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Key Points: 
 

• The highly conserved Notch cell-cell signalling pathway operates in many 

different contexts where the consequences can differ widely, despite the fact 
that the core pathway is very simple. 

 

• Many different types of regulation contribute to the differing outcomes, ranging 
from tissue level co-ordination to nuclear governance. 

 

• The pattern of expression of the ligands, receptors and critical modifying 

enzymes is one level of regulation that is common to many signalling pathways. 
However, the one-to-one interaction between ligand and receptor places extra 

emphasis on this, especially as they can cis-inhibit one another when present in 

the same cells. 
 

• ‘Topological’ tissue organization and the extent of cell-cell contacts is likely to 

be of unusual significance in influencing the levels of Notch activation, because 

the ligands are trans-membrane proteins. 
 

• Nuclear context, in the form of cell-type specific transcription factors and 

chromatin organization is a primary level of control in generating qualitatively 
different outcomes from Notch activation. In addition, the wiring of the 

regulatory network within the signal receiving cells contributes to the diversity of 

responses and to the nature of its cross-talk with other signalling pathways. 
 

• Together the mechanisms make the Notch pathway versatile and able to 

undertake many different roles. But they are also susceptible to perturbations, 

and may be a contributory factor in Notch-related diseases. 
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Abstract 

Since it became evident that the highly conserved Notch signalling pathway functions 
in many different developmental and homeostatic processes, questions have arisen 

about how this pathway can achieve such diverse outcomes.  With a direct route 

from the membrane to the nucleus, the Notch pathway has fewer opportunities for 

regulation than many other signalling pathways, yet it generates exquisitely patterned 
structures.  More confusingly, its activity promotes growth in some circumstances but 

cell death in others.  This review will consider the regulatory mechanisms that shape 

the activity of the Notch pathway and its outcome, enabling it to generate biological 
consequences that are appropriate for each context.  

 

Introduction: 
Despite the fact that the core Notch pathway operates in vastly different 

developmental and disease contexts, from stem cell regulation and heart 

morphogenesis to cancers and cardiomyopathies, it is relatively simple in its 

operation. Ligand-mediated activation induces a series of proteolytic cleavages in 
members of the Notch family of receptors, which release the Notch intracellular 

domain, NICD;. (Figure 1a and Box 1). Once released, the NICD enters the nucleus 

and, together with the DNA-binding protein CSL (CBF1/Suppressor of Hairless/Lag-
1) and the co-activator Mastermind (Mam), stimulates transcription of target genes 

(Figure 1a) 1-4. Thus, no amplification of the signal can occur, unlike in many other 

pathways, and no intermediates are present between the membrane and the nucleus 
—NICD takes responsibility for implementing pathway activation. 

 

Given this relative simplicity — receptor–ligand interactions release the bioactive 

NICD — how can the canonical Notch pathway coordinate so many diverse 
biological outcomes? One Notch receptor and two ligands — Delta and Serrate (Ser) 

— exist in Drosophila melanogaster while vertebrates have four Notch paralogues 

(Notch1–4) and a similar diversification of ligands (referred to as Delta-like ligands 
(DLLs) and Jagged in mammals). This repertoire clearly cannot account for the 

diversity of Notch pathway signalling outcomes, indicating that other mechanisms of 

regulation exist. In this Review, we will illustrate features that enable the Notch 

pathway to function differently according to its setting and that help to explain the 
myriad of roles that the pathway has in development and disease. It is only possible 

to draw on a small subset of examples owing to space limitations, but these 

examples highlight fundamental principles that should be widely applicable across 
the different contexts where the Notch pathway operates.  

 

Ligand-receptor landscapes [L1 Heading] 
Early models suggested that Notch-mediated developmental patterning occurred 

when stochastic differences in ligand–receptor interactions directed signalling within 

fields of cells with near uniform levels of ligand expression.  It now seems that this 

scenario is the exception rather than the rule: the expression profiles of ligands, 
receptors and several modifying enzymes have important roles in defining the 

outcome. Furthermore, other signalling pathways can regulate these expression 

patterns to augment, inhibit or modulate Notch pathway activity, providing an 
important mechanism of crosstalk.  

 

Expression of canonical ligands and receptors [L2 heading] 
The classic paradigm of lateral inhibition, which is a common phenomenon during 

precursor patterning, assumed that the driving force for signalling arose through 

stochastic differences in ligand levels. The initial bias would be reinforced by a 

negative-feedback loop so that ligand expression became repressed in signal-
receiving cells, generating a spaced distribution of signalling cells and receiving cells 

that explained the distribution of precursors 5. It now seems that signalling rarely 
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relies on uniform ligands; rather, their spatial and temporal regulation directs Notch 

signalling profiles in many contexts and is an important mode for regulation by other 
signalling pathways. Although much regulation of ligand expression occurs at the 

transcriptional level, micro-RNAs (miRs) also contribute. For example, miR8/miR200 

targets the 3’UTRs of Ser and Jagged1 (Jag1) to fine-tune the levels of protein 

produced in D. melanogaster and in human tissues, respectively 6, 7.   
 

One example of how ligand expression dictates the spatial pattern of signalling 

occurs during the formation of the growth organizer in D. melanogaster wing imaginal 
discs.  Here, Ser is produced exclusively in the dorsal territory owing to its regulation 

by the spatially restricted Apterous transcription factor 8, 9, and specifically generates 

a stripe of Notch activity in adjacent ventral cells to create a boundary that organizes 
growth of the tissue 8.  Dynamic changes in expression of both ligand and receptor 

also help to drive oscillations in Notch signaling 10 such as occur during 

somitogenesis in the presomitic mesoderm. Here, Notch1 expression is dependent 

on its’ pathway activity which might help to reinforce signalling, whereas ligand 
expression is Wnt regulated, thus ensuring that the pattern of Notch activity is 

instructed by another main component involved in the somite clock11, 12. 

 
In addition, interplay between different ligands is frequently required to set the correct 

balance of precursor cells in a number of situations. For example, in the ear, a broad 

‘inductive’ signal by Ser/ Jag1 confers the neurogenic potential of the placode 13 14 
before subsequent dispersed expression of DLLs in emerging precursors inhibits the 

surrounding cells to ensure a single precursor is generated at each position 15-18.  

Likewise, to establish the branching pattern of blood vessels the production of DLL4 

in tip cells prevents neighbouring cells from adopting the same fate 19, 20, whereas 
Jag1 acts as a potent proangiogenic regulator that antagonizes DLL4–Notch 

signalling to favour new sprouting.   

 
Although the fundamental consequences of ligand binding are the same -- cleavage 

of Notch receptors to produce NICD -- they nevertheless often elicit different 

outcomes 21. One possibility is that different ligands bring about different strengths 

(or durations) of intracellular signal. For example, Jag1 and DLL1 have lower 
measured affinities for Notch1 than does DLL4, possibly owing to differences in the 

orientation of the amino -terminal and Delta/Serrate/Lag-2 (DSL) domains involved in 

the binding interface 22.  Indeed, in the haemangiogenic endothelium, specification of 
haematopoietic stem cells involves a low-strength Jag1-dependent signal whereas 

specification of endothelial arterial cells requires a high-strength Dll4 signal 23. 

