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Abstract. Let S(q, cl) be the maximal number v such that, for every general position 
linear map h: A ~q- 1~+ 1~ ~ R d, there exist at least v different collections {A t' . . . . .  A 'q} 
of disjoint faces of A~q_l~ld+l~ with the property that f(A")c~..-c~f(A'q)=/: ~ .  
Sierksma's conjecture is that S(q, d) = ((q - 1)!) a. The following lower bound (Theor- 
em 1) is proved assuming that q is a prime number: 

S(q, >_ iq--qii 

Using the same technique we obtain (Theorem 2) a lower bound for the number of 
different splittings of a "generic" necklace. 

Introduction 

The well-known Tverberg theorem [15] has at tracted much interest among  
combinatorial  geometers in the last 10 years. This theorem, which was itself 
inspired by Radon ' s  theorem, a close relative of  Helly's convexity theorem, 
has inspired much research and nowadays  is surrounded by a growing family 
of related results. In its original form the theorem claims that  every A c R d 
of size ( q - l X d + l ) + l  permits a partit ion A = A  t w . - . u A q  such that 
N~= 1 conv(Ai) # ~ .  The revival of this theorem began when B/tr~ny et al. [4] first 
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observed that it can be formulated as a statement about a linear map 
h: A ~p-~ta+ ~) ~ R d and then proved by topological methods that, for any prime 
number p and a continuous map f ,  there exist disjoint faces 

~k tl, . . . ,  A t*' c A (p-1) (d+ 1) 

such that Af= 1 f(N')  ~ ~ .  Naturally, it is hoped that the condition on p above 
is superficial but so far, in spite of several attempts, it seems to be unknown whether 
this statement is true for every continuous map f :  A tq-~a+ ~ R a and every q 
and d. Ozaydin has announced that the theorem is true if q is a power of a prime 
number [10]. A new and interesting approach was proposed in a preprint by 
Sarkaria [12]. He very skillfully used the technique of deleted joins combined with 
the obstruction theory, with the main goal of proving a general form of Tverberg's 
theorem for all q, including a result that there exist at least ( ( q -  1)!) d different 
partitions with the desired property. Unfortunately, Sarkaria's original and beauti- 
ful argument had a serious gap so the problem, known as Sierksma's Dutch cheese 
problem, see [11], of finding how many different partitions there are in Tverberg's 
theorem is still open. 

Let us denote by S(q, d) the maximal number v such that, for every general 
position linear map h: A tq- 1)td+ 1) ~ R a, there exist at least v different collections 
(partitions) {A t' . . . . .  A t,} of disjoint faces of A ~q-lJta+~) with the property 
h(N') c7... c~ h(N ~) ~ ~ .  Then Sierksma's conjecture is that S(q, d) = ((q - 1)!) a. 

The main objective of our note is to provide a lower bound for S(q, d) 
under the condition that q is an odd prime number. In fact, since we use a 
topological argument, our bound 

l (q~( 'q-  l)(d+ l))/2 
S(q, d) > - -  

- (q -- 1)! k,2// 

established in Theorem 1, holds not only for a linear but also for a general position 
continuous map f :  N q- 1)~a+ 1) .., R a. Also, using the same technique we obtain a 
lower bound for the number of different splittings of a "generic" open necklace. 

1. Configuration Spaces and the Main Theorem 

The main result of this paper is the following theorem. Recall that S(q, d) 
is the maximal number v such that, for every general position linear map 
h :Atq- t )cd+l~Ra,  there exist at least v different collections (partitions) 
{N' . . . . .  A t,} of disjoint faces ofA ~q- t)~d+ 1) with the property f (N ' )  ~ " "  c~ f ( N  ~) 
~ .  Here, h is a general position linear map if the image of the set of extreme 
points of A tq- l~td+ ~ is a set of points in general position in the usual sense. 

