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The Notch signalling pathway is a highly conserved developmental signalling pathway,
with vital roles in determining cell fate during embryonic development and tissue
homeostasis. Aberrant Notch signalling has been implicated in many disease
pathologies, including cancer. In this review, we will outline the mechanism and
regulation of the Notch signalling pathway. We will also outline the role Notch signalling
plays in normal mammary gland development and how Notch signalling is implicated
in breast cancer tumorigenesis and progression. We will cover how Notch signalling
controls several different hallmarks of cancer within epithelial cells with sections
focussed on its roles in proliferation, apoptosis, invasion, and metastasis. We will provide
evidence for Notch signalling in the breast cancer stem cell phenotype, which also has
implications for therapy resistance and disease relapse in breast cancer patients. Finally,
we will summarise the developments in therapeutic targeting of Notch signalling, and
the pros and cons of this approach for the treatment of breast cancer.

Keywords: Notch signalling, mammary gland development, breast cancer, cancer hallmarks, breast cancer

therapy

INTRODUCTION

At the turn of millennium, there was growing interest in the role Notch signalling played in
tissue homeostasis and the aetiology of human diseases. Over the previous decade, all four Notch
homologues had been identified in mammals, along with the five Notch ligands. The generation
of genetic knockouts in mice had demonstrated the importance of Notch signalling in embryonic
development and the aetiology of several human genetic disorders, including Alagille syndrome.
There was also growing evidence that aberrant Notch signalling was linked to several different
cancers, in particular certain leukaemias. Amongst solid cancers, breast cancer was of particular
interest. Integration of the Mouse Mammary Tumour Virus (MMTV) into the Notch1 or Notch4
loci, leading to the expression of an activated form of the respective Notch proteins, had been shown
to disrupt mammary gland development and cause tumour development. However, it was unclear
whether Notch signalling played a role in the normal development of mammary gland or in the
aetiology of breast cancer in humans. Work since, has provided conclusive evidence for both.

NOTCH SIGNALLING

At first glance, the Notch signalling pathway is a simple one, with a relatively small number of core
signalling components compared to other vital developmental pathways, and lacking in any second
messengers, phosphorylation, or amplification steps (Bray, 2006, 2016; Hori et al., 2013; Figure 1).
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Signalling through the pathway is typically thought to be
initiated by physical association between a Notch receptor
expressed on the surface of the signal-receiving cell, and a
Notch ligand expressed on the surface of the signal-sending
cell. However, there is clear evidence that signalling through
the pathway can also be initiated in a ligand independent-
manner following Deltex-mediated endocytosis localising the
Notch protein to the outer surface of the multivesicular body
(Steinbuck and Winandy, 2018).

There are four Notch receptors (Notch 1–4). As these
receptors are produced in the endoplasmic reticulum (ER),
they undergo vital post-translational modification and processing
steps in the Golgi. This includes proteolytic cleavage by Furin-like
convertase andO-glycosylation by proteinO-fucosyltransferase 1
(POFUT1), protein O-glucosyltransferase 1 (POGLUT1) and the
Fringe proteins. Furin processing of the Notch receptor is known
as S1 cleavage, and results in the presentation of the receptor at
the plasma membrane as a heterodimer, with the two fragments
linked by non-covalent Ca2+ salt bridge interactions (Logeat
et al., 1998; Rand et al., 2000). O-Glycosylation alters the folding
of the Notch protein, increasing its stability and presentation
at the cell surface, and changing its interaction with the five
Notch ligands, Delta-like 1, 3, and 4 (DLL1, DLL3, and DLL4)
and Jagged 1 and 2 (JAG1 and JAG2) (Harvey and Haltiwanger,
2018). Fringe modification of the O-glycosylation chains favours
binding by the DLL ligands.

Notch receptor-ligand binding triggers endocytosis of the
ligand by the ligand-presenting cell (Parks et al., 2000). This
induces a mechanical force across the receptor which causes
the unfolding of the NRR domain, exposing the S2 site to
proteolytic cleavage by disintegrin and metalloprotease (ADAM)
proteases (Brou et al., 2000; Nichols et al., 2007). ADAM
protease activity causes the release of the Notch ectodomain,
leaving the activated and membrane bound form of Notch
known as NEXT (Notch extracellular truncation) (Andersson
et al., 2011). The Notch ectodomain is endocytosed by the
ligand-presenting cell (Hori et al., 2013). NEXT is the substrate
for γ-secretase, a complex comprising presenilin, nicastrin,
presenilin enhancer 2 (PEN2) and anterior pharynx-defective
1 (APH1), which carries out the third and final Notch
proteolytic cleavage (S3) to release NICD into the cytoplasm
(Schroeter et al., 1998; De Strooper et al., 1999; Bray, 2006).
S3 cleavage by γ-secretase can occur at the plasma membrane
or within endosomes as part of NEXT endosomal trafficking
(Vaccari et al., 2008; Andersson et al., 2011). Once in the
cytoplasm, NICD is transported to the nucleus via importin-
α proteins, where it is able to induce target gene transcription
(Huenniger et al., 2010).

As well as the ligand-activated Notch signalling pathway
outlined above, evidence shows that the core Notch pathway
can be activated in a ligand-independent manner through the
activity of the E3 ubiquitin ligase Deltex (DTX). In this scenario,
full length Notch is trafficked into the cell through endocytosis.
DTX functions to stabilise Notch in the endocytic compartment
via ubiquitination, and assists in the delivery of the receptor
to the limiting membrane of the multivesicular body. Here
the receptor undergoes S3 cleavage and NICD is released into

the cytoplasm (Shimizu et al., 2014; Steinbuck and Winandy,
2018). There are also suggestions that Notch/DLL andNotch/JAG
signalling are distinct, with Notch/DLL signalling favouring the
classical lateral inhibition patterning causing cells within a sheet
to adopt two different fates in a salt and pepper pattern and
Notch/JAG signalling favouring lateral induction causing a group
of neighbouring cells to adopt the same fate (Bocci et al., 2020).

In the absence of NICD, Notch target gene expression is
repressed by the transcription factor RBPJκ (also known as CBF1)
and its co-repressors (Jarriault et al., 1995). These co-repressors,
such as RBPJκ-interacting and tubulin-associated (RITA) and
silencing mediator for retinoid or thyroid hormone receptors
(SMRT)/histone deacetylase (HDAC) 1-associated repressor
protein (known as SHARP), compete for NICD binding, as
well as actively silencing target gene transcription (Kao et al.,
1998; Oswald et al., 2005; Wacker et al., 2011). In the presence
of NICD, the co-repressors are displaced and a transcriptional
activator complex is formed containing NICD, RBPJκ, and
various co-activators including the Mastermind-like (MAML)
proteins (Wu et al., 2000; Nam et al., 2006; Wilson and Kovall,
2006). The transcriptional activator complex binds to Notch
regulatory elements (NREs) located in gene enhancer elements,
resulting in Notch target gene expression (Aster et al., 2017).
This is the traditional “switch” model of Notch target gene
regulation; however more recent studies have suggested a more
dynamic role for RBPJκ than previously thought, involving
the movement of the whole transcriptional activator/repressor
complex on and off the NRE (Kao et al., 1998; Castel et al., 2013;
Bray, 2016).