Strikingly, cells that received the low-strength Jag1-induced Notch activity appeared 
unresponsive to a high-strength DLL4 signal.  Although it is unclear how this lack of 

response arises, if the expression of Jag1 precedes that of DLL4, it could switch on 

an inhibitory programme or cause cell re-arrangements to disrupt contacts with 

DLL4. Similarly, in the inner ear Jag1 might elicit a lower level of Notch1 activation 
than DLL1 does, as Jag1 can induce the expression of Hey1, which requires a low 

threshold, but not Hes5, which requires a higher level of signalling 24.   

 

In animals with multiple Notch paralogues, the deployment of different receptors will 
also influence signalling outcomes. In humans, mutations in different paralogues 

have different disease consequences (for example, only defects in Notch3 cause 

CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy), emphasizing different receptor roles 21, 25, 26.  Although these 
differences might be partly explained by variations in their expression patterns, 

examples exist where individual paralogues — for example, Notch1 and Notch2 — 

make different contributions even when expressed in identical patterns.  Indeed, 
Notch1 and Notch2 were found to have opposite effects on the growth of one specific 
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tumor cell-type27. However, when the intracellular domains of Notch1 and Notch2 

were swapped within each normal gene context their intrinsic activities were similar 
28, 29 but, in some contexts, the amount or stability of the NICD moieties differed 29.  

This may reflect differences in their potential for post-translational modifications.  

These observations emphasize the possibility that, ultimately, the amount or duration 

of the NICD ‘signal’ produced will depend on the specific ligand–receptor pairs that 
are engaged, as well as the availability of the metalloproteases essential for the 

activating cleavages.  Whether such NICD differences would result in quantitative or 

in qualitative differences in the downstream signalling output is an important question 

that remains to be resolved. 
 

Contributions from cis inhibition [L2 heading] 

Notch signalling is also highly sensitive to the relative levels of ligands and receptors 

owing to cis inhibition, an inhibitory interaction that occurs when ligand and receptor 
are present in the same cell (Figure 2) 30.  First identified through genetic 

experiments in D. melanogaster31, 32, the precise mechanism for cis inhibition 

remains elusive, although some studies suggest that Notch molecules are targeted 
for degradation once they have undergone ligand interaction 33 34.  

 

Modelling experiments suggest that an ultrasensitive switch between two mutually 
exclusive cell states: signal-sending and signal-receiving could be generated by 

Notch having a sharp ligand threshold for cis inhibition combined with a graded 

response to trans-acting ligand 35. One example of a cis-inhibitory interaction 

affecting the signalling outcome occurs during photoreceptor specification in D. 
melanogaster: here, loss of Dl-mediated cis inhibition reversed the direction of lateral 

signalling, thereby generating the wrong complement of photoreceptors 36. Likewise, 

cis inhibition helps to stabilize tip and stalk fates during angiogenesis, and hence 
prevents hybrid tip–stalk cells forming 37. In addition, different Notch receptors might 

also cis inhibit one another, adding another potential mechanism to fine-tune signal 

reception 38. The balance between cis-interactions and trans-interactions is thus 

likely to be important in signalling outcomes (Figure 2a).  
 

Intriguingly, the mammalian ligand DLL3 might operate only in a cis-inhibitory mode. 

In cell-based assays, DLL3 was unable to activate signalling in trans but, when co-
expressed with Notch1, it could prevent Notch1responding to other ligands on 

neighbouring cells 39. In vivo, the loss of DLL3 led to increased Notch activity during 

T-cell development 40 and to defects in Notch1 signalling in the presomitic mesoderm 
41.  It is not fully clear why DLL3 might have a uniquely inhibitory role, although its 

highly divergent DSL domain might be a contributory factor; however, by doing so, it 

adds another strand of pathway regulation in vertebrates.   

 
Deployment of Fringes and other modifying enzymes [L2 heading] 

Further influencing Notch signalling is the presence of enzymes that modify the 

extracellular domains (ECDs) of ligands and receptors and modulate their ability to 
signal (Figure 2b).  Although modifications to ligands might be important, most focus 

has been on receptors, the activity of which is profoundly affected by glycosylation of 

EGF repeats in the ECD.  O-fucosyltransferases, which add fucose to serine and 
threonine residues, and O-glucosyltransferases, which add glucose to serines, are 

essential for optimal Notch signalling 42, 43. Many O-fucose monosaccharides on 

Notch can subsequently be extended (with N-acetylglucosamine) by the Fringe 

proteins, with differing effects on Notch, depending on the sites modified and the 
ligands present 42.  

 

Fringe-mediated modifications could influence specific ligand–receptor interactions. 
Structural studies indicate that elongation of an O-fucose on EGF repeat 12 of Notch 
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receptors could provide additional energetic contributions to Notch–ligand interfaces 
22.  This modification enhanced binding of DLL1 and Jag1 to a greater extent than 
binding to DLL4, possibly because the inherent affinity of DLL4 is relatively high even 

in the absence of glycosylation 22. Whether or not the enhanced ligand binding 

translates into increased pathway activity is uncertain. In some cases, where the 

affinity of Jag1 for the receptor was increased by the presence of Fringe proteins, the 
effects on transcriptional output were reduced 44. Concomitant changes to cis 

inhibition, to competition with other ligands or to other sites in the receptor are 

possible explanations for this apparent anomaly.   
 

Fringe proteins are thus likely to modulate the ability of cells to send and receive 

signals in a manner that is highly dependent on the cocktail of ligands (and Fringe 
proteins) present (Figure 2b). For example, in D. melanogaster wing discs, 

modifications by Fringe render Notch insensitive to Ser 45. Here, co-expression of Ser 

and Fringe in dorsal cells guarantees that Ser can only signal to the adjacent ventral 

territory 8. At the same time, Dl is enriched in ventral cells and its binding is enhanced 
by Fringe modifications 45, 46. The combined effects generate a stripe of cells with 

Notch activity that straddles the boundary.  Likewise, when high levels of both Jag1 

and Fringe are present in stalk cells, Fringe is thought to make Jag1 into an effective 
competitor for the more signalling proficient DLL4, which prevents DLL4 from 

signalling between adjacent stalk cells, and thereby inhibits excessive sprouting 47. 

Similarly, during ventricular development, temporal modulation of Mfng enables 
sequential Notch activation to drive different morphological processes; MFng and 

Dll4 downregulation in the endocardium allows these cells to respond to myocardial 

Jag1/ Jag2 and generate a functional ventricular wall 48. Finally, in the spinal cord, 

where Fringes enhance DLL-activated Notch signalling and block that of Jag1, the 
consequence of their patterned expression (controlled by homeodomain proteins) is 

domain-wide Notch activation by either Dll or Jag1, and a suppression of signalling 

across progenitor domain boundaries 49. 
 

