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Abstract

Notch receptors are single-pass transmembrane proteins that determine cell fate. Upon Notch ligand
interactions, proteolytic cleavages release the Notch intracellular domain, which translocates to the
nucleus to regulate the transcription of target genes, including Hairy enhancer of split (Hes) and
Hes related to YRPW motif (Hey). Notch is critical for skeletal development and activity of skeletal cells,
and dysregulation of Notch signaling is associated with human diseases affecting the skeleton.
Inherited or sporadic mutations in components of the Notch signaling pathway are associated with
spondylocostal dysostosis, spondylothoracic dysostosis and recessive brachydactyly, diseases
characterized by skeletal patterning defects. Inactivating mutations of the Notch ligand JAG1 or of
NOTCH2 are associated with Alagille syndrome, and activating mutations in NOTCH2 are associated
with Hajdu–Cheney syndrome (HCS). Individuals affected by HCS exhibit osteolysis in distal phalanges
and osteoporosis. NOTCH is activated in selected tumors, such as osteosarcoma, and in breast cancer
cells that form osteolytic bone metastases. In conclusion, Notch regulates skeletal development and
bone remodeling, and gain- or loss-of-function mutations of Notch signaling result in important
skeletal diseases.

European Journal of Endocrinology 168 R95–R103
Skeletal cells and bone remodeling

Skeletal tissue arises from distinct developmental
processes. Cells of the cranial neural crest form the
bones of the craniofacial skeleton, whereas the axial
skeleton develops from somites (1, 2). Hyaline cartilage
templates of appendicular bones originate from the
proliferation and chondrogenic differentiation of
mesenchymal cells residing in the limb bud. Chondro-
cytes in hyaline cartilage proliferate and acquire a
hypertrophic phenotype, deposit a mineralized matrix,
and ultimately become apoptotic. These events result
in the formation of a calcified cartilage scaffold, which
is vascularized and subsequently colonized by skeletal
cell precursors that will replace cartilage with bone (3).
Osteoblasts derive from mesenchymal cells that reside
in the bone marrow and are the bone forming cells,
which can differentiate further into lining cells or into
osteocytes or can die by apoptosis (4, 5, 6). Osteocytes
are terminally differentiated cells embedded in the
mineralized matrix (7, 8). Osteoclasts, multinucleated
cells that arise from the fusion of mononuclear
precursors of the hematopoietic lineage, are the bone
resorbing cells. Their formation requires receptor
activator of nuclear factor kB ligand (RANKL) (9) and
macrophage colony stimulating factor, whereas
ndocrinology
osteoprotegerin is a soluble inhibitor of RANKL. There-
fore, the balance of RANKL and osteoprotegerin
regulates osteoclastogenesis (9). Osteoblasts and osteo-
clasts play a critical role in the modeling of the growing
skeleton, and the coupled function of these cells controls
the remodeling of skeletal tissue throughout life (10).

The differentiation and function of cells of the
osteoblastic and osteoclastic lineages are regulated by
systemic and local signals, and the balance of their
activities is essential to maintain bone remodeling.
Notch has emerged recently as a local signal that
plays a critical role in skeletal development, osteoblastic
cell fate and function, and osteoclastogenesis (11).
Consequently, it is not a surprise that gain- and loss-
of-function mutations of various components of the
Notch signaling pathway result in a variety of skeletal
disorders. Furthermore, alterations in Notch signaling
have been associated with selected malignancies and
their skeletal metastatic potential (12).
Notch signaling in skeletal development
and bone remodeling

Notch is a family of four (Notch 1–4) transmembrane
receptors activated by Notch ligand interactions
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(11, 13, 14, 15). Classical or canonical Notch ligands
are the single-pass membrane proteins Jagged1 and 2
and delta-like (DII) 1, 3, and 4. Following Notch ligand
binding, the g-secretase complex, containing the
Presenilin1 and 2 proteases, cleaves the trans-
membrane domain of Notch, allowing the release and
ultimate nuclear translocation of the Notch intra-
cellular domain (NICD). In the nucleus, NICD interacts
with the DNA-binding protein CSL (for Epstein-Barr
virus latency C promoter-binding factor 1, suppressor of
Hairless and Lag1), also known as Rbpjk. This leads to
the assembly of the transcriptional complex formed by
NICD, CSL/Rbpjk, and Mastermind-like (Maml), and the
subsequent displacement of transcriptional repressors
and the induction of Notch target genes (Fig. 1) (15).
Hairy enhancer of split (Hes) and Hes-related with
YRPW motif (Hey) are classical targets of Notch
signaling (14). The C-terminus of Notch contains a
proline (P)-, glutamic acid (E)-, serine (S)-, and
threonine (T)-rich (PEST) domain, which is necessary
for the ubiquitinylation and subsequent degradation of
the Notch protein in the proteasome, ensuring proper
duration of the Notch signal (13, 15).