The classical Notch target genes are the hairy and enhancer
of split-related genes; belonging to the HES and HEY
families. Hes/Hey proteins are basic helix-loop-helix (bHLH)
transcription factors which play key roles during embryonic
development as transcriptional repressors. Other canonical
Notch target genes include the transcription factors c-Myc,
GATA2/3 and Snail; cell cycle regulators E2F, cyclin D1/3,
and p21; immune components interleukin 2 receptor subunit
alpha [IL2RA (CD25)], pre-T cell receptor α (pTa) and
NFκB2; developmental homeobox (HOX) A genes; the matrix
metalloprotease ADAM19, and the receptor tyrosine kinase
platelet-derived growth factor receptor beta (PDGFRβ) (Oswald
et al., 1998; Deftos et al., 2000; Rangarajan et al., 2001;
Ronchini and Capobianco, 2001; Reizis and Leder, 2002; Robert-
Moreno et al., 2005; Maillard et al., 2006; Palomero et al.,
2006; Weerkamp et al., 2006; Weng et al., 2006; Amsen
et al., 2007; Fang et al., 2007; Jin et al., 2008; Sahlgren
et al., 2008; Borggrefe and Oswald, 2009; Joshi et al., 2009;
Bivik et al., 2016). Finally, like many key signalling pathways,
Notch is involved in crosstalk with other notable signalling
networks in the regulation of development, inflammation and
cell function. This is particularly important to consider in the
context of Notch signalling in oncogenesis and the design of
Notch-targeting therapeutic approaches. For example, Notch
interacts with the Wnt, NFκB, TGFβ, HIF1α, YAP/TAZ, EGFR
and Akt signalling pathways (Andersson et al., 2011; Bray,
2016; Fazio and Ricciardiello, 2016; Siebel and Lendahl, 2017;
Totaro et al., 2018).
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FIGURE 1 | Activation of Notch signalling. The Notch pathway can be activated in two ways, either by interacting with a ligand on an adjacent cell or following
endocytosis driven by Deltex. S1 cleavage occurs in the Golgi and mediates the production of the mature Notch heterodimer which is presented on the surface of
the cell. Ligand binding stimulates S2 cleavage, which causes the release of the Notch ectodomain and subsequent endocytosis by the ligand-presenting cell. S2
cleavage provides the substrate for γ-secretase, which carries out the final S3 cleavage and releases NICD into the cytoplasm where it can translocate into the
nucleus to activate target gene transcription (Fortini, 2009; Aster et al., 2017). The endocytosis of the Notch protein to the multivesicular body driven by Deltex also
provides a substrate for γ-secretase and thus target gene transcription (Steinbuck and Winandy, 2018).

MAMMARY STEM CELLS,
PROGENITORS AND LINEAGE
DETERMINATION

A small subpopulation of mammary epithelial cells can re-
populate a full functional mammary gland in a cleared mammary
fat pad (Kordon and Smith, 1998; Figure 2). These mammary
gland-reconstituting cells contain multi/bipotent mammary stem
cells (MaSCs) and unipotent mammary epithelial progenitors
(Slepicka et al., 2020). MaSCs are primarily active during

the embryonic stage as foetal mammary stem cells (fMaSCs).
Most post-natal mammary gland development originates
from unipotent lineage-committed progenitors (luminal and
myoepithelial progenitor cells) located in the basal epithelium
(Inman et al., 2015). Cells in the basal layer generally do not
express ER(α), however, luminal cells are a mixed population
of both ER+ (oestrogen sensitive) and ER- (oestrogen non-
responsive) cells (Clarke et al., 1997; Russo et al., 1999; Watson
and Khaled, 2020).

Notch signalling is critical in MaSC and mammary progenitor
cell function. Early studies focused on Notch4 signalling
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FIGURE 2 | Notch signalling promotes and maintains the luminal progenitor cell fate in the mammary gland. The initial stem cell found within the mammary gland
(fMaSC) is multipotent and can form both luminal and myoepithelial cells. However, by late embryogenesis, the gland contains two unipotent progenitor cells that
form and maintain the luminal and myoepithelial cell layers of the ductal structures within the gland during puberty and adult life and a quiescent multipotent adult
MaSC that is only reactivated upon injury (Woodward et al., 2005; Watson and Khaled, 2020). Notch signalling promotes the differentiation of the foetal MaSCs into
the unipotent luminal progenitor cell and prevents this cell differentiating into mature luminal epithelial cells to maintain the population (Dontu et al., 2004; Buono
et al., 2006; Bouras et al., 2008; Raouf et al., 2008; Lafkas et al., 2013; Šale et al., 2013; Rodilla et al., 2015; Zhang Y. et al., 2016; Lilja et al., 2018). Upon ablation
of the luminal epithelial cells in the adult mammary gland, Notch signalling can also promote the conversion of unipotent myoepithelial progenitor cells into unipotent
luminal progenitors to repopulate the luminal lineage (Centonze et al., 2020).

suggested that it is upregulated in MaSCs and important for
their self-renewal (Dontu et al., 2004; Chakrabarti et al., 2018).
However, these studies are not supported by other reports in the
literature. Firstly, the original description of the Notch4 knockout
mouse failed to identify a mammary gland phenotype (Krebs
et al., 2000), suggesting that there isn’t a significant role for
Notch4 in MaSCs in vivo. Secondly, more recent work looking
at the function of the Notch pathway inhibitor Numb in the
mammary gland demonstrated that it segregates asymmetrically
during MaSC division to the daughter cell with more stem-
like characteristics (Santoro et al., 2016), arguing that Notch
signalling is blocked in the MaSC. Interestingly, Notch signalling
does play an indirect role in maintaining MaSCs within the
growing mammary ducts. DLL1 expressed in MaSCs found
within the cap cell layer of terminal end buds, the outer layer
of cells at growing the tip of mammary duct, activates Notch
signalling in adjacent macrophages. This induces the expression
of several Wnt proteins which signal back to the MaSCs within

the terminal end bud to maintain the stem cell fate (Dontu et al.,
2004; Chakrabarti et al., 2018).

On the other hand, there is abundant evidence that Notch
signalling plays a significant role in driving MaSCs toward the
unipotent luminal progenitor fate. Notch1–3 are more highly
expressed in luminal cells, whilst the Notch pathway inhibitors
Numb and Numb-like are found in myoepithelial cells (Bouras
et al., 2008; Raouf et al., 2008; Raafat et al., 2011; Zhang Y. et al.,
2016). Functional studies using knockout and transgenic mouse
models and primary human cells have confirmed that Notch
signalling controls the luminal vs. myoepithelial lineage balance
(Smith et al., 1995; Dontu et al., 2004; Kiaris et al., 2004; Buono
et al., 2006; Hu et al., 2006; Bouras et al., 2008; Raouf et al., 2008;
Yalcin-Ozuysal et al., 2010; Santoro et al., 2016; Zhang Y. et al.,
2016; Onoyama et al., 2020). In the absence of Notch signalling,
there is an accumulation of myoepithelial cells, whilst increased
Notch signalling leads to an expansion of the of the luminal
lineage (Smith et al., 1995; Kiaris et al., 2004; Buono et al., 2006;
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Hu et al., 2006; Bouras et al., 2008; Yalcin-Ozuysal et al., 2010;
Zhang Y. et al., 2016; Onoyama et al., 2020). Lineage tracing
studies have found that Notch signalling drives MaSCs into the
unipotent luminal progenitor fate by late embryogenesis (Lafkas
et al., 2013; Šale et al., 2013; Rodilla et al., 2015; Lilja et al., 2018).
However, recent experiments have shown that following ablation
of luminal cells, Notch signalling is reactivated in unipotent
myoepithelial progenitors to drive the regeneration of luminal
cells (Centonze et al., 2020). Interestingly, the functional studies
have also shown that Notch signalling not only drives MaSCs
toward the luminal progenitor cell fate but also maintains cells
in this fate preventing their terminal differentiation (Dontu et al.,
2004; Buono et al., 2006; Bouras et al., 2008; Raouf et al., 2008;
Zhang Y. et al., 2016). Maintaining this proliferative cell fate
could explain why tumour development is seen in transgenic and
knockout mouse models where Notch signalling is activated in
the mammary gland (Smith et al., 1995; Kiaris et al., 2004; Hu
et al., 2006).

Although Notch1, 2, and 3 are all expressed in luminal
epithelial cells, Notch3 is the most highly expressed (Raafat et al.,
2011). It also appears to be the most important for the decision
to adopt the luminal progenitor fate, as the only reports of a
phenotype seen when ablating signalling through an individual
Notch receptor come from papers reporting theNotch3 knockout
in mice (Xiong et al., 2020) and Notch3 knockdown in primary
human breast epithelial cells (Dontu et al., 2004; Buono et al.,
2006; Bouras et al., 2008; Raouf et al., 2008; Zhang Y. et al., 2016).
In contrast, expressing an activated form of Notch 1, 3, or 4 seems
to be sufficient to drive tumour formation (Smith et al., 1995;
Kiaris et al., 2004; Hu et al., 2006; Bouras et al., 2008; Zhang Y.
et al., 2016; Onoyama et al., 2020).