Theorem 1. Let q be an odd prime number. Then 

1 (q'~n/2 
S ( q, d ) >_ i q --j~ 1)~ . ' \~  j , A = (q - 1Xd + 1). 
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Moreover, if f :  A A ~ R a is an arbitrary continuous map which is assumed to be in 
general position in the sense of  Definition 1, then there exist at least 

(q 1)! 

different collections (partitions) {A'~, . . . ,  A'q} of  disjoint faces of  A A with the property 

f(A") n "-" ~ f ( A  '~) #f~5. 

For comparison, let us note that, for q = 3, the estimate above gives ~ ) a + t  
desired partitions whereas Sierksma's conjecture is that there should be at least 
2 a of them. 

The proof of Theorem 1, given in Section 3, is based on a sequence of lemmas 
about configuration spaces which naturally arise in this context. Since these 
spaces play a central role in any known result related to Tverberg's problem, we 
briefly review relevant definitions and facts. 

Tverberg's problem or any of its variations can be rephrased as the search for 
q-tuples of points xl . . . . .  xq e A A, A = (q - 1)(d + 1), which belong to disjoint faces 
of A/~, such that f (x~) = . "  = f(x~). A q-tuple of points having the property that 
the smallest faces of A n, where they belong, are pairwise disjoint, are called 
separated. They are called good q-tuples for the function f ,  or simply good q-tuples, 
if they are separated and f ( x l )  = "'" = f (Xq) .  A natural first step in approaching 
the problem of finding good q-tuples is to collect together all separated q-tuples 
in a configuration space and then analyze its relevant topological properties. There 
are two natural possibilities tied with the so-called deleted product and deleted 
join construction. Let K be any simpliciai complex. Then K~ and K~ ), the qth 
deleted product and the qth deleted join of K, respectively, are seen as subspaces 
of the product K q and the join K ~q~ defined by 

K~ = U {cr~ x "-  x o'~lcr~6 K a (¥i :#j) ~, n cr~ = ~ }  ~ KL 

K~ ) = U {rr~ , " ' * c r q l a i E K  & (Vi :#j)a~ n a) = ~}  c K ~q). 

It is useful to use both of these constructions, although it is worth mentioning 
that, in spite of the fact that the definition of K~ looks more natural, K~ ) seems 
to have some other advantages. A first and obvious advantage is that K~ ~ is a 
simplicial complex and K]  is not. Nevertheless, both of these constructions are 
useful and they have been successfully applied, for example, the first in [4] and 
the second in [13] and [16]. 

Let J~,d = (AA)~)- An important topological property, that is usually of interest 
when dealing with configuration spaces, is their conectivity. For example, a key 
technical fact proved in [4] is that (AA)] is ((q -- l)d -- l)-connected. It turns out 
that, from this point of view, deleted joins are much easier to handle, see, e.g., [13] 
or [16]. For this purpose we formulate the following easy but fundamental 
proposition. 
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Proposition 1. The deletedjoin operation commutes with joins, i.e.,for two simplicial 
complexes K and L, 

(K * L)~ ) ~ K~ ) * L~ ). 

Proof The proof follows immediately from the observation that the (abstract) 
simplexes in K • L are of the form z u a for some T E K and a e L and the simplexes 
in K t~) are unions al u ' "  ~2 trq where tr i ~ Ki and K~, i = 1 . . . . .  q, are disjoint copies 
of K. [] 

Equipped with the proposition above a better picture of deleted joins of 
complexes which are joins themselves can often be obtained. Specially, 

J~,a = ((Pt) {A+ 1))~) ~_ ((pt)~))(A + l) =~ [q]tA+ 1), 

where [q] = { 1, 2 . . . . .  q} and pt is a one-point space. The last complex is easily 
seen to be isomorphic to the simplicial complex ta(A + 1, q), where 

f~(m, n) = { f  c [m] x [ n ] J f  # ~ & f is a function}. 

Here, functions are seen as sets of ordered pairs, i.e., functions and their graphs 
are not distinguished. We call a function f maximal if dom f = [m]. 