Experiments modelling the outcome of Fringe modifications have illustrated how 

these could impact on the relative signalling capabilities of cells.  For example, cells 

expressing Lunatic Fringe (Lfng) or Manic Fringe (Mfng) in combination with Jag1 
and Notch1 acquired the ability to send and receive signals simultaneously, but only 

using different ligands 50. This observation could be explained if Fringe modifications 

weaken cis interactions between Jag1 and Notch1, consequently making high 
surface levels of both available, and also prevent Notch1 from being trans activated 

by Jag1 (Figure 2b).  Notch1 could thus only receive signals from DLL on adjacent 

cells but Jag1 would itself be free to signal to neighbouring cells. Such a model fits 
well with the observations at the dorsal–ventral boundary of the D. melanogaster 

wing and with the tip/stalk decision in angiogenesis, and highlights the profound 

effect of the patterned deployment of these molecules on signalling outcomes.   

 
 

Topological context [L1 heading] 

Notch receptors and their ligands are transmembrane proteins. Furthermore, 
endocytosis is known to be required for ligand activity51, 52. Mechanisms that 

transport the proteins to and from the correct places in the cell are therefore likely to 

have an important impact on signalling.  Although it has largely been assumed that 
ligand–receptor interactions occur at sites where cells are tightly opposed, several 

observations are challenging this assumption, and highlight that the dimensions and 

stability of the contact area might have important roles.  

 
Endocytic trafficking and ubiquitin ligases [L2 heading] 
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Factors that modulate endocytosis and trafficking of receptors and ligands have a 

number of important consequences on pathway activity 53, 54. First, endocytosis of the 
ligand after it has engaged with its Notch receptor is thought to generate the force on 

the receptor that exposes the protease cleavage site within the negative regulatory 

(NRR) ‘cage’ 
55

 
56, 57

.(Figure 1b).  In the absence of certain E3 ubiquitin ligases of 

the Mindbomb or Neuralized families, ligand endocytosis is prevented with 

concomitant loss of signalling 58, 59 52, 60-63 64.  As ubiquitylation of the ligand 

intracellular domains by these enzymes is critical for ligand activity, the presence of 
Mib and/or Neur determines which cells can send a signal. During asymmetric 

division, for example, directional Notch signalling is achieved, in part, by the 

polarized segregation of these E3 ligases into one of two daughter cells, depending 

on the underlying cell polarity 65, 66 67. 
 

Second, receptor trafficking affects pathway activity not only by determining receptor 

levels on the cell surface but also because ligand-independent activation can occur 
during this process 53, 54, 68. Normally, while some of the endocytosed Notch is likely 

recycled to the membrane, a large fraction is targeted for degradation. When this 

fraction of the receptor fails to be properly routed into the inner luminal vesicles of 
maturing lysosomes — for example, in response to mutations that affect the ESCRT 

complex 69-72 this can result in ligand-independent Notch activation, although the 

precise mechanisms that underly this phenomenon are unknown.  Most likely, the 

conditions encountered in the lysosome promote ligand-independent activation by 
destabilizing the NRR.  Proteins that regulate endolysosomal transport have a 

concomitant effect on Notch trafficking that can, in some cases, result in receptor 

activation in normal physiological conditions. These include the E3 ligases Deltex 
and Itch/Suppressor of Deltex, which, by ubiquitylating Notch, alter both the receptor 

levels on the membrane and the amount of ligand-independent activation 73-75 

 
Numb is another factor that regulates cell-fate decisions via its powerful effects on 

receptor trafficking; its depletion in several lineages results in ectopic Notch activity. 

During sensory organ development, Numb is differentially segregated into one of two 

daughter cells, in which it inhibits Notch activity to bring about specific ‘Notch off’ 
fates 76-80. Numb achieves this inhibition either by promoting Notch internalization or 

by altering the route taken after Notch is endocytosed 81, 82. Notably, this 

phenomenon only occurs in certain contexts, despite Numb being present more 
widely. In D. melanogaster, this specificity depends on the adaptor Sanpodo, which 

couples Numb localization with Notch trafficking 82-84. Adaptors analogous to 

Sanpodo are likely to perform a similar task in other species.  

 
Third, spatial regulation of trafficking also has the potential to affect the geometry of 

signalling. For example, endocytic depletion of Notch from the cleavage furrow after 

the division of sensory organ precursor cells in D. melanogaster is important to 
enable unidirectional signalling in the progeny 85. The asymmetrical distribution of 

endosomes containing receptors and/or ligands is also associated with a bias in 

signalling to promote specific cell fates in neural lineages 86, 87. In addition, by 

affecting the activity and/or localization of the γ-secretase complex, which is required 

for the release of the NICD, proteins that organize cellular polarity (for example, 

Crumbs88 and hibris 89) can consequently affect Notch signalling.  Finally, beyond 
regulating the activity of the ligands and receptor, endocytic trafficking might also be 

important for localizing functional pools of ligand and receptor to the appropriate 

cellular subdomains, although many questions remain about where these 
subdomains are located. 

 

 

Tissue architecture and morphology [L2 heading] 
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Because Notch signalling occurs between cells that are in contact with one another, 

the organization of the tissue is likely to influence the levels or patterns of signalling, 
such that the strength and periodicity of signalling could depend on the extent or 

durability of the adhesive contacts between cells. For example, models suggest that, 

under conditions in which the extent of cell–cell contact is greater than the diffusion 

range of the ligand within the membrane, the signal generated will be proportional to 
the contact area 90. Signalling might also be mediated by dynamic cellular protusions 

such as filopodia, which, importantly, could extend the distance over which signalling 

occurs 91-94. The nature of the cell–cell contacts could therefore have important 
consequences for the functional outcomes of signalling (Figure 3a).  

 

Adherens junctions (AJs) mediate cell–cell adhesion and are important for effective 
Notch signalling in some contexts. Thus, during vertebrate neurogenesis, the 

dimensions of the contacts made by the ‘end-feet’ and the integrity of their AJs are 

important for nascent neurons to engage in effective DLL–Notch signalling with their 

progenitors to prevent them differentiating. Disrupting the AJs down regulated Notch 
signalling and caused precocious neurogenesis 95, whereas manipulations that 

expanded the size of the apical domain enhanced signalling and reduced 

neurogenesis 96.   
 

Strong adhesion between posterior lateral mesoderm and somite cells, mediated by 

the junctional adhesion molecules Jam1a and Jam2a, is also important for 
generating a sufficiently high Notch signal to specify the haematopoietic lineage in 

zebrafish 97. The contact surface area between migrating lateral mesoderm cells and 

the somite was decreased when jam1a or jam2a was depleted, and correlated with 

decreased activation of Notch signalling. As this phenotype could be rescued by 
widespread expression of ligands, the transduction pathway remained functional, 

leading to the model that dimensions or stability of contacts was important. The 

deployment of specific adhesion molecules can thus create a unique topological 
opportunity for signalling to occur.  