NOTCH IN BREAST CANCER

Notch signalling is aberrantly activated in breast cancer, with
increased NICD accumulation and target gene expression
detected in a range of breast cancer cell lines and primary
samples (Weijzen et al., 2002; Stylianou et al., 2006; Mittal et al.,
2009). Overexpression of Notch receptors and ligands have been
reported in breast tumours, and is correlated with poorer patient
prognosis (Reedijk et al., 2005). Aberrant Notch signalling has
also been extensively linked to the triple negative breast cancer
(TNBC) subtype; Notch receptor overexpression is correlated
with the aggressive, metastatic and therapy resistance phenotype
characteristic of TNBC (Zhong et al., 2016; Giuli et al., 2019).
Notch4 is particularly associated with TNBC. One study found
that Notch4 was expressed in 55.6% of TNBC samples compared
to 25.5% of ER+ samples (Wang J.W. et al., 2018a).

Data suggests that deregulation of Notch signalling is an
early event in breast cancer tumorigenesis, with accumulation
of NICD and increased Hey1 expression detected in a broad
range of subtypes, including ductal carcinoma in situ and
epithelial hyperplasia (Stylianou et al., 2006; Mittal et al., 2009;
Zardawi et al., 2010). This implies that aberrant Notch signalling
plays a causative role in breast tumour initiation. In contrast
to haematological malignancies, aberrant activation of Notch

signalling in the breast is primarily induced through means
other than Notch receptor or ligand mutation, although some
mutations have been identified. Activating mutations within
and surrounding the PEST domain of Notch1, 2, and 3;
mutations disrupting the NRR and heterodimerisation domains;
and focal amplifications have been identified in patient tumours
and patient-derived xenograft (PDX) models, notably with
enrichment in TNBCs (Wang et al., 2015). Thesemutations result
in increased nuclear accumulation of NICD and upregulated
target gene expression. In particular, Notch4 mutation and
overexpression is correlated with metastatic and poor prognosis
TNBC, implicatingNotch4 in BCSC activity and chemoresistance
(Giuli et al., 2019). Loss of Numb is a frequent cause of aberrant
Notch signalling in breast cancer (Stylianou et al., 2006). Pece
et al. (2004) found that Numb protein was completely lost
or reduced in ∼50% of all breast cancers analysed, through
ubiquitination and proteasomal degradation. Numb levels and
tumour grade were inversely correlated, which was corroborated
by another study that identified Numb loss as a determinant
in aggressive and poor prognosis tumours. Collectively, these
studies emphasise the importance of Numb as a tumour
suppressor in the breast (Colaluca et al., 2008).

Increased Notch activation is sufficient to induce mammary
gland tumour formation in vivo (Smith et al., 1995; Kiaris et al.,
2004; Hu et al., 2006). Moreover, in vitro, overexpression of
NICD1/4 or RBPJκ-VP16 (which activates RBPJκ-dependent
Notch target gene expression in the absence of upstream
stimulation) is sufficient to transform mammary epithelial
cells (Imatani and Callahan, 2000; Stylianou et al., 2006).
Notch co-operation with other pro-tumorigenic signalling
pathways, including other developmental pathways, growth
factor signalling, pro-inflammatory cytokines, oncogenic kinase
pathways and transcription factors, compounds its role in breast
tumour initiation and the cancer cell phenotype (Guo et al.,
2011). Notch-Wnt crosstalk in particular has been implicated
in breast tumour initiation. For example, Ayyanan et al. (2006)
demonstrated that Wnt-induced primary mammary epithelial
cell transformation was dependent on upregulated Notch activity
via increased expression of DLL ligands. Conversely, inhibition of
Notch signalling has consistently been shown to reduce or abolish
breast tumour development and/or progression (Lee et al., 2008a;
Efferson et al., 2010; Castro et al., 2015; Choy et al., 2017). More
detail on the potential of Notch therapeutic targeting in cancer
will be given later in this review.

CELL PROLIFERATION

Signalling from the Notch1, 3, and 4 receptors promotes cell
proliferation, both directly through target gene expression and
indirectly through activation of downstream signalling pathways
(Figure 3). Importantly for the consideration of therapeutic
targeting, inhibition of Notch signalling suppresses breast cancer
cell proliferation and tumour growth, while ectopic activation
of Notch signalling increases proliferation rate (Sun et al.,
2005; Yamaguchi et al., 2008; Nagamatsu et al., 2014; Castro
et al., 2015; Pei and Wang, 2015; Zhang Q. et al., 2016;
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FIGURE 3 | Notch regulates breast cancer cell proliferation. Notch signalling has several direct target genes implicated in cell cycle regulation. These include cyclins
A, B and D1, and Hes/Hey family members (Rizzo et al., 2008; Cohen et al., 2010). While most factors downstream of Notch increase the proliferative rate of the cell,
Hes1 downregulates E2F1 expression which inhibits cell cycle progression (Hartman et al., 2009; Strom et al., 2009). Notch also activates key oncogenic signalling
pathways with pleiotropic effects on cellular function including proliferation, such as c-Myc, Ras and Wnt (Mittal et al., 2009; Aster et al., 2017; Lai et al., 2018).

Choy et al., 2017; Kong et al., 2018; Rui et al., 2018; Tu et al.,
2019). The Hes/Hey canonical Notch target genes are both pro-
and anti-proliferative, with Hes1 inhibiting cell cycle progression
by suppressing E2F1 expression and Hes6 upregulating E2F1
expression to promote cell cycle progression (Hartman et al.,
2009; Strom et al., 2009). In fact, several Notch target genes
are cell cycle regulators, meaning that aberrant Notch signalling
significantly deregulates cell cycle progression. A few cyclins
are upregulated by Notch signalling, and Cyclin D1 is a direct
target of JAG1-Notch1/3 signalling in triple negative breast
cancer cells (Reedijk, 2012). Inhibition of JAG1 expression in

MDA-MB-231 cells is sufficient to reduce cell cycle progression,
while JAG1 and cyclin D1 expression are positively correlated
in basal breast cancers (Cohen et al., 2010). The proto-
oncogene c-Myc is an important direct RBPJκ-dependent Notch
target gene. Ablation of c-Myc in MMTV/NICD1 mice can
prevent tumour formation (Klinakis et al., 2006; Aster et al.,
2017). Crosstalk with signalling molecules such as Ras and
Wnt also mediate the role of Notch in breast cancer cell
proliferation, with studies detecting concomitant suppression of
these pathways in response to Notch inhibition (Mittal et al.,
2014; Lai et al., 2018).
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FIGURE 4 | Notch signalling inhibits breast cancer cell apoptosis. Notch activates pro-survival Akt signalling through NFκB, PI3K, and mTOR signalling (Mungamuri
et al., 2006; Osipo et al., 2008a; Efferson et al., 2010; Zang et al., 2010; Zhu et al., 2013; Li L. et al., 2014b; Hossain et al., 2018). Our lab have shown that Notch
also stimulates Akt through a secreted factor, which triggers stabilisation of p53 through ASK1/JNK signalling (Meurette et al., 2009). The Notch target gene c-Myc is
anti-apoptotic, and there is significant evidence demonstrating upregulation of survivin in response to Notch activation (Klinakis et al., 2006; Lee et al., 2008a,b).
Survivin prevents apoptosis through indirect and direct caspase inhibition (Garg et al., 2016). Of the Bcl-2 family members, Notch upregulates the anti-apoptotic
members including Bcl-2 and Bcl-XL, while downregulating pro-apoptotic members such as Bim and Noxa (Portanova et al., 2013; Sales-Dias et al., 2019). Active
Notch signalling reduces the sensitivity of TNBC cells to TRAIL-induced apoptosis (Portanova et al., 2013). Notch regulation of cell cycle regulators, including cyclin
D1, p21 and p15, also contributes to apoptosis resistance (Cohen et al., 2010; Sales-Dias et al., 2019).

CELL SURVIVAL

Notch1/3/4 signalling is anti-apoptotic in the breast, and hence
promotes breast cancer cell survival (Figure 4). Previous work
in our lab has shown that activation of Notch signalling in
non-transformed breast epithelial cells inhibits drug-induced
apoptosis. Conversely, inhibition of Notch in breast cancer
cells is sufficient to re-sensitise the cells to apoptosis. This was
determined to be through Notch-induced activation of Akt,
via an unknown autocrine signalling factor, and a downstream
apoptosis signal regulating kinase 1 (ASK1)/c-Jun N-terminal
kinase (JNK)/p53 signalling axis (Stylianou et al., 2006; Meurette
et al., 2009). This mechanism was independent of PTEN,
an important negative regulator of Akt activation which is
downregulated by Notch in other cancer types (Palomero
et al., 2007). This work intertwines Notch, Akt and p53 in
anti-apoptotic signalling. This supports previous findings by

researchers such as Mungamuri et al. (2006) who showed that
treatment of Notch-activated MCF-7 cells with a PI3K or mTOR
inhibitor sensitised the cells to cytotoxic drug-induced apoptosis,
which was accompanied by activation of a p53-specific reporter.
Mechanistically, it was determined that Notch1-induced pro-
survival signalling was mediated by mTOR-dependent PI3K/Akt
inhibition of p53 (Mungamuri et al., 2006).