Alternatively, D,(m, n) can be described as the simplicial complex defined on the 
m x n chessboard, where simplexes are those rook placements with the property 
that no two rooks are placed in the same column. 

It is well known, see [5], [7] or [8], that f~(m, n) is (dim f~(m, n) - 1)-connected. 
Hence, Jq.a is (A - 1)-connected. In the special case when q = 2 we observe that 
J2.a is actually the hyperoctahedral triangulation of the (d + 1)-dimensional 
sphere. 

We can embed the sphere S A - D.(A + 1, 2) in J~.d, for any q >_ 2, by specifying 
two maximal functions f ,  geD~A + 1, q) ~ Jq.a such that f(i) < g(i) for all 
1 < i <  A + 1; this sphere is denoted by S(f,g). A maximal function h eJq.a 
belongs to the triangulation of S(f, g) iff h(i) ~ {f(i), g(i)} for all i. It turns out that 
this construction provides a convenient basis for the homology HA(Jq, a) but we 
omit the details since this fact is not needed in what follows. 

For every continuous map f :  A ̂  ~ R a, let 

F = ftq):Jq.a = (AA)~ } --} (Rd) ~q) 

be the natural map induced by passing to joins. Note that F is a Zq-equivariant 
continuous map. Moreover, the elements x e Jq.d with F(x)~ D are in one-to-one 
correspondence with (ordered) good q-tuptes, where D is the diagonal in (Rd) t~) 
defined by 

D = {ttx~ + "" + tqx~(Rd)(q~l(Vi, j)t, = 1/q & x~ = xy}. 
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Therefore, every good q-tuple determines q! elements from the set 

{x ~ Jq.dt F(X) ~ D}. 

Note that (R~) (q) is a Zq-space (Zq-action permutes the coordinates) and becomes 
a free Zq-space after removing the diagonal 

Definition 1. A map f :  A A ~ R d is in general position iff(q)(J~dl)) m D = ~ ,  where 
J~-d 1) is the codimension one skeleton of the complex Jq.d. In other words, f is in 
general position if no good q-tuple is contained in the boundary of a top- 
dimensional simplex of Jq.d. 

It can be easily checked that if f is a general position linear map, then f is in 
general position in the sense of Definition 1. 

The proof of Theorem 1, given in Section 3, utilizes a result (Proposition 3) 
about degrees of Zq-equivariant maps between free Zq-spheres. This result will be 
applied to Zq-spheres Z~ which naturally arise in connection with the configura- 
tion space Jq.d. All these spheres are homoiogically trivial in Jq, d, i.e., they induce 
trivial classes in H.(Jq,d) and they come naturally with cones 

O ~ . v  = {v} * : ~  c Jq, d- 

The following proposition gives a description and an estimate of the number 
of different cones over free, Zq-invariant, (A - 1)-dimensional spheres in Jq,d. 

Proposition 2. Let q be an odd prime number. Then there exists at least 

( q ~ n / 2  

~o = (A + 1 ) ' N ' q ' \ 2  j , 

different top-dimensional subcomplexes of  Jq, d which are cones over free Zq-equi- 
variant spheres. Here and later N denotes the number of  partitions of  [A] in pairs. 

Proof There is a one-dimensional invariant sphere in ~(2, q) for every unordered 
pair {u, v} of numbers 1 < u < v < q; we call such a pair admissible. It is described 
as the unique equivariant circle in f~(2, q) which contains 1-simplices {(1, 1), (2, u)} 
and {(1, 1), (2, v)}. All these circles, denoted by S,,~, are different. For every pair 
of numbers 1 < i < j < A + 1 and an admissible pair {u, v}, let S~'~ be the circle 
described above with 1, 2 replaced by i and j. 

We choose an integer 7 ~ [A + 1], a partition n of [A + 1]\{7} into pairs {il , j l  }, 
{i2,J2} . . . . .  {is,j~ }, 2s = A, and admissible pairs {Uk, Vk} = ~0(k), 1 < k < s. 