 

Signalling might not always require stable cell–cell contacts, transient interactions 

can be sufficient to deliver Notch activity and switch cells to a specific cell fate. 
Neural crest cells expressing DLL could elicit signalling in myotome Notch1-

containing cells that they contacted, in a ‘ kiss and run’ mode 98. Likewise, during 

angiogenic sprouting, because cells constantly shuffle their positions, a presumptive 
stalk cell might encounter high levels of Notch for only a brief period before losing 

contact 99 (Figure 3b). Transient structures may also extend the range over which a 

cell can signal. For example, filopodia extend from Dl-producing cells on the D. 
melanogaster notum and their disruption (by specific genetic mutations) perturbed 

the spacing of sensory organ precursor cells (Figure 3b) 91. Similarly, dynamic 

filopodia project between neurogenic progenitors and radial glial cells during 

signalling in the mammalian neocortical progenitor cell niche, although their 
functional relevance has not yet been tested 100.  And during the formation and 

maintenance of pigmented stripes in zebrafish, signalling is mediated via long cellular 

protrusions that extend between xanophores and melanophores. Interestingly the 
geometry switches: first the protusions carry vesicles of DLL from xanophores to 

promote melanophore stripe consolidation 93 (Figure 3b). Later, in adults, the 

melanophores extend protusions towards interstripe DLL expressing xanthophores to 
receive signals necessary for their own survival 94.  

 

Filopodia-like protusions are more transient than AJs, indicating that a prolonged 

stable contact point might not be essential for ligand–receptor signalling, although 
the extent of their contribution to Notch signalling remains to be determined.  

Modelling experiments suggest that the strength of the signal mediated through 
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filopodia will depend principally on the diffusion of ligands or receptors 90, so that 

factors that regulate their trafficking would be influential.  Furthermore, it is possibile 
that the types of downstream response might differ according to the way the ligand is 

presented, — for example, filopodia might provide a burst of signal whereas more 

stable cellular junctions could generate a more sustained signal.   

 
 

Nuclear context [L1 heading] 

The output of Notch signalling primarily relies on NICD entering the nucleus; 
mechanisms that set the nuclear context are therefore critically important as they 

determine the gene expression programme and consequent physiological outcome.  

For example, in the outer proliferation centre of the D. melanogaster optic lobes, 
Notch signalling induces neurons to die or to survive, depending on the transcription 

factors present 101. Likewise, the contrasting oncogenic and tumor suppressor roles 

of Notch activity that occur in different tissue contexts are likely the consequences of 

differential cell-type specific transcriptional programmes 102. Nuclear mechanisms 
that confer such context-specific Notch responses are potentially of broad relevance 

to other signalling pathways, although the precise components might differ. 

 
Key features underpinning the nuclear response [L2 heading] 

A key aspect of specificity will logically result from the presence of cell-type-specific 

or stage-type-specific transcription factors that alter the selection of responsive 
genes.  Indeed, if CSL itself could function as a ‘pioneer’, binding to sites in dense 

nucleosome-covered ‘closed’ enhancers, it would be difficult to account for the cell-

type specificity of responsive genes — how, then, could cell death genes be selected 

only in specific neuronal progeny to correctly programme neural networks, for 
example?101. In agreement with this notion, CSL has a higher affinity for motifs at the 

edge of nucleosomes, suggesting it binds preferentially to open chromatin 103. 

Furthermore, the motifs bound by CSL in Drosophila cells are located preferentially 
within regions of primed or active chromatin, making it likely that response specificity 

is aided by many motifs being hidden in chromatin environments that are not 

accessible to CSL104(Figure 4).  However, even though the NICD–CSL complex 

prefers ready-primed chromatin regions, it is not just an idle passenger — the 
consequences of its recruitment include large-scale changes in histone acetylation, 

removal of repressive complexes and enhanced accessibility of the DNA104-108 

(Figure 4).  

 

The original ‘switch’ model proposed that, prior to Notch activation, CSL was present 

at enhancers in a complex with co-repressors that kept the enhancer silenced by 
recruiting histone deacetylases or other modifying enzymes 109.  NICD was thought to 

displace the co-repressors from CSL to render the target enhancers active.  

However, this model in its simplest form has been challenged. First, the co-
repressors KyoT2 and MINT bind to CSL with similar affinities as NICD does, making 

it hard to explain how NICD could displace them 110, 111.  Resolving this question will 

however also require detailed knowledge of the relative stoichiometries of all the 
proteins concerned, including NICD.  Second, CSL binding dramatically increases at 

target enhancers following Notch activation, arguing that this event is quite dynamic 
105, 112-114. Thus, it is likely that an exchange of entire complexes (rather than co-

activators substituting for co-repressors on DNA-resident CSL) occurs, similar to the 
model for hormone receptors, with the NICD–CSL complex being ‘captured’ to 

increase the amount or duration of its binding (Figure 4).   

 
Although further studies are needed to determine the extent to which enhancers are 

‘marked’ by CSL prior to Notch activation, CSL-binding co-repressors are 

nevertheless likely to contribute to the regulatory landscapes. First, loss or down-
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modulation of CSL leads to derepression of tumour-promoting genes in several 

contexts 115, 116. Second, as several co-repressors bind directly to CSL in a manner 
that would preclude concomitant NICD binding, they will titrate the availability of CSL 

and hence set a threshold that NICD would need to exceed in order to activate 

transcription 110, 111, 117-119.  Finally, the different types of co-repressor might give rise 

to different types of repression complex, especially if they differ in their ability to 
recruit chromatin-modifying complexes (Box 2).  Thus, by binding to their target sites 

transiently, certain types of CSL–repressor complex might help to make the 

enhancers more refractory to the effects of NICD. Uncovering their contributions will 
be important for deciphering the regulatory landscapes that NICD encounters.   

 

 
Cooperation with transcription factors 

To ensure that the appropriate tissue-/cell-type response occurs, mechanisms that 

direct NICD to the appropriate enhancers must exist. Although the execution of some 

roles of Notch signalling relies on a set of common targets, the HES family of bHLH-
containing proteins, other roles depend on diverse transcriptional responses 120. 

These responses are likely to be achieved through close cooperation between CSL 

complexes and other transcription factors (Figure 5), either because specific 
configurations of binding motifs allow direct interactions between transcription factors 

and NICD–CSL or because nearby motifs recruit transcription factors that help recruit 

NICD–CSL indirectly by modifying chromatin. At the same time, other transcription 
factors might block CSL recruitment to specific enhancers. 

 

One well-characterized example of an enhancer ‘signature’ is the so-called SPS+A 

site in Notch-regulated genes during neural precursor specification. This signature 
combines a pair of specifically orientated CSL motifs (known as SPS) with a binding 

site for the pro-neural basic helix-loop-helix protein Daughterless (referred to as A) 

and allows NICD–CSL to interact directly with Daughterless, thereby conferring 
Notch–bHLH synergy  121.  Similarly, in Caenorhabditis elegans, the ref-1 enhancer 

contains four predicted binding sites for GATA transcription factors that are required 

for Notch-dependent endodermal expression 122 and that probably facilitate NICD–

CSL recruitment via a direct interaction between CSL and the GATA factor. A third 
example involves the mouse Foxp3 gene, in which an overlapping CSL–nuclear 

factor κB (NF-κB) binding site within the promoter facilitates cooperative regulation 

by Notch3 and canonical NF-κB signalling123.   
 