Notch signaling determines the segmentation of the
axial skeleton during somitogenesis (16, 17), and its
induction in the limb bud suppresses chondrogenesis,
an effect that appears to be mediated by Hes1 (18, 19,
20, 21). The role played by Notch in mature
chondrocytes is less clear (22, 23, 24, 25). Notch
signaling regulates osteoblast and osteoclast differen-
tiation and function and as a consequence controls
bone remodeling. The effects of Notch in cells of
the osteoblastic lineage are cell-context dependent
and determined by the degree of differentiation of the
cells targeted by Notch. Notch suppresses progression
to a mature osteoblastic phenotype and osteoblast
function, when expressed during the early stages of
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Figure 1 Activation of Notch signaling. (A) Notch receptors and Jagg
proteins. Epstein–Barr virus latency C promoter-binding factor 1, supp
and inhibits gene expression by recruiting transcriptional repressors.
receptor mediated by Presenilin and release of the Notch intracellular
nucleus and forms a ternary complex with CSL and Mastermind-like (
activators and inducing expression of Notch target genes, such as Ha
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the osteoblastic differentiation program, leading to
suppressed bone formation and bone loss (19, 26, 27,
28, 29). Notch inhibits osteoclast formation and bone
resorption by inducing osteoprotegerin expression in
osteoblasts (26, 30). Accordingly, NICD overexpression
in mature osteoblasts and osteocytes increases trabec-
ular bone mass due to suppressed osteoclast formation
and bone resorption (29). Most of the studies reported
have examined the function of Notch1, so that less is
known regarding the function of Notch2, 3, and 4 in the
skeleton. There is evidence that Notch1 and 2 have
distinct activities. For example, activation of Notch1 in
osteoclast precursors prevents their differentiation
toward mature osteoclasts, whereas activation of
Notch2 enhances osteoclastogenesis (31, 32).
Developmental skeletal diseases
associated with Notch signaling
Dysostoses of the axial skeleton

Spondylocostal dysostosis and spondylothoracic dysos-
tosis are forms of trunk dwarfism caused by congenital
abnormalities of the vertebrae and ribs secondary to
defective somitogenesis (Table 1). Mutations of the
various components of the Notch signaling pathway are
associated with the diseases, and autosomal recessive
inheritance is observed most frequently, although cases
of autosomal dominant transmission have been
reported (33, 34, 35). The phenotypes of delta-like 3
(Dll3) null mice recapitulate the manifestations of
spondylocostal dysostosis, and mutations in DLL3,
leading to the translation of a truncated or misfolded
protein of this Notch ligand, are found in humans
affected by the disease (36, 37, 38, 39). Mesoderm
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Table 1 Skeletal diseases associated with Notch mutations.

Disease Mutated gene Major manifestations
Possibly impaired Notch
function

Spondylocostal dysostoses DLL3, MESP2, HES7, LFNG Dwarfism Regulation of the segmentation
clock during somitogenesisVertebral developmental defects

Spondylothoracic dysostoses MESP2 Dwarfism
Vertebral developmental defects

Brachydactyly CHYS1 Short digits Patterning of the digits during
developmentStunted growth

Alagille syndromea JAG1, NOTCH2 Facial dysmorphism Craniofacial development;
regulation of the segmentation
clock during somitogenesis;
vascular development

Vertebral abnormalities
Bile duct atresia
Cardiovascular defects

Hajdu–Cheney syndromea NOTCH2 Acro-osteolysis Unknown
Osteoporosis
Fibular deformities
Polycystic kidneys