Let ~ = (~, n, tp) denote this choice and let c4 be the set of all possible choices. 
Let 

- u  I , v I - -u2 ,  v 2 --bl~, t~ 
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be the [A - 1]-dimensional sphere associated with 3 ~. Then E~ is a Zq-invariant 
subcomplex of Jq, d and if 3 ~, ~ '  e ff are different, then the spheres E~, and Eel,, are 
also different. Choose a point v e {7} x [q]. Then ®~, ~ = {v} • E~ is a cone over 
E~, with vertex v. 

A simple calculation shows that the number of these cones is 

f l = ( A + l ) ' N ' q ' ( ~ )  ^/2. [] 

Remark 1. First note that the action of Zq on the circle S,/;,{ is equivalent to the 
action on S I c  R 2 induced by the rotation through an angle 2nm/q, where 
m(u-  v)----1 (mod q). In other words, for some orthogonal action of Zq on 
S 1 c R 2, there exists a Zq-equivariant homeomorphism 0t: S~'{ ~ S 1. Since the join 
of two orthogonal actions is also orthogonat, we conclude that the action of Z~ 
on X~, is also equivalent to an orthogonal action. 

Remark 2. Proposition 2 remains true even if we omit the assumption that q is 
an odd prime number. In that case, assuming only that A is an even number, we 
obtain 

1, 

where q~(n) is the number of integers smaller than n and relatively prime to n. 

We assumed in Proposition 2 that q is a prime number since it simplified the 
presentation and we need this assumption later in order to guarantee that certain 
actions on spheres are free. 

2. Equivariant Maps Between Spheres 

Let S n be a sphere equipped with a free action of the group Z m, where m is not 
necessarily a prime number. Then, for every Zm-equivariant map f :  S" ~S", 
deg(f) = 1 (mod m). This simple and elegant result, proved by Krasnoselsky and 
Zabrejko in [9], was a key ingredient in the proof of the continuous Tverberg 
theorem [4]. We need a more general result which applies to Zm-equivariant maps 
f :  S n--  S" between free Zm-spheres which are not necessarily the same as Z,,- 
spaces. Before we formulate this result, let us recall some necessary definitions and 
facts about group actions and equivariant maps. 

Let Zm be the cyclic group, say Zm = {(k[k e Z, ~ = exp(2ni/m)}. Given positive 
integers rl . . . . .  r, prime to m, the complex representation V(~)= V(rl ..... r,) is 
defined by 

Z , .  × C" ~ C", (~, (z~ . . . . .  z . ) ) ~ ( ~ ' z .  . . . ,  ~'°z.). 
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Let S(V) be the unit sphere in the Euclidean vector space V. So, 

SV(P) = SV(r~ . . . . .  r.) 

is the unit sphere in V(~). For  a fixed n, we choose an orientation on C" which 
induces an orientation on S(C") so the degree deg(f) is well defined for every map 
f :  SV(~) -* SV(g). The proof of the following proposition can be found in Proposi- 
tion II.4.12 of [14]. 

Proposition 3. For every Z,.-equivariant map f :  SV(r 1 . . . . .  r,) ~ SV(s 1 . . . . .  s,), the 
degree deg(f) o f f  satisfies the relation 

deg(f) r 1 . . . . .  r. = sl . . . . .  s, (rood m). 

Corollary 1. For every equivariant map f:  SV(r 1 . . . . .  r , )~SV(s 1 . . . .  , s,), deg(f) ¢0.  

Proposition 4. Let V and W be real Euclidean spaces equipped with an orthogonal 
action of the group Z,. such that the induced actions on S(V) and S(W) are free. 
Then, for every Zm-equivariant map f :  S ( V ) ~  S(W), deg(f) ¢ 0. 

