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Abstract Let X be a simplicial complex with ground set V . Define its Alexander dual
as the simplicial complex X∗ = {σ ⊆ V | V \ σ /∈ X}. The combinatorial Alexan-
der duality states that the ith reduced homology group of X is isomorphic to the
(|V | − i − 3)th reduced cohomology group of X∗ (over a given commutative ring R).
We give a self-contained proof from first principles accessible to a nonexpert.
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1 Introduction

Let X be a simplicial complex with ground set V . For σ ∈ X, let σ = V \ σ .
The Alexander dual of X is the simplicial complex on the same ground set defined by

X∗ = (
V,

{
σ ⊆ V | σ /∈ X

})
.

See Fig. 1 for an example of a simplicial complex and its Alexander dual.
It is easy to see that X∗∗ = X. Furthermore, a close homological connection exists

between X and X∗, which in the combinatorics folklore has become known as “com-
binatorial Alexander duality.” It states that knowledge of the homology of a simplicial
complex gives knowledge of the cohomology of its Alexander dual:
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Fig. 1 Simplicial complex S
and its dual

Theorem 1.1 (Combinatorial Alexander Duality) Let X be a simplicial complex with
a ground set of size n. Then

H̃i(X) ∼= H̃ n−i−3(X∗).

(Here H̃ stands for reduced homology resp. cohomology over a given ring R.)

The earliest explicit statements of Theorem 1.1 that we know of appear in Kalai
[10, p. 348] and Stanley [14, p. 184]. Combinatorial Alexander duality is a special
case of the original Alexander duality:

Theorem 1.2 (Alexander [1], 1922) Let A be a subset of the sphere Sn such that the
pair (Sn,A) is triangulable. Then

H̃i(A) ∼= H̃ n−i−1(Sn \ A
)
.

The connection is the following: Suppose that X is a simplicial complex different
from the full simplex with ground set {1,2, . . . , n + 2}. Let Y ∼= Sn be the n-skeleton
of the full simplex on the set {1,2, . . . , n + 2}. Let us denote by ‖X‖ (resp. ‖Y‖)
the geometric realization of X (resp. Y). Then ‖X‖ ⊆ ‖Y‖, and it can be shown that
‖Y‖ \ ‖X‖ is homotopy equivalent to ‖X∗‖. Thus if A = ‖X‖ is seen as a subset
of Sn, we get

H̃i(X) ∼= H̃i(A) ∼= H̃ n−i−1(Sn \ A
) ∼= H̃ (n+2)−i−3(X∗).

The Alexander duality theorem has played a very important role in the develop-
ment of algebraic topology. See [8] or [13] for context and modern treatments and [9]
for interesting historical information about James Waddell Alexander, the man and
his mathematics.

The modest task of this note is to make the ideas behind combinatorial Alexander
duality more widely accessible by giving a “combinatorial” proof from first princi-
ples, not relying on more general techniques. It turns out that essentially the same
proof was previously given by Dave Bayer [2, 3], see the acknowledgements at the
end of the note. Central to our approach is a poset point of view and scrutiny of
the combinatorics of the sign labeling of edges in the Boolean lattice 2V used for
the (co)boundary operations in (co)homology. Applications of combinatorial
Alexander duality in combinatorics and algebra can be found for example in [4–7,
10–12, 14–17].
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Combinatorial Alexander duality exists in more general versions. One such gen-
eralization involves induced subcomplexes of X versus links of faces of X∗, see
[6, p. 28]. For another one, let X be a subcomplex of the boundary complex of a
(n− 1)-dimensional convex polytope P , and let X∗ be the subcomplex of the bound-
ary of the dual polytope P ∗ consisting of faces dual to those faces of P that are not in
X. Then Theorem 1.1 still holds, see, e.g., [5] for an application. Furthermore, a very
general Alexander duality theorem for nonacyclic Gorenstein complexes appears in
[16, p. 66]. The reason that we confine this article to the particular simplicial setting
of Theorem 1.1, although the idea of the proof is correct in greater generality, is that
we want to work with the explicit sign labeling offered by the environment of the
Boolean lattice.

2 Preliminaries

Let X be a simplicial complex with ground set V = {1,2, . . . , n}. For j ∈ σ ∈ X,
we define the sign sgn(j, σ ) as (−1)i−1, where j is the ith smallest element of the
set σ . The following simple property of the sign function will be needed.

Lemma 2.1 Let k ∈ σ ⊆ {1,2, . . . , n} and p(σ) = ∏
i∈σ (−1)i−1. Then

sgn(k, σ )p(σ \ k) = sgn
(
k,σ ∪ k

)
p(σ).