DLL3, delta-like 3; MESP2, mesoderm posterior 2; HES7, Hairy and enhancer of split 7; LFNG, lunatic fringe; CHSY1, chondroitin sulfate synthase 1;
JAG1, Jagged 1.
aAdditional details are outlined in Tables 2 and 3.
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posterior 2 (Mesp2) is a Notch target gene, which
encodes a transcription factor critical for somitogenesis,
and Mesp2 null mice exhibit vertebral defects (17, 40).
Accordingly, individuals that display abnormal
segmentation of the thoracic vertebrae, typical of
spondylocostal dysostosis, harbor homozygous non-
sense mutations of MESP2 (41). Similarly, spondy-
lothoracic dysostosis, which is observed mostly in people
of Puerto Rican descent, is associated with a mutant
MESP2 allele (42). Hes7 regulates the transcription of
lunatic fringe (Lfng), which, by regulating the glycosyla-
tion of Notch, changes the affinity of Notch receptors for
its ligands (43). Inactivation of Lfng or Hes7 in mice
leads to abnormal development of the rib cage and
vertebral column, and mutations in LFNG and HES7 are
associated with spondylocostal dysostosis in humans
(44, 45, 46, 47, 48, 49).
Table 2 Features of Alagille syndrome.

Craniofacial
features Skeletal features Other features

Broad nasal bridge Butterfly vertebrae Bile duct atresia
Craniosynostosis Digit abnormalities Cholestatic liver failure
Deep set eyes Osteoporosis

secondary to
liver failure

Cardiovascular
defects, including
Tetralogy of Fallot

Micrognathia
Pointed chin
Prominent forehead Short stature Intracranial bleeding
Triangular facies Renal failure
Brachydactyly

Brachydactyly is characterized by shortening of the
digits of the hands and feet (50). In mice, the global
inactivation of the Notch ligand Jag2 causes digit
abnormalities and defects of the craniofacial skeleton
that lead to perinatal death, indicating that pertur-
bations of Notch signaling result in developmental
defects that are reminiscent of brachydactyly (51, 52).
A null allele of chondroitin sulfate synthase 1 (CHSY1)
was discovered in members of a Jordanian family
diagnosed with a syndromic form of brachydactyly
that presented with stunted growth, micrognathia, and
learning disabilities. CHSY1 encodes a transmembrane
protein containing a fringe domain, and cultured
fibroblasts from affected individuals exhibited Notch
activation secondary to upregulation of the ligand
encoded by JAG1. Recombinant CHSY1 inhibited Notch
signaling in vitro, indicating that excessive activation of
Notch signaling is responsible for the disease (53).
Chsy1 null mice display abnormalities in digit pattern-
ing, although the phenotype appears to be secondary to
dysregulation of Indian hedgehog and transforming
growth factor b (TGFb) and not of Notch signaling (54).
Alagille syndrome

Alagille syndrome is an autosomal dominant disease
that presents with cardiovascular defects, abnormalities
of the craniofacial skeleton and vertebral column,
cholestatic liver disease due to impaired formation of
bile ducts, and renal anomalies, including dysplasia
(Table 2) (55). In individuals affected by Alagille
syndrome, vertebrae fail to fuse ventrally during
development and assume a characteristic ‘butterfly’
appearance in radiographic images (56). Osteoporosis
possibly secondary to liver failure and malnutrition has
been reported in patients with the disease. Alagille
syndrome is associated with mutations of JAG1, and
these are mostly de novo mutations that lead to the
translation of a truncated JAG1 protein, although
complete gene deletions and missense mutations are
also observed (57, 58, 59). Rarely, mutations of
www.eje-online.org
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Table 3 Features of Hajdu–Cheney syndrome.

Craniofacial
features

Skeletal
features Other features

Facial dysmorphism Acro-osteolysis Cardiovascular defects
Microretrognathism Fibulardeformities Developmental delay
Periodontal disease Joint hyperlaxity Hearing loss
Platysbasia Osteoporosis

with fractures
Neurological symptoms

Open sutures Polycystic kidneys
Tooth loss Short stature
Wormian bones
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NOTCH2 have been found to be associated with Alagille
syndrome, either in isolation or in addition to mutations
of JAG1 (60, 61). Global Jag1 null mice die during
development, and the dual heterozygous inactivation of
Jag1 and Notch2 in mice recapitulates most of the defects
found in Alagille syndrome, confirming that the disease
is secondary to mutations of these genes (62). In
addition, inactivation of Jag1 selectively in cells of the
cranial neural crest phenocopies the abnormalities of
the craniofacial skeleton that characterize Alagille
syndrome, confirming its association with impaired
Notch signaling (63).
NLS NLS