Proof V ~ V and W ~ W can be identified, as real vector spaces, with the 
complexifications of V and W, respectively. Since the actions of Zm on V and W 
are orthogonal and O(n) c U(n), we observe that the induced actions on V • V 
and W @ W are unitary and free. Hence, 

S(V @ V) ~- S(V ® C)(~) and S(W @ W) ~- S(W ® CXi) 

as Z,,-spaces for some ~ and ~. Also, as Z,,-spaces S(VO V)~-S(V) .S (V)  and 
by Corollary 1 applied to the equivariant map f *  f : S(V • V) ~ S(W G W), 
d e g ( f ,  f )  4= 0 which implies deg(f) ¢: 0. 

3. Proof of Theorem 1 

Proof o f  Theorem 1. Let F = f ~ ) : J q ,  d~(Rd)tq~ be the map induced by 
f : A  A ~ R  d, F is a Zq-equivariant continuous map. Moreover, the elements 
x eJq. a with F(x)~D are in one-to-one correspondence with (ordered) good 
q-tuples, where O is the diagonal in (Rd) tq) defined by 

D = {tlX 1 + " "  + tqxq E (R~)~q)](Vi, j)ti = 1/q & xi = xj}. 

Therefore, every good q-tuple determines q! elements from the set 

Note that (Ra) t~ is a Zq-space (Zq-action permutes coordinates) and becomes a 
free Z~-space after removing the diagonal. So, all we need, in order to complete 
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the proof of Theorem 1, is the following proposition about Zq-equivariant maps 
F: dq.d "* (Rd) tq)" [] 

Proposition 5. Let F: Jq.d ~ (Rd) tq) be a Zq-equivariant continuous map such that 

F(J~d 1}) n O = ~ ,  (1) 

where J~-fd l~ is the codimension one skeleton Of Jq. d. Then 

f q'~A/2 
card{x e Jq.alF(x)~ D} >_ q . ~ )  . 

Proof. From (1) we have that every x e A : =  {xeJq.dlF(x)eD} belongs to the 
interior of some top-dimensional simplex of J,,d. Take a cone ®~,v over one of 
the spheres X~,, constructed in the proof of Proposition 2. Then the composition of 

FI~,: E~ --* (Ra)~q~\D 

with the Zq-homotopy equivalence (Rd)tq~\D ~-S(D l) has a nonzero degree 
(Proposition 4 and Remark 1). From here we deduce 

F(O~,, ~) c~ D # ,~5. 

Hence, every cone ®~,~ contains at least one element from A. Of course, each 
element from A appears in many cones. More precisely, every top-dimensional 
simplex from Jq, d, consequently every element from A, appears in exactly 

= (A + 1). N.(q - 1) A/2 

cones. Indeed, let us take a top-dimensional simplex, i.e., a maximal function 

f e  f~(A + l,q) ~ Jq.d. 

There are A + t choices for the vertex of a cone containing the maximal simplex 
determined by f .  The column {~} x [q] containing this vertex is uniquely de- 
termined by f .  Also, we have N different splittings of the set [A + 1]\(7} in pairs, 
and, for each pair, (q - 1) choices for an admissible pair (one element from the 
admissible pair is already determined by f).  Hence, 

card(A) > ~ = q. - [] 

4. Application to the Splitting Necklace Problem 

It was a beautiful observation of Alon [1], that the so-called "splitting necklace 
problem" requires for its solution the method of equivariant maps. His solution 
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was based on the continuous Tverberg theorem of B~ir~ny et al., so it is not a 
surprise that the method, which gave us a lower bound for Sierksma's cheese 
problem, also gives a lower bound for the number of different fair splittings of a 
generic open necklace. Let us remind ourselves about the necklace problem. A 
(continuous) model of an open necklace is the unit interval I = [t3, 1] together 
with disjoint measurable sets A 1, . . . ,  A d c  I representing beads of different colors. 
The unit interval has to be cut in pieces and the pieces distributed to q different 
persons. This distribution is called a splitting. The question is to find the least 
number of cuts needed for a fair splitting which means that each person should 
receive a wth part of the measure of each of the sets I, A 1 . . . . .  Ad. 