Proof We have that

sgn(k, σ ) sgn(k, σ ∪ k) =
∏

i∈σ
i<k

(−1)
∏

i∈σ
i<k

(−1) = (−1)k−1

and

p(σ)p(σ \ k) =
∏

i∈σ

(−1)i−1
∏

i∈σ\k
(−1)i−1 = (−1)k−1. �

In the rest of this section we review the definitions and notation used for
(co)homology. Throughout the paper we suppose that R is a commutative ring con-
taining a unit element.

2.1 Reduced Homology

Let Ci = Ci(X) be a free R-module with the free basis {eσ | σ ∈ X,dimσ = i}.
The reduced chain complex of X over R is the complex

C̃�(X) = C̃�(X;R) = · · · ←− Ci−1
∂i←− Ci

∂i+1←− Ci+1 ←− · · · , i ∈ Z,

whose mappings ∂i are defined as

∂i(eσ ) =
∑

j∈σ

sgn(j, σ )eσ\j .
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The complex C̃�(X) is formally infinite; however, Ci = 0 for i < −1 or i > dim X.
The nth reduced homology group of X over R is defined as

H̃n(X) = H̃n(X;R) = ker ∂n/ im ∂n+1.

2.2 Reduced Cohomology

Let Ci = Ci(X) be a free R-module with the free basis {e∗
σ | σ ∈ X,dimσ = i}.

The reduced cochain complex of X over R is the complex

C̃�(X) = C̃�(X;R) = · · · −→ Ci−1 ∂i−→ Ci ∂i+1−→ Ci+1 −→ · · · , i ∈ Z,

where ∂i = ∂∗
i are maps dual to ∂i , explicitly stated:

∂i(e∗
σ ) =

∑

j /∈σ
σ∪j∈X

sgn(j, σ ∪ j)e∗
σ∪j .

The nth reduced cohomology group of X over R is defined as

H̃ n(X) = H̃ n(X;R) = ker ∂n+1/ im ∂n.

2.3 Relative Homology

Suppose that X is a simplicial complex and A is a subcomplex of X. Let Ri =
Ri(X,A) = Ci(X)/Ci(A), where Ci was defined in Sect. 2.1. The relative reduced
chain complex of (X,A) over R is the complex

C̃�(X,A) = C̃�(X,A;R) = · · · ←− Ri−1
di←− Ri

di+1←− Ri+1 ←− · · · , i ∈ Z,

where di are defined as

di

(
eσ + Ci(A)

) =
∑

j∈σ

sgn(j, σ )
(
eσ\j + Ci−1(A)

)
.

The nth relative reduced homology group of (X,A) over R is defined as

H̃n(X,A) = H̃n(X,A;R) = ker dn/ im dn+1.

Remark 2.2 When we wish to compute relative homology groups, we can iden-
tify Ri = Ci(X)/Ci(A) with a free R-module with the free basis {eσ | σ ∈ X,

σ /∈ A,dimσ = i}. Then di can be rewritten as

di (eσ ) =
∑

j∈σ
σ\j /∈A

sgn(j, σ )eσ\j .

One of the important properties of relative homology groups is that they fit into
a long exact sequence. See, e.g., [8] or [13] for a proof and more details.
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Fig. 2 The lattices �S (left) and �S∗ (right)

Lemma 2.3 (Long Exact Sequence of a Pair) Suppose that X and A are simplicial
complexes A ⊆ X. Then there is a long exact sequence

· · · −→ H̃n(A) −→ H̃n(X) −→ H̃n(X,A) −→ H̃n−1(A) −→ · · · .

3 The Idea of the Proof

Before embarking on the proof of Theorem 1.1, we first present the idea.
Suppose that X is a simplicial complex with ground set V . Let � be the lattice of

all subsets of V , and let �X be the subposet of � corresponding to the subsets that
are in X. Then the nth homology group of X depends just on the nth and (n + 1)st
levels of the poset �X. Let 2V be a full simplex with vertex set V . It is easy to see that
H̃i(X) ∼= H̃i+1(2V ,X) (see Lemma 4.1). Thus, we restate the problem as computing
homologies of the chain complex determined by the complement of �X—in the sense
of Remark 2.2.

The idea of the proof is that if we turn the lattice upside down (exchange σ ⊆ V

with its complement), then this combinatorial map on generators should induce a
canonical isomorphism between the relative homology of the pair (2V ,X) and the
cohomology of X∗. This idea is basically correct; however, the mapping is not an
isomorphism as described—some sign operations are necessary.