RAM
ANK

PEST

HCS
mutations

Figure 2 Structure of the NOTCH2 intracellular domain and
mutations associated with Hajdu–Cheney syndrome. The intra-
cellular domain of NOTCH2 (NICD) consists of a transcriptional
domain formed by an Rbpjk association module (RAM) linked to
ankyrin (ANK) repeats and a nuclear localization sequence (NLS).
The C-terminus contains the proline (P)-, glutamic acid (E)-, serine
(S)-, and threonine (T)-rich motif (PEST) domain, which is required
for the ubiquitinylation and degradation of the NICD. Nonsense
mutations in exon 34 associated with Hajdu–Cheney syndrome
(HCS) and pointed by the arrow lead to the formation of a truncated
protein consisting of all NOTCH2 sequences necessary for the
formation of the transcriptional complex, but lacking the PEST
domain needed for the ubiquitinylation and degradation of
NOTCH2. As such, a stable and active NOTCH2 protein
is synthesized.
Gain-of-function mutations of Notch
signaling

Hajdu–Cheney syndrome

Hajdu–Cheney syndrome (HCS) is a devastating disease
characterized by focal bone lysis of distal phalanges and
by generalized osteoporosis (64, 65, 66, 67, 68). The
disease was first described in 1948 in a 37-year-old
accountant who died 12 years later, and the syndrome
was reported by Cheney (1965) (Table 3) (64, 65). HCS
is transmitted as an autosomal dominant disease,
although many sporadic cases occur. Over 60 years
after the original description, whole exome sequencing
in individuals affected with HCS revealed the presence of
point mutations in exon 34 of NOTCH2 leading to the
creation of a stop codon and the premature termination
of the protein product upstream of the PEST domain
(69, 70, 71). It is of interest that NOTCH2 transcript
levels were equivalent to those observed in controls,
indicating a reduced capacity to activate the process of
nonsense-mediated mRNA decay. As the PEST domain
contains sequences necessary for the ubiquitinylation
and degradation of Notch in the proteasome, the
mutations lead to a stable protein and persistence of
NOTCH2 signaling as all sequences required for the
formation of the Notch transcriptional complex are
upstream of the PEST domain and are therefore
preserved (Fig. 2).

Despite the pronounced skeletal abnormalities
reported in HCS, little is known regarding the
www.eje-online.org
mechanisms underlying the bone loss. Although the
distal phalangeal osteolytic lesions would suggest
increased localized bone resorption, there is no
information on the mechanisms responsible for the
generalized osteoporosis. The focal osteolysis is accom-
panied by neovascularization, inflammation, and
fibrosis (72, 73, 74). Iliac crest biopsies have been
reported in a small number of cases of HCS and revealed
decreased trabecular bone, normal or increased bone
remodeling, and normal or decreased bone formation
(73, 75, 76, 77). Whether the osteoblast/osteocyte or
the osteoclast is the cell responsible for the presumed
change in bone turnover has not been established. In
osteoclast precursors, Notch2 induces nuclear factor of
T-cells 1 transcription and osteoclastogenesis (32). This
effect is exclusively observed with Notch2 and not with
Notch1, but whether this mechanism operates in HCS is
not known.

Bisphosphonate therapy (alendronate and pamidro-
nate) alone or in combination with anabolic therapy
with teriparatide has been attempted for the treatment of
the skeletal manifestations of patients with HCS, but
there is no clear evidence that either therapy is beneficial
(77, 78, 79). Serpentine fibula-polycystic kidney syn-
drome appears to be the same disease as HCS, and
missense mutations in exon 34 of NOTCH2, upstream of
sequences encoding for the PEST domain, were detected
in patients affected by this disease (68, 80, 81).
Although HCS affects a limited number of individuals,
discovering a cluster of mutations in a single domain of
NOTCH2 in patients with HCS sheds light on potential
mechanisms underpinning the development of osteo-
porosis. Multiple attempts to uncover genetic variants
that contribute to the risk of osteoporosis have been
Downloaded from Bioscientifica.com at 08/23/2022 08:35:07AM
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relatively unsuccessful (82, 83). However, bone mineral
density and risk of osteoporotic fractures were associated
with a select JAG1 allele in seven independent cohorts
of women of Asian and European descent (84).
Notch and skeletal malignancies

Malignancies arising from cells of the hematopoietic
lineage, such as T-cell leukemia, can exhibit activating
mutations of NOTCH1 and dysregulated Notch signal-
ing, which may cause uncontrolled cell proliferation
and inhibit apoptosis (85). Human osteosarcoma cells
exhibit greater expression of the Notch ligand JAG1, of
NOTCH1, and of the Notch target gene HES1 than
normal human osteoblasts, and the ability of osteosar-
coma cells to metastasize correlates with increased
Notch signaling (86, 87). Tumor burden in mice
inoculated with human osteosarcoma cell lines was
alleviated when cells expressing a dominant negative
form of MAML, which inhibits Notch signaling, were
used, or when g-secretase inhibitors, to prevent Notch
activation, were administered systemically (86). In
addition, inhibition of g-secretase prevented the growth
of human osteosarcoma cells implanted subcutaneously
in immunodeficient mice, confirming that activation of
Notch signaling plays a critical role in the development
of osteosarcoma (88).