By contrast, other examples indicate that cooperation can occur without a distinctive 

enhancer signature. An association between Runx proteins and NICD–CSL 
complexes exists in several cellular contexts, with CSL-bound regions enriched for 

Runx sites 105, 108, 124 but without any very precise arrangement of their motifs. Runx 

proteins are required for CSL to be recruited to these enhancers and it seems likely 

that the mechanism involves changes in the local chromatin organization to ‘expose’ 
the CSL-binding motifs 104 (Figure 4). Other examples in which specific transcription 

factors are important exist (see Box 2), but it is as yet unclear whether direct or 

indirect mechanisms are involved and it remains to be determined whether subsets 
of transcription factors have a special relationship with NICD–CSL because they 

introduce a specific partner or chromatin conformation or, alternatively, whether any 

transcription factor binding in proximity to a CSL-binding motif might be sufficient to 
render an enhancer responsive.  

 

Notably, binding of specific transcription factors can also prevent enhancers from 
responding to Notch. A well-characterized example is the zinc-finger transcription 

factor Ikaros, which restricts the Notch responsiveness of many T-cell targets, 

including Hes1 and Myc, by binding to their enhancers 125-127 (Figure 4). In the 
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absence of Ikaros, Notch target genes that are normally shut off in thymocytes were 

persistently expressed and other normally inactive or weakly upregulated genes 
became strongly induced by Notch 125. Conversely, re-expressing Ikaros could 

repress Notch1 target genes, including Myc, in T-cell acute lymphoblastic leukaemia 

(T-ALL) cells 127.  Among other transcription factors that inhibit the activity of NICD–

CSL complexes, several do so by binding to the complex rather than by blocking 
enhancer binding 128, 129.  For example, the transcriptional repressor BCL6 inhibits the 

expression of ESR1 130 either by preventing the recruitment of Mam to NICD or by 

recruiting the histone deacetylase SIRT1 to promote deacetylation of neighbouring 
histones 131.  Finally, BEN-SOLO proteins can bind to nearby sites on DNA and 

directly contact CSL to antagonize Notch activity during neurogenesis 132. Direct and 

indirect negative regulators are therefore likely to have widespread roles in setting 
the transcriptional landscape. 

 

Chromatin context and indirect mechanisms [L2 heading] 
If target enhancers need to be present in the appropriate chromatin complex to be 

bound by CSL, epigenetic mechanisms that alter the accessibility of enhancers 

should have an important influence on gene expression in responding cells 133, 
especially during developmental (and other) transitions when the Notch-responsive 

programme needs to change between one state and the next (Figure 5).  Several 

examples illustrate that such transitions might be coordinated by stage-specific 

transcription factors in conjunction with chromatin-modifying complexes. For 
example, Hamlet/Evi1, when recruited to targets in nascent D. melanogaster 

olfactory neurons, appears to enable a modified response in a subsequent round of 

Notch signalling by altering histone methylation and density to erase the Notch state 
inherited from the parental cell 134. BCL6 similarly mediates stable epigenetic 

repression of Hes5 by recruiting SIRT1 during the neurogenic transition in mouse 

cortical progenitors 131. Finally, Pax6/Eyeless blocks the ability of NICD to promote 
tumours in older generation progenitors in some D. melanogaster neural stem cell 

lineages, where it prevents transcriptional activation of direct target genes possibly 

through BRG1-associated factor (BAF)–SWI/SNF-related chromatin remodelling 

complex 135.  
 

Polycomb complex-mediated silencing of target enhancers is also likely to shape the 

Notch response. Although their action is reversible, two multiprotein Polycomb 
repressive complexes (PRCs) confer heritable repressive states, and their presence 

at many Notch-regulated genes in embryonic stem cells indicates their potential 

importance 133.  The inability of Notch to drive cardiac regeneration in adult rat 

myocardiocytes is also attributed to PRC-mediated repression 136.  Likewise, the 
activity of PRCs curtailed NICD-mediated activation of target genes in D. 

melanogaster cells and in human T-ALL cells 107, 137.   

 
Many other chromatin regulatory complexes have been found to influence Notch 

activity in vivo (see Box 2). Although the functional data indicate that these 

complexes contribute to the landscape of target genes, it remains challenging to 
distinguish whether they do so via specific or non-specific mechanisms.  

Nevertheless, as Notch signalling is sensitive to changes in the activity of several 

chromatin-regulatory complexes, chromatin organization might be particularly 

significant for NICD responsiveness. 
 

Factors that modify the stability or activity of NICD [L2 heading] 

Another potentially potent way to regulate the Notch pathway is by modulating the 
activity or stability of NICD (Figure 4).  Relatively little is known about these aspects 

of its regulation post cleavage, but NICD could be subject to post-translational 

modification or might interact with other proteins that modulate its nuclear levels 
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and/or activity. Yes-associated protein (YAP, a key effector of the Hippo tumour 

suppressor pathway) and Smad3 (an intracellular transducer of transforming growth 
factor-βsignals) both augmented the activity of NICD independently of DNA binding 
138 139. 

 

In some contexts, the stability of NICD is affected by its interactions with F-box and 

WD repeat domain-containing 7 (FBW7), the substrate-recognition component in a 

ubiquitin ligase complex. Cancer-associated mutations in FBW7 were identified in 

patients with γ-secretase insensitive T-ALL and correlated with increased levels of 

NICD activity140.   FBW7 has been shown to bind directly to NICD, promoting its 

polyubiquitylation and proteasomal degradation140, 141, and, as this interaction is 
regulated by CDK8 (a nuclear serine/threonine kinase that functions as a 

transcriptional regulator), it was thought to terminate NICD activity at its 

transcriptional targets 142.  However, FBW7 affects many other substrates 143 and 
regulates the association of CDK8 with the Mediator complex 144, making it tricky to 

distinguish the significance of direct NICD regulation in many contexts.  Furthermore, 

although FBW7 mutation affects several developmental processes linked to altered 
Notch1 activity in vertebrates 145, 146, mutations in the D. melanogaster homologue 

have not uncovered an equivalent role. Thus, the extent of direct NICD regulation by 

FBW7 remains to be clarified, and the existence of other E3 ligases that perform 

similar roles to terminate NICD activity merits further exploration. 
 