Furthermore, Notch can activate pro-survival Akt signalling
through NFκB in breast cancer cells. Cytoplasmic Notch and
phosphorylated Akt (pAkt) correlate with nuclear NFκB in
TNBC tumour samples, while mechanistic work in triple negative
cell lines demonstrated JAG1-Notch1 (but RBPJκ-independent)
stimulation of Akt via mTOR and IκB kinase (IKK) α.
Combination treatment of a GSI with either an Akt inhibitor
or an IKK inhibitor significantly inhibited TNBC PDX-derived
mammosphere growth (Zhu et al., 2013; Hossain et al., 2018).
This corroborates data from the Liu lab which showed that
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FIGURE 5 | Notch signalling regulates breast cancer cell metastasis. Notch-mediated metastasis is induced by factors such as TGFβ and Sphk1 (Zavadil et al.,
2004; Zhang et al., 2010; Sethi et al., 2011; Wang S. et al., 2018b). Notch activates key regulators of EMT including the transcriptional repressors Slug and Snail,
that mediate loss of cell-cell contacts through inhibition of E-cadherin expression (Leong et al., 2007; Sahlgren et al., 2008; Zhang et al., 2010; Du et al., 2012; Shao
et al., 2015; Kong et al., 2018). The mesenchymal markers ZEB1, β-catenin, N-cadherin and vimentin are upregulated by Notch signalling (Bolós et al., 2013; Lai
et al., 2018). ZEB1 is activated through complex bi-directional signalling involving micro-RNAs (Brabletz et al., 2011). Micro-RNAs negatively regulate Notch
signalling, and their loss is sufficient to induce EMT in breast epithelial cells (Du et al., 2012; Chao et al., 2014; Kong et al., 2018). Notch is also implicated in tissue
invasion, as it upregulates matrix-degrading enzymes including MMP2 and 9 and urokinase-type plasminogen activator (uPA), as well as β1-integrin (Shimizu et al.,
2011; Lai et al., 2018). Anti-apoptotic Notch signalling (see Figure 4) enables the cells to survive in the blood stream and travel to secondary sites. Notch signalling
between the cancer cells and cells in the bone microenvironment facilitates colonisation and growth at the metastatic site (Sethi et al., 2011).

Notch1-induced proliferation and reduction in apoptosis was
accompanied by NFκB activation and target gene expression in
triple negative MDA-MB-231 cells (Li L. et al., 2014b).

Additionally, Notch upregulates anti-apoptotic proteins such
as survivin and Bcl2 (Lee et al., 2008b; Sales-Dias et al., 2019).
Lee et al. (2008a) showed that GSI treatment reduced survivin
expression in triple negative breast cancer cell lines (but not
ER+ cell lines), which was sufficient to induce apoptosis, prevent

colony formation in soft agar and inhibit xenograft tumour
growth and lung metastasis in mice. Portanova et al. (2013) also
demonstrated sensitisation of breast cancer cell lines to tumour
necrosis-factor related apoptosis-inducing ligand (TRAIL)-
induced apoptosis by GSI treatment. Interestingly this effect was
found to be more potent in the triple negative MDA-MB-231
cell line compared to ER+ MCF-7 cells. TNBC is the most
common breast cancer subtype that develops in BRCA1mutation
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carriers (Mavaddat et al., 2012). In a high throughput sequencing
screen of BRCA1-deficient murine mammary tumours, Notch1
was identified as an oncogenic driver. Notch1 suppressed DNA
damage and mitotic catastrophe (and therefore lethality) caused
by BRCA1 deficiency. Notch1 signalling restored the S/G2 and
G2/M cell cycle checkpoints, likely through an ATR/CHK1
signalling pathway (Miao et al., 2020).

EMT, INVASION AND METASTASIS

Notch signalling is implicated in a broad range of processes
required for breast cancer cell metastasis including survival of
hypoxia, angiogenesis, EMT, local tissue invasion, survival in the
circulation, chemoresistance and colonisation of secondary sites
(Zhang et al., 2019).

Notch signalling promotes breast epithelial cell EMT (Leong
et al., 2007). Inhibition of Notch signalling in TNBC cells
reverses the characteristic epithelial to mesenchymal cobblestone
to spindle cell morphology and associated marker switch, as
well as reducing invasion and migration (Shao et al., 2015;
Zhang J. et al., 2016). Mechanistically, Notch induces EMT
through activation of Slug and Snail; transcriptional repressor
proteins that downregulate E-cadherin expression (Martin et al.,
2005; Leong et al., 2007; Zhang et al., 2010; Shao et al., 2015;
Figure 5). JAG1, Notch1 and Slug expression correlate in patient
tumour samples. Notch4 inhibition also reduces the number
and size of MDA-MB-231 xenograft tumour metastases in vivo,
which is accompanied by restoration of E-cadherin expression,
inactivation of β-catenin and downregulation of Slug (Leong
et al., 2007). Interesting recent work suggests that differences
between Notch/DLL and Notch/JAG signalling may induce
different patterns of EMT within a cancer, with Notch/DLL
signalling favouring the induction of EMT in individual cells and
Notch/Jag signalling favouring EMT in clusters of cells (Bocci
et al., 2019, 2020). The latter may go on to form circulating
tumour cell clusters.

Hypoxia-induced breast epithelial cell EMT appears to be
dependent on Notch signalling, with one study finding that
hypoxia downregulated E-cadherin in MCF10A cells only when
Notch signalling was aberrantly activated by immobilised JAG1
(Sahlgren et al., 2008). Another study found that Snail expression
and E-cadherin downregulation induced by hypoxic treatment of
breast cancer cells was abrogated by GSI treatment or dominant
negative MAML expression. Hypoxic breast cancer cells had
increased invasive and migratory capability in Boyden chamber
and scratch wound assay respectively, which was reversed by
GSI treatment (Chen et al., 2010). Notch1 has been implicated
specifically in triple negative breast cancer EMT. For example,
Notch1 is a downstream target of miRNA-3178, an inhibitory
miRNA downregulated in TNBC (but not non-TNBC subtypes),
that plays a role in EMT through regulation of Snail (Kong et al.,
2018). Micro-RNAs are a recurring theme in Notch-mediated
EMT, with miRNAs acting both upstream and downstream of
the pathway (Du et al., 2012; Chao et al., 2014; Figure 5).
Notch is also implicated in bi-directional crosstalk with the
mesenchymal marker zinc finger E-box binding homeobox 1

(ZEB1). Knockdown of ZEB1 in breast cancer cells inhibits Notch
activity, including downregulation of JAG1, MAML2/3 and
HEY1 expression, via de-repression of miRNA-200 expression.
In primary TNBC samples high ZEB1 expression was correlated
with upregulated JAG1 and Notch activity in invasive tumour
regions (Brabletz et al., 2011).

The role of Notch signalling in EMT corresponds to its
promotion of invasive and metastatic phenotypes. Activation of
Notch signalling in non-invasive breast cancer cells promotes cell
invasion and migration, while inhibition of Notch in invasive
cells reduces their invasive and migratory capacity (Bolós et al.,
2013; Castro et al., 2015; Lai et al., 2018; Leontovich et al., 2018).
Moreover, Notch signalling is correlated with metastasis in vivo
(Kontomanolis et al., 2014). In a single cell gene expression
analysis, NOTCH4, NOTCH3 and JAG1 were upregulated in
metastatic breast cancer cells compared to primary tumour
cells isolated from TNBC patient-derived xenograft (PDX)
models (Lawson et al., 2015). JAG1-induced Notch signalling
is also important in breast cancer cell colonisation of the bone
metastatic niche (Zhang et al., 2010). High JAG1 expression is
correlated with bone-tropic metastatic breast cancer cell lines
and samples from patient bone metastasised tumours. It was
shown that JAG1 is upregulated in the cancer cells by SMAD-
dependent TGFβ signalling (Figure 5), and activates Notch
signalling in osteoblasts within the bone microenvironment.
Importantly, pharmacological inhibition of Notch signalling was
sufficient to reduce breast cancer bone metastasis and osteolysis
in vivo, implying that targeting Notch signalling may be a suitable
therapeutic approach for inhibiting breast cancer metastasis
(Sethi et al., 2011).