The answer to this problem, given by Alon [1], is that A = (q - 1)(d + 1) cuts 
are sufficient. 

The following question could also be raised: 

Question 1. Assuming that the necklace is in general position, which means that 
there are no fair splittings with fewer than (q - 1)(d + 1) cuts, what is the lower 
bound for the number of different fair splittings with A = (q - 1Xd + 1) cuts? 

The following analysis shows that the deleted join technique is very suitable 
for describing splittings of a necklace. This leads to a simpler proof of Aton's 
theorem and to Theorem 2, which gives a lower bound for a number of splittings 
of a generic necklace. 

We start with an observation that the space of all cuts of an open necklace into 
at most A small intervals is isomorphic to A A. The vertices of A A correspond to 
A + I small intervals in which I is divided and the coordinates are lengths of the 
intervals. A splitting is obtained by arranging A + 1 small intervals into q groups, 
which implies that the space of all splittings is isomorphic to Jq.d = ( Ate- l)ta+ 1~)~. 
More precisely, suppose we have a splitting S, i.e., a division of I into intervals 
I1 . . . . .  IA+ 1. For  each interval it has to be decided to whom the interval belongs. 
Every choice is nothing else but a maximal function f e ~(A + 1, q), or in other 
words, we are given a top-dimensional simplex from dq, a. Let 1/1, . . . ,  I i.,. be the 
intervals given to the ith person. Let mi = m(IiO + "'" + rn(li,), where rn(I)) is the 
length of the interval I~. Then the element from dq, a, associated with a given 
splitting is 

x ( S ) =  ml 1 1 + ' " + - - 1 1 , ,  + "" + mq "'" 
mt \ mq me 

The map ~P: {subintervals of I} ~ R d given by 

W(L) = (m(L c~ A 1) . . . . .  m(L n Aa)) 

computes the vector of values of all beads contained in a given interval. Now we 
define a map F: Jq, d -'* (Rn) ~q) by 

F(x(S)) = ml[qJ(I~) + " "  + qJ(I~/,))] + " "  + mq[qJ(l]) + " "  + q'(I.q~q~)]. 
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This map obviously measures how far from being fair is a given splitting. F is a 
Zq-equivariant continuous map and a splitting S is fair iff F(x(S)) ~ D. Finally, note 
that a necklace is in general position iff F satisfies condition (2). 

So, everything is set up for an application of Proposition 5 which implies the 
following result. 

Theorem 2. Let  q be an odd prime. Then if a necklace is generic in the sense that 
it does not admit a fair splitting consisting of  less than A = (q - 1)(d + 1) cuts, then 
there are at least 

fair splittings with A cuts. 

Remark 3. In case q is not a prime number a nontrivial lower bound can still 
be found for the number of fair splittings of a generic necklace. For this purpose 
the observation already used in Proposition 3.3 of [2], can be used to obtain a 
fair splitting in the case q = u" v if it is known how to split a necklace fairly in 
cases q = u and q = v. 

Remark 4. Theorem 2 remains true if the sets A1,. . . ,Ad and the Lebesgue 
measure on [0, 1] are replaced by d + 1 nonatomic, a-additive Borel measures on 
the unit interval. 

Let us conclude this section with the following problem. 

Question 2. Design an algorithm for finding a top-dimensional simplex contain- 
ing a good q-tuple. 

Alon [2] has already raised the question of finding an algorithm for designing 
a fair splitting of a necklace. A positive answer to Question 3 would provide a 
first step in this direction. After that, methods of linear programming would 
probably be applied to obtain a fair splitting. 

The proof of Lemma 1 shows that every cone O~,.v contains a good q-tuple. 
Hence, the algorithm requested in Question 3 may take into account only those 
simplexes which belong to a fixed cone O~,v. 
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