SIRT1 and coactivator-associated arginine methyltransferase 1 (CARM1) are 

speculated to act as rheostats by modulating the activity of NICD. SIRT1 directly 
associates with NICD and attenuates Notch activity in zebrafish endothelial cells 147, 

and CARM1 methylates NICD and regulates the duration of transcriptional responses 

from some target enhancers 148. Other modifications may attenuate the 

transcriptional activity of NICD or affect its nuclear localization. These include 
hydroxylation, mediated by factor inhibiting hypoxia-inducible factor (FIH) in response 

to changes in oxygen levels during myogenesis 149; phosphorylation, by glycogen 

synthase kinase-3 (GSK-3) 150 or AKT 151; and ubiquitylation, conferred by the HECT 
ubiquitin ligase WWP2 152 153.  Post-translational modifications targeted to positions 

within the six ankyrin repeats can prevent NICD from forming its tripartite activation 

complex with CSL and Mam 154-156.  If the relevant enzymes were recruited to specific 
targets, these modifications could nevertheless lead to differential effects on gene 

expression. Modifying enzymes potentially provide mechanisms of cross-talk with 

other pathways, as suggested by the purification of multiple kinase with NICD 157, 

and are, in some cases, specific to one paralogue.  Clearly, more knowledge about 
when and where NICD is modified and what effects each modification has on its 

activity will be important for understanding its operations in a given milieu.  

 
Network context [L1 heading] 

Interpreting the context-specific effects of Notch will ultimately require that we 

understand the wiring of the regulatory networks in which it operates.  Although this 
presents an enormous challenge, indications already exist as to how differences 

between cell types affect Notch pathway outcomes, as illustrated by the examples 

below.  

 
Feedback regulation of ligand expression is one example in which the regulatory 

logic has profound consequences. For contexts in which classical lateral inhibition 

occurs, Notch activation frequently inhibits ligand expression to polarize the 
signalling (negative feedback).  This mechanism relies on the HES family of direct 

Notch targets, which antagonize the activity of proneural bHLH transcription factors, 

which themselves promote the expression of ligands and E3 ligases (such as Neur) 
158. Thus, Notch activation leads to decreased ligand expression, and the fates of the 
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cells becomes mutually exclusive 5.  For contexts in which signalling is inductive, 

Notch activity promotes ligand expression (positive feedback). This feed-forward 
positive regulation of ligand expression occurs at the signalling boundary in the D. 

melanogaster wing disc and during the formation of sensory patches in the chick ear 
24, 31, 45, 159 .  In D. melanogaster the evidence points to a direct regulation of Ser 

expression by NICD–CSL 9, 160. By intensifying and perpetuating ligand expression, 
such positive feedback can sharpen the boundaries between expressing and non-

expressing regions.  Alternatively, under some circumstances it could lead to a shut-

down if the increased ligand levels blocked signal reception through cis-inbibition. 

Differences in the wiring of the regulatory network also account for opposing effects 

on PTEN (phosphatase and tensin homologue) that occur in response to Notch 

activity. In T-ALL cells, Notch activity, by directly targeting HES1, inhibits the 
expression of PTEN, thereby promoting proliferation 161.  By contrast, in stalk cells, 

PTEN is itself a direct target of Notch and is up-regulated to inhibit proliferation 162.  

 
Differences in the mode of crosstalk between the Notch and epidermal growth factor 

receptor (EGFR)–Ras pathways lead to them functioning antagonistically in some 

contexts and cooperatively in others 163.  Such polarized differences partly arise from 
the regulatory logic of the target enhancers and partly as a consequence of whether 

Notch regulates the expression of Ras pathway inhibitors or activators (and vice 

versa).  For example, in the D. melanogaster eye, EGFR and Notch pathways 

cooperate to promote the development of cone cells by converging on enhancers of 
key differentiation genes (for example, Pax2 164), but antagonize one another at the 

onset of ommatidial development because EGFR promotes the expression of the 

proneural protein Atonal whereas Notch activity inhibits atonal expression through 
HES targets 165.  Similarly, during C. elegans vulval development, EGFR activity first 

initiates Notch activity by upregulating ligand expression to stimulate the receptor on 

adjacent cells, then Notch activity antagonizes EGFR–Ras signalling by promoting 
the expression of pathway inhibitors 166.  These examples illustrate how differences 

in wiring can profoundly influence the consequences of activating the two pathways. 

Similar differences in crosstalk are likely to underpin many of the context-specific 

interactions of Notch with Wnt, fibroblast growth factor, Hippo and other pathways.  
 

Conclusions and perspectives 

The ability of the Notch pathway to carry out many tasks despite the relative 
simplicity of its core pathway relies on the deployment of different levels of control 

that adapt the pathway to each context.  For example, the expression patterns of 

Notch and its ligands and the tissue architectures can determine both the range and 

strength of Notch signalling, whereas the nuclear context will shape the identity of the 
target genes regulated and hence the transcriptional outcome.  Many of the 

strategies, especially in the nuclear context, will be relevant for other signalling 

pathways that similarly induce a diversity of tasks.  For example, the context-
dependent modifiers of Wnt/β-catenin signalling that contribute to its differing effects 

in stem cells include the cocktail of cooperating transcription factors that are present 
167

.  However, other strategies are more likely to be unique to Notch.  Notably, the 

fact that Notch ligands are transmembrane proteins constrains the range of the 

signal and makes the cell architecture and tissue organization particularly important 

features. The one-to-one interaction between ligand and receptor places more 
emphasis on the precise relationship between their levels, especially as they can 

also inhibit one another when present in the same cells. All the levels of regulation 

can be modulated to enable the pathway to adapt to a changing environment. 
However, although we can appreciate how the regulation might occur conceptually, 

many aspects are still poorly understood, making it hard to predict how physiological 

and environmental differences will influence signalling.   
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Recent progress has been driven by structural studies of key complexes involved in 

Notch signalling; the next challenge will be to find ways to view the molecules in 
action, to find where on/in the cell they interact and to discover the levels, 

stoichiometries and dynamics of the different complexes. A more quantitative picture 

will aid predictions about the transcriptional and physiological outcomes. Discovering 

how these can be modulated by environmental factors will also be important for 
understanding disease susceptibilities from heterozygous mutations in Notch 

pathway genes.    
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Box 1: Mechanistic features of Notch signalling  
All canonical Notch ligands are transmembrane proteins (apart from some unusual 

relatives in C. elegans) that share a largely similar structure, with an extracellular 

domain comprised primarily of multiple EGF repeats (EGFR, see figure, which shows 

D. melanogaster Notch and its ligands, Serrate and Delta). Serrate and its’ Jagged 
orthologues also contain a cysteine rich domain, CRD. Binding by canonical Notch 

ligands involves the extracellular Delta/Serrate/Lag-2 (DSL) domain and amino-

terminal (NT) domain (see figure), which contact EGF repeats 11–12 within the 
extracellular domain of Notch 22, 168. As the NT domains have phospholipid-binding 

characteristics 169, interactions with the adjacent cell membranes might also be 

involved. Notch receptors on the cell surface are heterodimers (see figure): the two 
heterodimeric portions (HDN, HDC) interact and together with the cysteine-rich 

Lin12/Notch repeats (LNRs) form the negative regulatory region (NRR), which 

occludes the cleavage site for ADAM proteases 
56

. The key step induced by ligand-

binding is the exposure of this cleavage site, which allows access by proteases.  