A ROLE IN BREAST CANCER THERAPY
RESISTANCE

Notch signalling is induced by breast cancer chemotherapy,
and is upregulated in therapy-resistant tumour cells (Bhola
et al., 2016; Xiao et al., 2019). Activation of Notch signalling
is sufficient to induce chemotherapy resistance, while inhibition
of Notch signalling re-sensitises resistant cells to conventional
therapy (Li X.J. et al., 2012a; García-Heredia et al., 2016; Xiao
et al., 2019). Combining Notch inhibitors with conventional
chemotherapies has an additive effect, increasing treatment
efficacy both in vitro and in vivo (Qiu et al., 2013; Rustighi
et al., 2014; Li et al., 2015; Zhou et al., 2017). Furthermore, the
failure of inhibitors of key pro-oncogenic signalling pathways in
clinical trials has been partially attributed to Notch signalling. For
example, investigation of TNBC PI3K/mTOR inhibitor resistance
found that PI3K/mTOR or TORC1/2 treatment enriched for
BCSCs with upregulated Notch1 expression. GSI Notch blockade
prevented this BCSC enrichment (Bhola et al., 2016). In
addition, Diluvio et al. (2018) demonstrated that GSI treatment
sensitised EGFR tyrosine kinase inhibitor (TKI) resistant TNBC
cells to gefitinib.

Notch signalling is also implicated in breast cancer cell
resistance to radiotherapy. Radiation induces BCSCs and Notch
activity in vivo (Lagadec et al., 2013; Kim et al., 2016), which
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FIGURE 6 | Elimination of breast cancer stem cells is key to achieving complete tumour regression. Conventional therapies destroy the bulk tumour cells, causing
tumour regression, however resistant BCSCs survive and re-populate the tumour. Elimination of the BCSCs (even without immediate destruction of the bulk tumour
cells) could induce complete tumour regression, as the tumour cells die off and are not replaced.

confers radioresistance in TNBC (Lee et al., 2019). GSI treatment
prevents radiation-induced BCSC enrichment (Lagadec et al.,
2013). Mechanistically, Notch has been found to mediate triple
negative/basal-like breast cancer radioresistance through BCSC
enrichment downstream of tribbles homolog 3 (TRIB3), and in
parallel with STAT1 (Boelens et al., 2014; Lee et al., 2019). It also
mediates radiation-induced EMT as part of an IL-6/JAK/STAT3
signalling axis (Kim et al., 2016).

There is significant evidence to suggest that Notch signalling
plays a role in ER+ breast cancer endocrine therapy resistance
(Acar et al., 2016). Notch signalling is upregulated in endocrine
therapy resistant ER+ breast cancer cell lines (Magnani et al.,
2013). In particular, Notch4 activity has been found to be
increased in resistant ER+ cell lines and tamoxifen and
fulvestrant-treated PDX models. Activation of JAG1/Notch4
signalling was sufficient to induce endocrine therapy resistance
in MCF-7 cells, and tamoxifen resistance could be predicted for
in ER+ breast cancer patients using a Notch4/HES/Hey gene
signature. This Notch4-induced resistance was accompanied by
an enrichment for BCSCs. GSI treatment inhibited endocrine
therapy-induced BCSC activity and re-implantation tumour
formation in breast cancer PDX models and cell lines (Simões
et al., 2015). Furthermore, evidence suggests that Notch signalling
functions in a paracrine signalling mechanism between bulk ER+

tumour cells and ER- BCSCs (Harrison et al., 2013).
Finally, Notch signalling has been connected to trastuzumab

and lapatinib resistance in HER2+ breast cancer. Notch
signalling is upregulated following trastuzumab or lapatinib
treatment and HER2 positive cells have lower Notch
transcriptional activity than HER2 negative cells (Osipo
et al., 2008b; Abravanel et al., 2015). This is controlled by several
mechanisms, including through HES1 and NRARP, but also
through protein kinase C (PKC) α, which acts downstream of

HER2 to restrict the availability of JAG1 for receptor binding
(Abravanel et al., 2015). Interestingly, PKCα/Notch4 crosstalk
has also been identified in endocrine therapy resistant ER+

breast cancers (Yun et al., 2013). Regardless, trastuzumab
inhibits HER2, so trastuzumab treatment releases the block on
Notch activation, enabling the cells to survive. Importantly,
combining trastuzumab with a GSI potentiates the HER2-
targeting treatment, and restores sensitivity to resistant cells
(Osipo et al., 2008b; Pandya et al., 2016). Trastuzumab/GSI
combination treatment also prevented breast tumour recurrence
post-treatment insensitive orthotopic breast tumour xenografts
(Pandya et al., 2011).

BREAST CANCER STEM CELLS

Notch-conferred therapy resistance is often accompanied by
enrichment for breast cancer stem cells (BCSCs). BCSCs are
defined as a subpopulation of cancer cells within the breast
tumour, capable of both self-renewal and differentiation. They
are purportedly responsible for tumour initiation, intratumoral
heterogeneity and disease recurrence, and are more resistant to
therapy than the rest of the tumour cell population. This puts
them in particular focus for the development of novel breast
cancer therapies, as ablation of BCSCs would result in tumour
regression and eliminate risk of recurrence (Figure 6).

Notch signalling is implicated in BCSC self-renewal. Notch1
expression is positively correlated with ALDH positivity in breast
tumour samples, and downregulation of Notch signalling in
ALDH+ cells inhibits growth and induces apoptosis (Suman
et al., 2013; Zhong et al., 2016). Breast cancer cells with high
Notch activity are also more stem cell-enriched, and activation
of Notch with DSL peptide increases mammosphere self-renewal
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in patient-derived samples (Dontu et al., 2004; D’Angelo et al.,
2015; Mamaeva et al., 2016).

In line with its connection to endocrine therapy resistance,
Notch4 appears to be the most important of the Notch receptors
in breast cancer stem cells (Harrison et al., 2010). Notch4
expression is detected in secondary mammospheres, the basal
layer in mammary gland tissue samples and is restricted to the
terminal end bud (TEB) regions of mammary ducts (Dontu et al.,
2004; Harrison et al., 2010). Notch4 blocking antibody treatment
reduces primary mammosphere forming efficiency (MFE) and
abolishes secondary mammosphere formation (Dontu et al.,
2004; Farnie et al., 2007). Notch3 is also involved, with
inhibition or ablation of Notch3 sufficient to reduce breast
cancer cell mammosphere formation and self-renewal, and BCSC
marker expression (Sansone et al., 2007a,b). Mechanistically,
Notch signalling may enhance the expansion of BCSCs and/or
progenitors through downstream cyclin D1 activity (Ling et al.,
2010; Ling and Jolicoeur, 2013). Numerous factors have been
identified upstream of Notch-induced BCSC activity including
JNK, Ras, Pin1, HIF, cyclooxygenase 2 (COX2), syndecan-1
and BMP-4 (Mittal et al., 2014; Rustighi et al., 2014; Ibrahim
et al., 2017; Xie et al., 2017; Yan et al., 2018; Choi et al.,
2019). Notch/ZEB1 signalling has recently been implicated
in the critical interaction between BCSCs and the tumour
microenvironment. JAG1 expressed on endothelial cells in the
tumour microenvironment activates Notch1 in adjacent BCSCs,
resulting in ZEB1 induction and increased stemness. A positive
feedback loop is formed as ZEB1 upregulates endothelial JAG1
via VEGFA (Jiang et al., 2020).