Example 3.1 Let S be the simplicial complex in Fig. 1. Its ground set is VS =
{1,2,3,4}. The posets �S and �S∗ are depicted in Fig. 2, and the left part of the
picture also shows the complement of �S (bold, dashed) determining the homology
of (2VS ,S).

In the sense of Remark 2.2, the chain complex C̃�(2VS ,S) is

· · · ←− 0 ←− 〈e24, e34〉 d2←− 〈e123, e124, e134, e234〉 d3←− 〈e1234〉 ←− 0 ←− · · · ,
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and the cochain complex C̃�(S∗) is

· · · −→ 0 −→ 〈
e∗

0

〉 ∂0−→ 〈
e∗

1, e∗
2, e∗

3, e∗
4

〉 ∂1−→ 〈
e∗

12, e
∗
13

〉 −→ 0 −→ · · · .

The map eσ → e∗
σ is not an isomorphism of these two complexes (if 2r �= 0 for

0 �= r ∈ R), since d2(e234) = −e24 + e34, while ∂1(e∗
1) = −e∗

12 − e∗
13. Nevertheless,

these two chain complexes are isomorphic, as will be shown in the next section.

4 The Proof

The proof of Theorem 1.1 is obtained by combining Lemmas 4.1 and 4.2.

Lemma 4.1 Let X be a simplicial complex with ground set V . Then

H̃i(X) ∼= H̃i+1
(
2V ,X

)
.

Proof This follows from Lemma 2.3. There is the long exact sequence of the pair
(2V ,X):

· · · −→ H̃i+1
(
2V

) −→ H̃i+1
(
2V ,X

) −→ H̃i(X) −→ H̃i

(
2V

) −→ · · · .

The groups H̃i+1(2V ) and H̃i(2V ) are zero, hence the groups H̃i+1(2V ,X) and H̃i(X)

are isomorphic. �

Lemma 4.2 Let X be a simplicial complex with ground set V of size n. Then

H̃i+1
(
2V ,X

) ∼= H̃ n−i−3(X∗).

Proof Suppose that V = {1,2, . . . , n}. The chain complex for reduced homology of
the pair (2V ,X) is the complex

· · · Rj−1

dj−1

Rj

dj

· · ·
dj+1

, j ∈ Z,

where Rj = 〈eσ | σ ⊆ V,σ /∈ X,dimσ = j 〉, and dj are the unique homomorphisms
satisfying

dj (eσ ) =
∑

k∈σ
σ\k /∈X

sgn(k, σ )eσ\k.

The cochain complex for reduced cohomology of X∗ is the complex

· · · ∂j−1

Cj−1
∂j

Cj
∂j+1

· · · , j ∈ Z,
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where Cj = 〈e∗
σ | σ ⊆ V,dimσ = j, σ ∈ X∗〉 = 〈e∗

σ | σ ⊆ V,dimσ = n − j − 2,

σ /∈ X〉, and ∂j are the unique homomorphisms satisfying

∂j (e∗
σ ) =

∑

k /∈σ
k∪σ∈X∗

sgn(k, σ ∪ k)e∗
σ∪k =

∑

k∈σ
σ\k /∈X

sgn(k, σ ∪ k)e∗
σ\k.

Define p(σ) as in Lemma 2.1 and let φj : Rj → Cn−j−2 be the isomorphisms
generated by the formula

φj (eσ ) = p(σ) e∗
σ

for σ /∈ X with dimσ = j (note that these two conditions are equivalent to dimσ =
n − j − 2, σ ∈ X∗). We then have the diagram

· · · Rj−1

φj−1

dj−1

Rj

φj

dj

· · ·
dj+1

◦

· · · Cn−j−1
∂n−j

Cn−j−2
∂n−j−1

· · ·∂n−j−2

We check that φj−1 ◦ dj = ∂n−j−1 ◦ φj . Let σ ⊆ V , σ /∈ X, dimσ = j . Then

φj−1 ◦ dj (eσ ) = φj−1

(
∑

k∈σ
σ\k /∈X

sgn(k, σ )eσ\k

)

=
∑

k∈σ
σ\k /∈X

sgn(k, σ )p(σ \ k)e∗
σ\k,

∂n−j−1 ◦ φj (eσ ) = ∂n−j−1(p(σ) e∗
σ

) =
∑

k∈σ
σ\k /∈X

p(σ) sgn
(
k,σ ∪ k

)
e∗
σ\k .

These two sums are equal term by term, due to Lemma 2.1. Thus φ is an isomorphism
of the complexes, implying

H̃i+1
(
2V ,X

) ∼= H̃ n−i−3(X∗). �
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