Co-culture of human bone marrow stromal cells with
cells from carcinoma of the breast induces NOTCH3
expression in the tumor cells, although the mechanisms
mediating the effect are not known (89). Carcinoma
of the breast cells induces osteolytic bone metastases
in immunodeficient mice, and downregulation of
NOTCH3 opposes this effect, suggesting a role for
NOTCH3 in tumor invasion (89). Expression of JAG1
in human breast cancer cells is associated with
increased tumor burden and the ability of the tumor
cells to metastasize to bone when implanted in
immunodeficient mice. In this experimental model,
JAG1 expressing tumor cells stimulated osteoblasts to
secrete interleukin 6, which in turn induced the
maturation of osteoclast precursors and the formation
of osteolytic metastases. This led to the degradation of
the extracellular matrix surrounding the lytic lesions,
and the release of TGFb, which promoted JAG1
expression by tumor cells, creating a positive feedback
loop favoring tumor invasion (90). In agreement with
these findings, elevated expression of JAG2 was
associated with reduced metastasis-free survival in
three cohorts of breast cancer patients, suggesting
that activation of Notch signaling confers breast cancer
cells the ability to form bone metastases (91).

Osteoblastic cells regulate the hematopoietic stem cell
niche and influence stem cell function through the
activation of Notch (92). Although defective Notch
activation can lead to a myeloproliferative disease in the
mouse, hematological malignancies have been
associated with the constitutive activation of NOTCH1
and NOTCH2 in humans (93). Activating mutations of
NOTCH1 leading to the expression of a truncated
protein are present in over 50% of T-cell acute
lymphoblastic leukemia (94, 95). Patients with acute
lymphoblastic leukemia may present with osteopenia
and vertebral fractures and the prevalence of fractures
in newly diagnosed children is w16% (96). Rarely,
osteolytic lesions and hypercalcemia have been reported
(97). Gain-of-function mutations of NOTCH2 were
found in a subset of patients with large B-cell
lymphoma, but their association with specific skeletal
disorders is not known (98).
Conclusions

Genetic mutations causing either gain- or loss-
of-function of various components of the Notch
signaling pathway are associated with diverse skeletal
disorders and demonstrate that NOTCH is critical for
human skeletal development and homeostasis. Findings
in human diseases are consistent with results from
numerous studies in mice and selected vertebrate model
organisms, confirming that Notch signaling regulates
skeletogenesis. Gain-of-function mutations of Notch
lead to bone loss, and this is in agreement with the
inhibitory effects of Notch on osteoblastogenesis, and
with the stimulatory action of Notch2 on osteoclasto-
genesis. Various modalities to control Notch signaling
have been reported, including the use of antibodies to
the Notch extracellular domain or to its ligands, and the
use of cell membrane permeable peptides that interfere
with the formation of the Notch transcriptional
complex, such as soluble MAML peptides (99, 100).
However, reduced NOTCH signaling can result in the
development of vascular tumors (101). There is strong
evidence indicating that activation of NOTCH2 signal-
ing causes HCS, and NOTCH2 could be a potential
target for the treatment of this disease. However, for
therapy to succeed, it needs to inhibit NOTCH2 activity
specifically in affected tissues. Induction of NOTCH
signaling is a critical event in the development and
invasiveness of osteosarcoma and metastatic potential of
carcinoma of the breast. NOTCH signaling could be
targeted for the treatment of selected skeletal malignan-
cies, but results from necessary clinical trials to establish
the safety and efficacy of this approach are lacking.
Targeting of NOTCH signaling in skeletal diseases
associated with the loss of NOTCH activity would be
even more problematic. Although strategies to activate
Notch signaling were reported in a preclinical study, such
approaches may result in serious complications due to the
potential arrest of cell differentiation (102).

In conclusion, NOTCH signaling is required for
skeletal development and bone homeostasis and gain-
and loss-of-function mutations in genes that regulate
www.eje-online.org
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the NOTCH signaling pathway are uncommon but
cause severe skeletal disorders.
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