Evidence collected in these studies suggest that targeting
Notch signalling as a part of breast cancer therapy may
enable us to home in on BCSCs within the tumour cell
population. In an exciting study,Mamaeva et al. (2016) developed
mesoporous silica nanoparticles (MSNs, functionalised with
glucose moieties) designed to specifically target breast cancer
cells and BCSCs with γ-secretase inhibitors. They found that
these DAPT loaded MSNs reduced the BCSC pool both in vitro
and in vivo (Mamaeva et al., 2016). A note of caution however,
lies in the heterogeneity of BCSCs and the implication on
treatment efficacy. For example, one study identified two
tumour initiating cell subsets within the BCSC population and
demonstrated active Notch1 signalling in the more proliferative,
invasive and metastatic subpopulation (CD44+/CD24low) but
not the other (CD44+/CD24−). Concordantly, GSI treatment
reduced mammosphere formation and tumour growth from
CD44+/CD24low cells but not CD44+/CD24− cells (Azzam et al.,
2013). These data warn that BCSC heterogeneity may limit the
efficacy of GSI’s in breast cancer therapy. Despite this concern,
studies have shown that Notch inhibitors can still successfully
reduce the overall CD44high/CD24low/− subpopulation, and that
this has phenotypic effect in mammosphere and re-implantation
assays, particularly in combination with other agents (Qiu et al.,
2013; Mittal et al., 2014; D’Angelo et al., 2015). Importantly,
GSI treatment and Notch antibody blockade have been used
to inhibit breast cancer cell secondary re-implantation tumour
development, alone or in combination with docetaxel (Qiu et al.,
2013; D’Angelo et al., 2015).

CROSSTALK WITH ER AND HER2
SIGNALLING

A significant factor when considering the therapeutic value of
targeting Notch signalling in the different subtypes of breast
cancer, is the pathway’s crosstalk with ER and HER2 signalling.
There is a clear correlation between aberrant Notch signalling and
the triple negative phenotype, andmultiple studies have identified
roles for Notch signalling in TNBC that are not recapitulated
in ER+ or HER2+ breast cancer (Lee et al., 2008a; Yamaguchi
et al., 2008; Giuli et al., 2019). Notch/ER/HER2 crosstalk is
also key in Notch-mediated resistance to endocrine and HER2-
targeting therapy.

The Miele group have shown that Notch transcriptional
activity is highest in ER- breast cancer cells, where inhibition of
Notch signalling is effective in inducing cancer cell death in vitro.
In contrast, in ER+ breast cancer cells, oestrogen inhibits Notch
activity. This means that Notch activity is induced by endocrine
therapy in the ER+ subtype, contributing to therapy resistance.
Combining tamoxifen with a GSI resulted in significantly
enhanced ER+ xenograft tumour regression compared to
monotherapy, suggesting that combining Notch inhibitors with
endocrine therapy may be a promising therapeutic strategy
for ER+ breast cancer (Rizzo et al., 2008). Supporting this,
mutation of ER in breast cancer stem cells induces Notch4 activity
(Gelsomino et al., 2018). Similarly, HER2 suppresses Notch
signalling in HER2+ breast cancer cells (Osipo et al., 2008b; Ju
et al., 2013). HER2 regulates the activity of γ-secretase via ERK,
and the nuclear translocation of NICD via Akt, in independent
mechanisms (Ju et al., 2013).

Collectively, these studies suggest that in the absence of the
growth-promoting pathways induced by ER and HER2, whether
it be in the context of TNBC or cancers treated with anti-
ER or HER2 therapies, Notch acts as a compensatory growth-
promoting stimulus, enabling the cells to survive in the absence
of these pathways (Figure 7).

Conversely, several studies contradict these findings and
provide evidence that ER signalling promotes Notch signalling
(Calaf and Roy, 2008; Kumar et al., 2019). Imperfect oestrogen
response elements (EREs) have been detected in the Notch1
and JAG1 promoters, which translated to oestrogen-induced
expression and increased signalling activity (Soares et al., 2004).
Moreover, adding further complexity and implying the presence
of regulatory feedback loops, Notch signalling can transactivate
lower levels of the ER signalling pathway in the absence of
oestrogen (Hao et al., 2010). RBPJκ binding sites have also
been identified in the ERα promoter, suggesting that Notch can
upregulate ERα expression (Dou et al., 2017). Likewise, Notch1
induces HER2 transcription in a RBPJκ-dependent mechanism
(Chen et al., 1997).

TARGETING NOTCH IN BREAST
CANCER THERAPY

Due to its multiple roles in breast tumorigenesis and
therapy resistance, the Notch signalling pathway is an
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FIGURE 7 | Notch inhibition may be a viable strategy for targeting therapy resistant breast cancer cells. ER and HER2 signalling inhibits Notch in ER+ and HER2+
breast cancer cells respectively. Endocrine or trastuzumab treatment inhibit these pathways, releasing the blockade on Notch signalling. Pro-survival Notch activity
enables the cells to survive the targeted treatments. Notch inhibitors could be used in combination to sensitise these resistant cells to the targeted treatment. Triple
negative breast cancer cells lack the ER and HER2 receptors, meaning that they are unaffected by endocrine therapy or trastuzumab, but are sensitive to Notch
inhibitors.

attractive therapeutic target. Many studies have shown that
pharmacological Notch inhibition is effective both in vitro and
in in vivo mouse models at inhibiting tumour growth, inducing
tumour regression, preventing metastasis, targeting BCSCs and
sensitising breast cancer cells to conventional therapies.

Many strategies for targeting the Notch signalling pathway
have been developed and examples of currently available
inhibitors are summarised in Figure 8. However, there are
several issues that must be considered before these inhibitors are
used clinically, beyond the obvious need to select patients with
Notch-responsive tumours. These issues may explain why many
clinical trials involving the use of Notch inhibitors have been
put on hold or terminated due to toxicity or failure to reach
trial endpoints, despite showing promise in pre-clinical studies
(Table 1; Mollen et al., 2018).

Firstly, Notch signalling is a ubiquitous and essential
developmental signalling pathway. It functions in normal
tissue homeostasis throughout the body, meaning that systemic
inhibition could have potentially harmful effects in healthy
organs and mammary gland tissue. For example, long term
γ-secretase inhibition has been shown to cause significant
histopathologic changes in the gastrointestinal (GI) tract,
including intestinal goblet cell metaplasia, apoptosis of small
intestinal crypt epithelial cells, villous stunting, epithelial

vacuolation and accumulation of intraluminal mucous (Milano
et al., 2004). Another study found that long term anti-DLL4
antibody treatment in mice and rats caused highly significant
histopathological defects in multiple organs including the liver
and thymus. Most detrimentally, was the formation of ulcerating
subcutaneous tumours with features of vascular neoplasms. Rarer
necrotic lesions were also identified in the heart and lungs
(Yan et al., 2010).

Secondly, targetable proteins within the Notch pathway
are shared with other pathways important in normal cellular
function. For instance, γ-secretase cleaves many other substrates
including low density lipoprotein (LDL) receptor-related protein,
E-cadherin, ErbB-4 and amyloid-β protein precursor (AβPP)
(Haapasalo and Kovacs, 2011).

Thirdly, particularly in the case of cancer therapy, Notch
functions as a tumour suppressor in certain contexts. This means
that patients treated with systemic pan Notch inhibitors may be
in danger of secondary tumour development, an unacceptable
risk. Studies have found evidence for tumour suppressive Notch
in a number of tissues, but this is most well characterised in the
skin (Nicolas et al., 2003). Loss of function Notch1 mutations
have been identified in squamous cell carcinoma, where they
occur early on in tumorigenesis (Agrawal et al., 2011; Wang
et al., 2011; South et al., 2014). The clinical significance of this
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FIGURE 8 | Summary of targetable points of the Notch pathway. The Notch signalling pathway can be inhibited at almost all stages, and a number of strategies are
being developed to target these steps for therapeutic purposes (Andersson and Lendahl, 2014). γ-secretase inhibitors (GSIs) are the most well-established Notch
inhibitors. Most competitively inhibit presenilin in the γ-secretase complex, and are hence pan Notch inhibitors that prevent all signalling events downstream of the
Notch receptor regardless of receptor isoform or activating ligand (Krishna et al., 2019). The γ-secretase complex can also be targeted with monoclonal antibodies
raised against presenilin or nicastrin (Hayashi et al., 2012; Takagi-Niidome et al., 2013; Zhang et al., 2014). Other pan Notch inhibitors include those that target the
NICD/RBPJκ/MAML transcriptional activator complex. SAHM1 is a synthetic hydrocarbon-stapled α-helical peptide designed to mimic a portion of the N terminus of
MAML. It competitively binds NICD/RBPJκ, preventing MAML binding (Moellering et al., 2009). Ligand-receptor binding is a popular target for current Notch inhibitor
development. This can be achieved through receptor decoys, monoclonal antibodies, bispecific antibodies and antibody-drug conjugates (Noguera-Troise et al.,
2006; Li L. et al., 2008; Hoey et al., 2009; Wu et al., 2010; Sharma et al., 2012; Li D. et al., 2014; Kangsamaksin et al., 2015; ClinicalTrials.gov., 2016, 2019a;
Hidalgo et al., 2016; Lee et al., 2016; Cubillo Gracian et al., 2017; Hu et al., 2017; Lamy et al., 2017; Zheng et al., 2017; Hughes et al., 2018; Giuli et al., 2019;
Jimeno et al., 2019; Smith et al., 2019; Rosen et al., 2020). Various natural compounds (and their derivatives) have been found to inhibit Notch signalling (Kawahara
et al., 2009; Kallifatidis et al., 2011; Li Y. et al., 2012b; Pan et al., 2012; Xia et al., 2012; Nwaeburu et al., 2016; Sha et al., 2016; Mori et al., 2017; Castro et al.,
2019; Li et al., 2020). These hold potential to be adapted and appropriated into cancer therapy.
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TABLE 1 | Notch inhibitor clinical trials featuring breast cancer patients.

