more robust survival of hu-

man thymocytes in the absence of Notch activity. In each case, 

Notch signaling does not seem to be as stringently required during 

human as compared to during mouse-selection. 

Following-selection, there is no evidence at present that Notch ac-

tivity is critically required for the further differentiation of human 

thymocytes into functionally mature T cells, but this hasn’t been 
thoroughly investigated yet. While NOTCH3, but not NOTCH1, is 

specifically upregulated in human DP thymocytes, none of the well-

characterized Notch target genes seem to be induced, suggesting that 

this receptor is either not activated, or that it does not have the po-

tential to activate these genes (Beatus et al., 1999). Further work, in 

which NOTCH3 can be targeted specifically, will be required to de-

termine if this receptor plays a functional role at this stage of human 

T cell development.  
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4. TCR- versus TCR- lineage choice 

Besides the main population of TCR- T cells that differentiate 

within the thymus, a subset  of T cells expressing TCR- also de-

velops during intrathymic T cell differentiation, although these cells 

display more innate-like lymphocyte properties. Although  T cells 

also circulate within the blood like their -lineage counterparts, 

they probably have a more prominent role in mucosa-associated tis-

sues within the body. In contrast to TCR- T cells that belong to 

the adaptive immune system and have the potential as a family to 

recognize virtually all possible antigens through their high diversity 

in TCRs,  T cells recognize more structural and less-diverse anti-

gens. As mentioned above,  T cells branch of from the ‘main-

stream’ -lineage pathway during the CD34
+
CD1

+
 and 

CD4
+
CD8-

/
+
CD28

-
 stages of human T cell development when 

TCRD, -G and -Bgene segments rearrange (Van de Walle et al., 

2009; Joachims et al., 2006). Whether they differentiate through a 

CD28
+
 or CD71

+
 stage prior to TCR expression is presently unclear. 

Since newly generated  T cells are not as proliferative as preTCR 

selected -lineage thymocytes, such a transient stage might be dif-

ficult to identify, also because the full TCR complex is presumably 

immediately expressed. 

Human  T cells preferentially develop in conditions of high Notch 

activation and this was initially demonstrated using ICN overexpres-

sion studies (De Smedt et al., 2002; Garcia-Peydro et al., 2003). 

Since these results were inconsistent with the proposed less critical 

role for Notch in mouse  T cell development (Robey et al., 1996; 

Doerfler et al., 2001), it raised the issue whether these superficial 

Notch signaling levels provided any insights into the normal physio-

logical role of Notch in this developmental process in human. Im-

portantly, OP9 coculture experiments with human progenitors later 

confirmed these findings and showed, not only that high Notch sig-

naling favors  over -lineage differentiation (Van de Walle et al., 

2009), but also that virtually no  T cells can develop from human 

T-lineage specified or T-cell committed progenitors in the absence 

of Notch signaling (Taghon et al., 2009). Since such an approach 



20  

was more compatible with experiments that had been performed 

with mouse T-lineage precursors, this provided more robust insights 

into the differential Notch signaling requirements between mouse 

and human  T cells. Consistent with the hypothesis that Notch sig-

naling is most critical for human  T cell development, we did ob-

serve a slightly increased expression of the Notch target genes 

DTX1, HES1, NRARP and MYC in - compared to -lineage cells, 

although this level was still reduced compared to in early 

CD34
+
CD1

-
 human thymocytes (Van de Walle et al., 2009). In addi-

tion to these genes, RUNX3 showed an even more interesting ex-

pression pattern. While RUNX3 expression is high in CD34
+
CD1

-
 

uncommitted thymocytes and downregulated upon the induction of 

T-cell commitment in CD34
+
CD1

+
 thymocytes, RUNX3 levels reach 

an equally high level in -lineage cells compared to uncommitted 

CD34
+
CD1

-
 thymocytes. While there is currently no direct evidence 

that this gene is a direct Notch target gene, GSI titration experiments 

did suggest some degree of Notch dependent regulation in CD34
+
 

human postnatal thymocytes (Van de Walle et al., 2009), raising the 

possibility that RUNX3 mediates the Notch driven human -lineage 

differentiation. 

The choice of early T-lineage specified progenitors to develop along 

the - or -differentiation pathways has been extensively studied 

in the mouse over the past years and has been recently reviewed in 

depth (Ciofani and Zuniga-Pflucker, 2010; Kreslavsky et al., 2010; 

Lee et al., 2010; Taghon and Rothenberg, 2008). Overall, the con-

sensus is that the outcome of TCR rearrangements is not the sole de-

terminant of the final lineage outcome. Following rearrangements, 

signaling through the generated - or preTCR can still alter the 

TCR-predicted lineage outcome as a strong TCR-signal will drive 

further differentiation along the DN -pathway, while a weaker 

TCR signal will promote DP -lineage differentiation. Down-

stream of the TCR, Id3 is a critical mediator that translates the 

strength of the TCR signal into a developmental lineage choice by 

modulating E protein activity (Lee et al., 2010). However, other sig-

naling pathways have been shown to integrate with TCR signaling to 

impact the resulting lineage outcome, also through altering E protein 

activity. In this context, strong Notch signals have been shown to be 



21 

essential to promote -lineage differentiation in the mouse, as 

characterized by the generation of DP thymocytes, following 

preTCR signaling. In contrast, -lineage differentiation does not re-

quire Notch signaling in addition to the strong TCR signal to allow 

further differentiation into mature DN  T cells.  

