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Note on a comparison of evaluation schemes for the
interpolating polynomial

By Lonny B. Winrich*

In this note the computational efficiency of four methods for evaluating the interpolating poly-
nomial is examined. The methods considered are the Lagrange representation, the Barycentric
formula, Aitken’s algorithm and Neville’s algorithm. In general, the Barycentric formula is found
to be best if the degree of the polynomial is large; for polynomials of low degree the Lagrange
formula should be used when a large number of evaluations are required but Aitken’s or Neville’s
algorithm is more efficient if few evaluations are needed.

Elementary textbooks in numerical analysis are often II. The Barycentric Formula (Hamming, 1962, p. 95)
replete with different representations for the inter- P Ay

polating polynomial. Each such representation amounts Ak

to an algorithm for computing the value of the inter- P(x) =X 0X — Xk

polating polynomial at some desired point. While oA

some of these texts recommend certain schemes by K Sox — X

default (i.e., by presenting only certain schemes) few if 1

any authors give a comparison of them as computational Ay = 5.

algorithms. Such a comparison is not difficult, and one IT (xx — x;

is presented here. e

In this note I compare, on the basis of operations
required, four evaluation schemes for the interpolating
polynomial. I assume that data is given at the n + 1
points Xxg, Xy, . . ., X, and that we wish to interpolate a
function whose values at these points are yq, ¥y, .. ., ¥,
respectively. This interpolation will be accomplished ITI. Aitken’s Algorithm (Henrici, 1964, p. 206)
by a polynomial of degree n.
I consider the following schemes for calculation of P(x) = P, ,

the polynomial. P o=y, k=0,1,...,n

I. The Lagrange Representation (Hamming, 1962, (5 — X)Py g — (xg — X)P 4

p. 94) Proavr = X — X, ’
P(x) :k?‘o}’kLk(x)’ =d+1,d+2,...,n.
n x I x,’
L) = i]:]() (xk —x;/
ik
Table 1

!

i LAGRANGE BARYCENTRIC AITKEN/NEVILLE

|

- n(n 4 1) subtractions n(n + 1) subtractions

Setup Costs ‘ n?> — 1 multiplications | n» — 1 multiplications | n(n -+ 1) subtractions

. n+ 1 divisions n+ 1 divisions

|

| . . n—+2 :

| n+1 subtractions n + 1 subtractions 5 (n + 1) subtractions

‘ n additions 2n additions n(n + 1) multiplications

Evaluation Costs | ) n ..

| n(n 4 1) multiplications | » 4+ 1  multiplications i(n +1 divisions

| n + 2 divisions

|
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1V. Neville’s Algorithm (Henrici, 1964, p. 208)

P(x) =P, ,

P/(,O:yk’k:()’ l,...,n,
P _(xk'x)Pkfl.d_(Xk—dflfx)Pk‘d
k,d+1 =

X — Xk—d—1

k=d-+1,d+2,...,n

Each of these algorithms requires certain coefficients
which depend only on the data and can be calculated
once. The cost of such calculation may be called the
setup cost.

In the Lagrange scheme we set up by calculating

Vi

ﬁ (x — xi)’
=0

i—
itk

k=0,1,..., n

For the Barycentric formula the coefficients
A, k=0,1,...,n need to be calculated just once.
Aitken’s and Neville’s algorithms, require only the
differences x, — x4, k,d=20,1,2,...,n,k * d.

In addition to these setup costs, we must also consider
the cost of evaluating the polynomial for a particular
value of x. The summary of these costs is given in
Table 1. There is no cost difference between Aitken’s
and Neville’s algorithms.

Some general observations can be made on the basis
of this table. The setup costs of Aitken/Neville are
clearly less than those of the other two methods; but
the evaluation costs, because of the number of multipli-
cations and divisions, are almost surely greater. Thus
a trade-off in terms of number of evaluations is indicated.
Furthermore, while the setup costs of the Lagrange
scheme and the Barycentric formula are the same, the
number of multiplications and divisions is a linear
function of n for the Barycentric scheme but a quadratic
function for the Lagrange method. Thus a trade-off
based on the degree of the interpolating polynomial is
indicated.

In order to define these trade-offs accurately, we must
consider the relative times of the operations for a
particular machine.

A typical set of ratios of operation times are:

Add or subtract = 1 time unit
Multiply = 2 time units
Divide = 3 time units

Using these ratios I indicate, in Table 2, the method
requiring the least time by an L for Lagrange, B for
Barycentric, or A/N for either Aitken’s or Neville’s
algorithm.
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1 = degree of interpolating polynomial
k = number of evaluations
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On the IBM 360/50 at the University of Missouri-
Rolla the approximate ratios for normalised, floating
point, single precision, register-memory operations are:

Add or Subtract = 1 time unit
Multiply = 3-1 time units
Divide = 3-2 time units

Using these time ratios, we obtain the results shown
in Table 3.

Table 3

\\k P 2 3, 4,
n i

1 A/N | A/NorL L

2 A/N L

3 A/N |
4 | AN

5

6 B

Finally, we note that these results are modified slightly
by changing the setup calculations. For example, we
might calculate both A4, and A,y, in setting up the
Barycentric method or we might calculate the quotients
1/(x;, — x,) for the Aitken/Neville scheme. These changes
would, in general, increase the setup costs while
decreasing the evaluation costs. The precise trade-offs
for a given computer would, of course, change, but the
general picture remains the same.
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Note added at the suggestion of the referee

Much better algorithms can be devised, and the general ones streamlined when tabular values are available at equal intervals,
mainly by combining » divisions into a single final division, and by replacing certain multiplications by subtractions.
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