Notch

inhibitor

Status Dose Mono/combination

therapy

Breast cancer

(sub)type

Phase Number of

participants

Results Identifier/

references

MK-0752 (GSI) Completed Various Monotherapy Advanced breast
cancer

I 103 Weekly dosing well
tolerated (schedule
dependent toxicity),
significant inhibition of
Notch signalling

NCT00106145
(Krop et al.,
2012)

Completed Escalating doses, daily on
days 1–3

Combination with docetaxel
(chemotherapeutic) and
pegfilgrastim (GCSF analog)

Advanced/metastatic
breast cancer

I/II 30 Manageable toxicity,
preliminary evidence of
efficacy

NCT00645333
(Schott et al.,
2013)

Completed 350 mg daily, 3 days on
4 days off, etc. for
10 days total

Combination with
tamoxifen (selective
oestrogen receptor
modulator) or letrozole
(aromatase inhibitor)

Early stage breast
cancer (pre-surgery)

IIII 22 75% of participants
experienced
non-serious adverse
events

NCT00756717

PF-03084014
(GSI)

Terminated (change in
drug development
strategy)

80–150 mg twice daily Combination with docetaxel Advanced/metastatic
breast cancer

I 30 N/A NCT01876251

Terminated (change in
drug development
strategy)

150 mg twice daily Monotherapy Advanced TNBC II 19 N/A NCT02299635

Withdrawn (drug
discontinued)

150 mg daily on days 1
and 9 or twice daily on
days 2–8

Monotherapy Non-metastatic
TNBC with
chemoresistant
residual disease

II 0 N/A NCT02338531

AL101 [formerly
BMS-906024
(GSI)]

Completed Various Monotherapy Refractory/relapsed
breast cancer

I 94 Generally well
tolerated, sustained
Notch inhibition,
demonstrated clinical
activity

NCT01292655
(El-Khoueiry
et al., 2018)

Completed 4 or 6 mg weekly every
3 weeks

Combination with
chemotherapy regimes
involving paclitaxel,
5-fluorouracil, carboplatin,
leucovorin and irinotecan

Advanced/metastatic
(breast cancer
preferred)

I 141 Unavailable NCT01653470

Recruiting 6 mg weekly Monotherapy Notch-activated
recurrent/metastatic
TNBC

II 67 N/A NCT04461600
(Traina et al.,
2021)

LY3039478
(GSI)

Completed Up to maximum tolerated
dose, various schedules

Combination with taladegib
(Hedgehog inhibitor) or
abemaciclib (CDK inhibitor)

Advanced/metastatic
breast cancer

I 94 Poorly tolerated,
disappointing clinical
activity

NCT02784795
(Azaro et al.,
2021b)

Completed Various (escalating) Monotherapy or in
combination with
prednisone (corticosteroid)

Advanced/metastatic
breast cancer

I 237 Well tolerated at doses
where Notch inhibition
was detected, clinical
activity observed

NCT01695005
(Massard et al.,
2018; Azaro
et al., 2021a)

RO4929097
(GSI)

Terminated Escalating dose on day 1
or days −2, −1, and 1 of
course 1 and days 1–3
and 8–10 of course 2 and
all subsequent courses

Combination with
vismodegib (Hedgehog
inhibitor)

Metastatic breast
cancer

I 13 N/A NCT01071564

(Continued)
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TABLE 1 | Continued

Notch

inhibitor

Status Dose Mono/combination

therapy

Breast cancer

(sub)type

Phase Number of

participants

Results Identifier/

references

Terminated Daily on days 1–3, 8–10,
and 15–17, every 21 days
for 6 courses

Combination with
neo-adjuvant paclitaxel and
carboplatin
(chemotherapeutics)

Stage II/III TNBC I 14 N/A NCT01238133

Terminated (slow accrual,
drug discontinued)

Up to maximum tolerated
dose

Combination with
whole-brain radiotherapy or
stereostatic radiosurgery

ER- breast cancer
metastasised to the brain

I 5 N/A NCT01861054

Terminated Daily on days 1–3, 8–10,
and 15–18, every 21 days
for 6 courses

Combination with letrozole Post-menopausal, stage
II/III breast cancer

I 28 N/A NCT01208441

Completed Daily on days 1–3, 8–10,
and 15–17, course repeats
every 21 days

Combination with
capecitabine
(chemotherapy)

Refractory breast cancer I 30 Unavailable NCT01158274

Terminated (drug
development discontinued)

Daily on days 1–3, 8–10,
and 15–17, course repeats
every 21 days

Combination with
exemestane (aromatase
inhibitor)

Advanced/metastatic
breast cancer

I 15 N/A NCT01149356

Completed Daily on days 1–3, 8–10,
and 15–17 (days 1–3,
8–10, 15–17 22–24,
29–31, and 36–38 of
course 1 only), course
repeats every 21 days

Combination with cediranib
maleate (VEGF inhibitor)

Advanced breast cancer I 20 Unavailable NCT01131234

Terminated (slow accrual,
drug discontinued)

Up to maximum tolerated
dose

Combination with
whole-brain radiation
therapy or stereotactic
radiosurgery

Breast cancer
metastasised to the brain

I 5 N/A NCT01217411

Terminated (low enrolment) Once daily days 1–3, 8–10
and 15–17, every 21 days

Monotherapy Advanced/metastatic/
recurrent TNBC

II 6 N/A NCT01151449

CB-103
(transcriptional
activator
complex
inhibitor)

Recruiting Daily Combination with
non-steroidal aromatase
inhibitor [(NSAI) anastrozole
or letrozole]

Advanced ER+/HER2-
breast cancer with prior
NSAI benefit

II 80 N/A NCT04714619

Recruiting 15 mg daily Monotherapy Advanced/metastatic
breast cancer

I/II 165 N/A NCT03422679

OMP-52M51
(anti-Notch1
monoclonal
antibody)

Completed Up to maximum tolerated
dose

Monotherapy Refractory breast cancer
with evidence of Notch1
activation

I 48 Well tolerated NCT01778439
(Ferrarotto
et al., 2018)

OMP-59R5
(anti-Notch2/3
cross-reactive
antibody)

Completed Up to maximum tolerated
dose (<2.5 mg weekly and
7.5 mg/kg every other and
every third week)

Monotherapy Metastatic breast cancer I 42 Generally well
tolerated up to the
maximum tolerated
dose, demonstrable
Notch inhibition

NCT01277146
(Smith et al.,
2019)

PF-06650808
(anti-Notch3
monoclonal
antibody)

Terminated (change in
sponsor prioritisation)

0.2 mg/kg to maximum
tolerated dose

Monotherapy Advanced breast cancer I 40 Manageable safety
profile, preliminary
signs of anti-tumour
activity

NCT02129205
(Rosen et al.,
2020)

Information obtained from ClinicalTrials.gov, reference provided where publication available.
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was demonstrated in a phase III trial of the GSI semagacestat
for Alzheimer’s disease. In addition to failing to slow disease
progression, semagacestat increased the risk of skin cancer in the
treated patient cohort (Extance, 2010). It may also be the case that
Notch has contrasting roles within the same tissue, dependent
on factors such as receptor isoform, the strength of activation
signal and the presence or absence of regulators (Nowell and
Radtke, 2017). Within breast cancer, the role of Notch2 has been
controversial, with some studies finding that it has a tumour
suppressive role, in direct contrast to the Notch1 and 4 isoforms
(Parr et al., 2004; O’Neill et al., 2007). Similarly, Notch3 has been
found to inhibit breast cancer cell EMT (Zhang X. et al., 2016; Lin
et al., 2018; Wen et al., 2018).