As also discussed earlier, preTCR driven differentiation of human 

pre--selection thymocytes into true CD4
+
CD8+

 DP thymocytes 

occurs more efficiently in conditions of lower Notch activation 

compared to conditions of high Notch signaling activity, illustrating 

a clear difference in Notch signaling requirement for human com-

pared to mouse -lineage cells. While it was clearly illustrated in 

the mouse that differentiation and proliferation at this stage of T cell 

development are clearly linked and both Notch dependent 

(Kreslavsky et al., 2008), similar experiments show that both of 

these processes are clearly uncoupled in human. Further differentia-

tion of pre--selection thymocytes into ‘true’ CD4+
CD8+

 DP 

cells in human is not only independent on Notch signaling activity, it 

is also uncoupled of proliferation as illustrated through CFSE exper-

iments (Figure 4). Strong Notch activation in conjunction with pre-

TCR signaling results in the maintenance of a DN phenotype and de-

layed differentiation, which is in contrast to T cell development in 

the mouse (Taghon et al., 2009; Van Coppernolle et al., 2012). With 

respect to the influence of Notch signal strength on human  T cell 

development, it is currently known that maturation of immature 

CD1
+
TCR+

 thymocytes into mature  T cells can occur virtually 

equally efficient in the presence or absence of Notch signaling (Van 

Coppernolle et al., 2012). However, it is not clear yet how Notch 

signaling activity affects the - versus -lineage choice in con-

junction with strong TCR signaling since transduction experiments 

with a specific  TCR have not been performed in human.  
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Fig. 4 Uncoupling of proliferation and differentiation during human T cell development. 

Human CD34
+

 postnatal thymocytes were CFSE labeled following purification and cocultured 

on OP9-DL1 (+ Notch) or OP9-control (- Notch) stromal cells. Cultures were analysed after 6 or 

12 days and stained for CD4 and CD8, as indicated. 

While the TCR signal strength model explains a lot of the experi-

mental data that has been provided in light of this developmental 

choice, it is safe to predict that results of the initial TCR rearrange-

ments in immature thymocytes will determine the developmental 

outcome of a large portion of the cells that have generated a  or 

preTCR (Buer et al., 1997). Thus, the mechanisms that control these 

TCR rearrangements provide a first insight into the  versus  T-

cell lineage choice. Importantly, while a critical role for Notch in 

TCRB rearrangements has been illustrated in both mouse (Wolfer et 

al., 2002) and human (De Smedt et al., 2005), it is unclear if TCR- 
and - rearrangements depend on this signaling pathway. This ob-

scures a clear interpretation of the early effects of Notch signaling 

on mouse T cell development since in experiments in which Notch 

activity was conditionally affected, deletion was induced following 

the initiation of T cell specification during which rearrangements of 

the TCRG and -D loci are already initiated (Tanigaki et al., 2004; 

Radtke et al., 1999). As such, it is difficult to interpret if  T cells 

in the mouse might not also depend on Notch activity early on to al-

low these rearrangement events. Experiments with purified DN2 
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subsets did reveal a clear reduction in  T cell in the absence of 

Notch signaling (Ciofani et al., 2004). Mechanistically, this could be 

mediated through regulation of IL7R expression (Gonzalez-Garcia et 

al., 2009) since signaling through this receptor has been shown to be 

essential for TCRG rearrangements (Maki et al., 1996; Durum et al., 

1998). As such, high Notch signaling activity in human could pro-

mote  T cell development by preferentially inducing rearrange-

ments at the gene segments of these TCRs (Ye et al., 2001). 

Thus, Notch signaling might mediate the /-lineage choice at 

two distinct stages of T cell development. A first role may involve 

regulation of TCRD, -G and -B rearrangements in immature thymo-

cytes prior to - or -selection, while a second role becomes appar-

ent following these TCR-mediated selection processes as Notch ac-

tivity synergizes with these  and preTCR signaling events. As 

such, further studies will be essential to determine how different the 

role of Notch signaling is in these events during human and mouse T 

cell development. 

 

5. Conclusion 

While the current experimental data reveals both similar and alterna-

tive roles for the Notch signaling pathway during human T cell de-

velopment compared to mouse, much work is still required to fully 

understand the precise mechanisms through which Notch signaling 

influences each of these early stages of this developmental process. 

While the role of differential Notch receptor/ligands remains to be 

explored, also the integration of various molecular mechanisms 

downstream of the Notch receptors into the global transcriptional 

network that drives human T cell development is still in its infancy. 

While much more progress has been made with respect to these is-

sues in the mouse (Kueh and Rothenberg, 2012; Radtke et al., 2010; 

Maillard et al., 2005; Yuan et al., 2010), we anticipate that novel 

technical advances, that enable for instance knockout and gene-

reporter approaches in human ES cells, will yield more definitive in-
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sights into these processes (Timmermans et al., 2009; Galic et al., 

2006; Hockemeyer et al., 2009; Hockemeyer et al., 2011). Given 

that recent insights suggest important regulatory differences for the 

Notch signaling pathway in human versus mouse T-acute lympho-

blastic leukemia (Wang et al., 2011), tackling these questions is of 

vital importance for understanding normal and malignant develop-

mental processes in human. 
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