ADAM10 is likely to be the main protease responsible for cleavage under 

physiological conditions 170. Cleavage renders the remaining transmembrane–

intracellular fragment a substrate for the γ-secretase complex, which catalyses 

intramembrane proteolysis to release the Notch intracellular domain (NICD).  NICD is 

characterized by a RAM (RBP-J-associated module) domain and ankyrin (ANK) 
repeats (see figure), both of which are required for interactions with the DNA-binding 

protein CSL (CBF1/Suppressor of Hairless/Lag-1; also known as RBPJ) 3, 171-173 .  

Near the carboxyl terminus is a PEST domain (see figure), which regulates NICD 
degradation.  Between the ANK repeats and PEST, NICD also contains several 

nuclear localization signals and a region that can confer transactivation. The 

association of NICD with CSL forms an interface to which the amino terminus of the 

co-activator Mastermind (Mam) binds, locking the complex into its active 
conformation and promoting gene transcription 172, 173.  

 

 
Box 2: Players in the nuclear arena   

Nuclear activation complexes 

The CSL/NICD/MAM complex recruits p300/CBP, which modifies chromatin at target 
enhancers. Notch dependant histone modifications include wide-spread increases in 

H3K27ac and H3K56ac and a decrease in H3K27me3 104, 105 107. Other components 

that have been associated with the co-activator complex include the demethylase 

JMJD3107, the RNA helicase Ddx5, the long non-coding RNA (lncRNA) steroid 
receptor coactivator (SRA) 174, 175.  Chromatin modifiers that enhance Notch 

transcriptional activity include BRG1/Brahma complexes, BRD4, Bre1/RNF40 176 

 
Nuclear co-repressor complexes: CSL-binding co-repressors for which direct 

interactions have been mapped include MINT/SHARP (mammals 110) KyoT2 

(mammals;111), Hairless (Drosophila; 118).  SMRT/SMRTR, SIR interactions have also 
been detected 119.  Co-repressors recruit enzyme complexes that modify chromatin at 

target enhancers, including class 1 histone deacetylases (HDACs) and histone 

demethylases Kdm5/Lid and LSD1 117, 119, 157, 177, 178. Histone chaperone complexes 

containing CAF1, NAP1, Asf1 are also implicated in CSL dependant repression of 
target enhancers 119. In some cases, co-repressor-recruitment of modifying enzymes 

relies on intermediaries, including Groucho/TLE, CtBP 179.   

 
Additional examples of Co-operating TFs 

TEAD4: a DNA binding protein that is regulated by the Hippo pathway, TEAD4 co-

binds the enhancer of Cdx2 with Notch/CSL in early mouse embryos 180.  
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SoxF: Combinatorial regulation by SoxF TFs is necessary for Dll4 expression during 

arterial specification and co-binding is needed to give full enhancer activity 181. 
TCF: TCF sites are present in enhancers collaboratively regulated by Notch1 and 

Wnt activity in intestinal crypts 182.  

ETS: Ets1 binding motif and ETS1 occupancy was enriched near NICD/CSL bound 

regions in T-ALL cells 176 
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Figure Legends: 

 
Figure 1 | Ligand binding leads to exposure of the cleavage site in Notch 

(a) Summary of core pathway: when canonical Notch ligands (green) bind to Notch 

receptors (purple; orange indicates EGF repeats 11-12, pink indicates the Negative 

Regulatory Region, NRR) on the adjacent cell surface they elicit two proteolytic 
cleavage events, the first by ADAM10 and the second by y-secretase, that release 

the Notch intracellular domain (NICD).  In the nucleus NICD interacts with the DNA-

binding protein CSL (CBF1/Suppressor of Hairless/Lag-1; also known as RBPJ) 3, 171-

173 and the co-activator Mastermind (Mam) to promote gene transcription 172, 173.  

(b) Schematic based on the crystal structure 
56, 57

 illustrating how the Notch-NRR  

occludes the cleavage site for ADAM proteases until its is exposed by forces 
generated through ligand-binding. Left panel: the NRR comprises 3 Lin12/Notch 

repeats (LNR, pink) and the heterodimerization domain (HD; dark blue and light 

blue), which surround the recognition site making it in accessible to ADAM 
proteases.   Also represented are 3 EGF-repeats from the Notch ECD, the RAM 

(RBP-J-associated module) and first ankyrin repeat (ANK1) domain in NICD. Right 

panel: Ligand binding exerts a force on the receptor (right panel), which displaces the 
LNRs, exposing the site for cleavage by ADAM 10.  This cleavage renders the 

residual transmembrane Notch fragment a substrate for proteolyisis by the γ-

secretase complex, to release NICD (see a) 

 
Figure 2 | The consequences of cis inhibition and Fringe expression on Notch 

signalling 

(a) Relative levels of ligands (green) and Notch receptors (purple) determine whether 
cells send or receive signals because cis interactions between ligands and receptors 

present on the same cells are inhibitory (light shading).  Receiver cell, left, expresses 

more Notch than Delta (N>DL); some Notch molecules are cis-inhibited by DL but 
sufficient Notch remains available to interact with ligands from neighbouring cells, 

making the cell capable of receiving signals.  Sending cell, right, expresses more DL 

than Notch (DL>N); all Notch molecules are cis-inhibited by DL and sufficient DL 

remains available to interact with receptors on neighbouring cells, making the cell 
capable of sending a signal.  

(b) Fringe proteins (yellow) glycosylate the Notch extracellular domain and modulate 

both cis and trans interactions with ligands. In the absence of Fng (left) Jag 
preferentially cis-inhibits Notch, so that none of the ligand is available for signalling.  

Any uninhibited Notch is competent to interact with either DL or Jag ligands from 

neighbouring cells.  When Fng is present (right) glycosylation of Notch interferes with 

Jag (turquoise) cis and trans interactions, with the result that the cell can only receive 
signals from DL ligands (green), but can now send Jag signals. 

 

 
Figure 3 | Influence of cell contacts and tissue architecture on signalling 

(a) Contact-dimensions between Delta- (green) and Notch-expressing cells (purple) 

could alter Notch responses.  Left: Large contact region, many ligand-receptor 
interactions occur generating high/prolonged NICD (dark purple/Response 1). 

Middle: Smaller contact surface, fewer ligand-receptor interactions, less NICD and 

different/fewer target genes activated (mid-purple/Response 2). Right: Cell contacts 

via filopodia have limited/transient receptor-ligand interactions, generating 
low/transient NICD and response (pale purple/Response 3).  