There are a number of strategies that have been suggested
for overcoming the gastrointestinal side effects associated with
pan Notch inhibition. These include minimal dosing and
intermittent administration to reduce the length of continuous
treatment periods, which has shown some success (Krop
et al., 2012). Z-Leu-Leu-Nle-CHO can be used at lower
doses than conventional GSIs, as it is also anti-tumorigenic
through negative regulation of the proteasome (Han et al.,
2009). Moreover, nanoparticles could be utilised to specifically
direct GSIs to the tumour, avoiding damage to healthy tissue
(Mamaeva et al., 2016).

GSIs could be combined with conventional chemotherapy and
targeted treatments. This has the dual benefit of minimising of
the dose of each individual drug required (reducing toxicity),
and enhancing overall treatment efficacy. Notch inhibition alone
is unlikely to be sufficient to induce tumour regression, but
shows promise in combination therapy (Meurette et al., 2009;
Brennan and Clarke, 2013; Proia et al., 2015). In clinical trials,
GSIs have been combined with conventional chemotherapeutics
and endocrine therapy, as well as radiotherapy to help improve
radiosensitivity and reach metastatic cells in hard to access areas
(Table 1; Albain et al., 2010; ClinicalTrials.gov., 2016, 2019a,b;
Lamy et al., 2017).

An alternative strategy to minimise the risk of side effects
is to target specific Notch receptors or ligands. Monoclonal
antibodies have been developed that bind to specific Notch
receptor/ligand isoforms to inhibit receptor-ligand interaction,
prevent processing by ADAM proteases, or induce inactivation
via a conformational change of the receptor structure (Giuli et al.,
2019; see Figure 8 for examples). These have shown promising
results in pre-clinical studies, but have suffered end point failure
in clinical trials (Noguera-Troise et al., 2006; Li L. et al., 2008;
Hoey et al., 2009; Wu et al., 2010; Sharma et al., 2012; Li D.
et al., 2014; ClinicalTrials.gov., 2016, 2019a; Hidalgo et al., 2016;
Cubillo Gracian et al., 2017; Lamy et al., 2017; Zheng et al.,
2017; Hughes et al., 2018; Giuli et al., 2019; Smith et al., 2019).
Bispecific antibodies and antibody-drug conjugates may be able
to improve on the limited success of monoclonal antibodies.
Bispecific antibodies can be used to target other oncogenic
signalling pathways simultaneously, which has been proven to
be more efficacious than administering two separate monoclonal
antibodies (Lee et al., 2016; Hu et al., 2017; Jimeno et al.,
2019). Antibody-drug conjugates are designed to target cancer
cells with potent cytotoxic drugs while minimising damage to

surrounding healthy cells and tissues, reducing side effect risk
and severity. For example, PF-06650808 is a novel anti-Notch3-
auristatin conjugate that has demonstrated manageable toxicity
and signs of anti-tumour activity in breast cancer patients. The
anti-Notch3 component binds the agent to Notch3-expressing
tumour cells, where it is internalised and trafficked to vesicles
containing proteolytic enzymes. These enzymes cleave the linker
connecting the two components, releasing the auristatin-based
payload into the cytoplasm where it induces cell cycle arrest and
apoptosis (Rosen et al., 2020).

Recent research has begun investigating whether Notch
signalling could be harnessed in immunotherapy-based cancer
treatment. Notch is important in lineage determination in the
haematopoietic system where it helps to direct the differentiation
of CD4+ T helper cells into TH1 and TH2 subsets. The TH1
response is generally considered to be anti-tumorigenic, meaning
that if Notch could be very specifically and carefully activated to
induce the TH1 response, then immune cell anti-cancer activity
could be increased (Nowell and Radtke, 2017). For instance,
Kondo et al. (2017) generated induced stem cell memory T
(iTSCM) cells with potent anti-tumour activity from activated
CD4+ and CD8+ T cells by co-culture with stromal cells
expressing DLL1. In these circumstances, systemically inhibiting
Notch signalling would be a hindrance rather than a help.

DISCUSSION

Over the last 20 years, it has become abundantly clear that Notch
signalling plays an important role in both the development of the
mammary gland and the aetiology of breast cancer. Within the
normal mammary gland, Notch signalling is important in driving
multipotent foetal MaSCs into the unipotent luminal progenitor
cell fate and in maintaining the progenitor fate through puberty
and adult life. In breast cancer, elevatedNotch signalling is seen in
all cancers but it is particularly associated with TNBC and cancers
that show therapy resistance where elevated Notch signalling is
associated with poor prognosis.

Given the role Notch signalling plays in lineage commitment
within the normal mammary gland as well as in the self-renewal
of breast cancer stem cells, it is worth speculating that the
majority of breast cancers arise from the unipotent luminal
progenitor cells. This is in keeping with several studies looking
at the cell-of-origin of breast cancers. Firstly, Molyneux et al.
(2010) and Melchor et al. (2014) elegantly demonstrated that
the loss of BRCA1 within luminal progenitors in mice leads
to the development of basal-like tumours and subsequently,
depending on the initiating genetic insult, that luminal-like,
basal-like and normal-like tumours can all arise from luminal
progenitors. Secondly, the cell-of-origin for the luminal-like
tumours that arise in MMTV-PyMT and MMTV-Neu mice and
the basal-like tumours that arise in Etv6-NTRK3 mice were
all found to be luminal progenitor cells (Tao et al., 2015).
Lastly, transforming luminal cells isolated from normal human
tissue by virally introducing a variety of oncogenes leads to the
formation of both ER+ve and ER-ve breast cancers when the cells
are transplanted into immunocompromised humanised mice

Frontiers in Cell and Developmental Biology | www.frontiersin.org 16 July 2021 | Volume 9 | Article 692173

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Edwards and Brennan Notch in Breast Development and Cancer

(Proia et al., 2011; Keller et al., 2012). Given these observations,
it would be interesting to know whether specifically activating
Notch signalling within different cells of the luminal lineage
is enough to convert the cells into a progenitor-like fate and
initiate tumorigenesis.

It is also interesting to note that mature luminal cells
and luminal progenitor cells are arranged in mosaic patterns
within the mature mammary ductal epithelium similar to
those generated by mathematical modelling of Notch signalling
(Hadjivasiliou et al., 2016; Bocci et al., 2020; Dawson and
Visvader, 2021). These patterns are particularly associated
with lateral induction by Notch/JAG signalling which fits well
with known expression of JAG1 in the mammary ductal
epithelium (Raafat et al., 2011; Xu et al., 2012; Bocci et al.,
2020). The role of Notch/JAG signalling within the pattern
of mature luminal cells and luminal progenitor cells could
be addressed by disrupting signalling specifically within the
mature mammary gland.

The involvement of Notch signalling in resistance to all
types of breast cancer treatment, including chemotherapy,
radiotherapy, endocrine and HER2-targeting therapies, means
that Notch inhibition could be valuable in a broad range
of patient groups. However, to date it has proven difficult
to target Notch signalling in patients. Pan Notch inhibitors
have led to unacceptable side effects, whilst we have most
likely failed to stratify patients appropriately for homologue-
specific Notch inhibitors to be successful. However stratification
to signalling through individual Notch proteins may make
identifying appropriate patients for therapy too complex. An
alternative approach could be to target one of the signalling

events downstream of all Notch homologues. Notch activates
numerous pro-tumorigenic signalling pathways, some of which
have pre-existing inhibitors prime for re-appropriation into
breast cancer therapy. Ideally, a pathway would be targeted that
has roles in multiple hallmarks of breast cancer, but in particular
apoptosis given the role Notch signalling has in cell survival and
the enrichment of BCSCs observed following therapy.
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