(b) Notch signalling associated with different cell architectures. Angiogenic branching 

and extension of blood vessels involves the formation of dynamic contacts between 
tip cells (green, Dll4-producing) and adjacent stalk cells (mauve, Notch expressing), 

during which a presumptive stalk cell might receive high levels of Notch for a brief 

period before losing contact.  When Notch signalling is perturbed, excess tip cells 
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generate a densely branched, compacted network. Selection of sensory organ 

precursor (SOP) cells involves direct contact between signal-sending cells (green) 
and signal-receiving cells (purple), but might also require filipodia to transduce the 

signal across a longer range. Perturbations to Notch give tufts of bristles, as all 

neighbouring cells become SOPs. Disruptions to filopodia result in extra SOPs and 

altered bristle spacing. During the formation of pigmented stripes in zebrafish, 
melanophores are restricted to stripes via signals conveyed by long cellular 

protrusions extending from xanthophores (green).  Perturbations to Notch result in 

expansion of melanophores into the inter-stripe region. 
 

 

Figure 4 | Regulation of the nuclear context  
Steps involved in NICD-mediated activation at target enhancers, indicating the types 

of regulation occurring at each; left side, Inhibitory mechanisms (grey); right side,  

positive mechanisms (turquoise, purple). In the absence of cooperating transcription 

factors, CSL motifs (orange) are obscured by nucleosomes; this may be brought 
about by the presence of specific repressors (e.g. Hamlet/Evi, grey) acting in 

combination with chromatin modifying/remodelling enzymes.  Co-operating 

transcription factors: (e.g. Runx, cyan) promote chromatin remodelling to expose 
CSL motifs.  In many contexts CSL binding remains transient/unstable under these 

conditions, possibly due to the influence of its co-repressors (dark blue).  Presence of 

NICD: a tertiary complex containing CSL, NICD and Mam is formed and resides at 
the CSL binding-sites, where it recruits co-activators and stimulates transcription.  

Levels/extent/duration of transcription will depend on the levels/perdurance of NICD, 

which is regulated by post-translational modifications (PTMs).  Ubiqutination directed 

by E3 ligases, via intermediaries such as Fbw7, promote degradation to terminate 
NICD activity. Note that some target genes may already be transcribed in the 

absence of Notch, so that Notch binding will augment rather than initiate expression. 

 
 

Figure 5 | Transitions in Notch-responsive programmes 

Requirement for different co-operating factors and repressors to bring about changes 

in the Notch response at different developmental/physiological transitions.  Top: In a 
nucleus that contains no co-operating TFS, CSL motifs (brown) are inaccessible.  

Middle: when an enabling co-operating TF is expressed (Cooperating TF1, cyan), it 

binds to target sites in enhancers making them competent to respond to CSL-NICD 
complexes, yielding a specific Notch response 1.  When the cell undergoes a 

subsequent transition (e.g. following cell division in the olfactory lineage) different 

TFs are expressed, some of which inhibit (grey hexagon) the response 1 class of 
genes by conferring a non-permissive chromatin context and others (co-operating 

TF2, green) opening up a new cohort of enhancers to enable a different Notch 

response (Notch response 2).  In this way, nuclei can transition from one response to 

another depending on time, other signals.  
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Glossary terms: 
 

EGF-LIKE REPEATS: Protein domains, commonly found in the extracellular domain 

of membrane-bound proteins, that are related to a sequence in EGF and include 

cysteine residues involved in disulphide bonds. EGF-like domains frequently occur in 
numerous tandem copies in proteins as in Notch (EGF-like_dom: IPR000742) 

 

PARALOGUES Sequences, or genes, that have originated from a common ancestral 
sequence, or gene, by a duplication event.  

 

LATERAL INHIBITION The process by which a cell with a particular fate interacts 
with its immediate neighbours to prevent them from adopting the same fate. 

  

GROWTH ORGANIZER Group of cells that produces signals necessary to promote 

growth of a tissue. 
 

SOMITOGENESIS The process by which somites, blocks of mesoderm that give rise 

to axial muscles, bones and dermis in vertebrates, are formed.  
 

PLACODE Ectodermal thickening from which a sense organ or ganglion develops. 

 
ESCRT (endosomal sorting complex required for transport). The multiprotein ESCRT 

machinery (ESCRT-I, -II and -III) promotes inward vesiculation at the limiting 

membrane of the sorting endosome, and selects cargo proteins for delivery to the 

intralumenal vesicles of multivesicular bodies.  
 

SOP CELL Sensory organ precursor cell that gives rise to all cells in a Drosophila 

sensory organ.  
 

ADHERENS JUNCTIONS Actin-filament-associated, epithelial cell–cell junctions that 

have classical cadherins as their core component.  

 
END FEET The name given to the apical membrane surface as a consequence of 

cortical neuroepithelial progenitors becoming very tall and thin over the course of 

development. 
 

ANGIOGENIC FRONT Region at the leading edge of a vascular network where tip 

cells are located to initiate further growth and branching of the network 
 

FILOPODIA Thin cellular processes containing long, unbranched, parallel bundles of 

actin filaments.  

 
NOTUM structures that are part of the back of an animal, in insects the back of the 

thorax.  

 
XANTHOPHORES Yellow chromatophores, pigment-containing and light-reflecting 

cells, of a fish, amphibian, or reptile. 

 
MELANOPHORES Melanin containing cells, of a fish, amphibian, or reptile that 

appear black or dark-brown because of melanin’s light absorbing qualities.  

 

ENHANCER A DNA segment that increases transcription of a linked promoter if 
placed in either orientation, upstream or downstream.  
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BASIC HELIX–LOOP–HELIX (bHLH) GENES Genes that encode proteins that 

contain a basic domain adjacent to two α-helices separated by a loop (the HLH 
domain), which binds DNA in a sequence-specific manner. 

 

HES gene family A family of genes related to Hairy and Enhancer of split that 

encode nuclear proteins that suppress transcription. 
 

GATA-TYPE TRANSCRIPTION FACTORS A family of transcription factors that 

contain a zinc-finger motif that was first identified in the vertebrate GATA1 protein. 
These transcription factors bind the consensus sequence GATA in the regulatory 

regions of genes.  

 
ZINC FINGER A motif in proteins that contains conserved cysteine residues. The 

sulphydryl groups of the cysteines coordinate a Zn2+ ion. 

 

BEN-SOLO PROTEINS Proteins containing only a BEN domain, a sequence-specific 
DNA-binding domain that has been identified in some transcription repressors. 

 

NEUROGENIC TRANSITION Change in the competence of neural precursor cells 
that enable them to generate different types of neural or glial progeny 

 

F-BOX PROTEIN A component of the machinery for the ubiquitin-dependent 
degradation of proteins. F-box proteins recognize specific substrates and, with the 

help of other subunits of an E3 ubiquitin ligase complex, deliver them to the E2 

ubiquitin-conjugating enzyme.  

 
WD40 PROTEIN A 40-amino-acid-long protein motif that contains a WD dipeptide at 

its carboxy terminus. This domain is found in many functionally diverse proteins and 

mediates protein–protein interactions. 
 

MEDIATOR COMPLEX A multiprotein complex that is required for gene transcription 

by RNA polymerase II. 

 
HECT Stands for homologous to E6-AP carboxyl terminus. The HECT domain is a 

~350-amino-acid domain, highly conserved among a family of E3 enzymes.  
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