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Note on a paper of John W. Miles 

By LOUIS N. HOWARD 
Mathematics Department, Massachusetts h t i t u t e  of Technology 

(Received 21 March 1961) 

The theorem X established by Miles in the preceding paper is here given a simpler 
and more general proof. Some further theoretical results concerning the stability 
of heterogeneous shear flows are also presented, in particular a demonstration 
that the complex wave velocity of any unstable mode must lie in a certain semi- 
circle. 

1. Introduction 
I n  his paper (1961; henceforth referred to as I), Miles has established the con- 

jecture of G. I. Taylor that a sufficient condition for infinitesimal stability in a 
parallel, stratified, inviscid flow is that the local Richardson number should 
everywhere exceed 4. Miles assumed in his proof that the velocity profile was 
monotonic, and that it and the density profile were analytic in a complex neigh- 
bourhood of the real flow domain. This note presents a simpler proof of Miles’s 
theorem, which does not require these hypotheses. Some other related results 
are also given. For a derivation of the basic equations and references to previous 
work, one may consult Miles’s paper. 

2. Miles’s theorem 
To facilitate reference to I, the same notation will be used here. The basic 

velocity field is V(y), and the density field p(y)  [po(y) was used in I, but the sub- 
script will not be needed here]. The stream-function perturbation is 

(U - c) P(y) esMz4, 

and the linearized equations of motion lead to 

[p( u - C)”]’ + [Pg - k2( u - c)2] P = 0. (2.1) 
This is equation (3.3) of I ;  p is -p‘/p, and g is the acceleration of gravity. It 

is always assumed here that the density stratification is statically stable, i.e. 
p 2 0. The boundary conditions are that P vanish on y = y1 and y2 (rigid walls), 
which may recede to f co in limiting cases. The flow is unstable if (2.1) and the 
boundary conditions have non-trivial solutions with Im c > 0. Set c = c, + ici, 
and for brevity let W = U - c. Suppose now that P is such an unstable solution. 
Since ci > 0, W is never zero and one can select one branch of W* to be used con- 
sistently throughout (yl,y2); it will be as differentiable as U is, say at least 
piecewise twice continuously differentiable. Now set G = W*P, and replace 
the variable P in (2.1) by G. This gives 

(p  WG’ ) ‘ - [&(p U’)’ + k2p W + p W-l( & U” - gP)]  G = 0, (2.2) 
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and, of course, G(yl) = G(y2) = 0. Multiplication of ( 2 . 2 )  by the complex con- 
jugate 

JpWIIG’lz+kz IGlz]+J+(pU’)’ lClz+Jp[&Uf2-g,8] FV lG/Wlz = 0. (2 .3)  

(Here and subsequently 1 is used to denote the definite integral over (yl, yz).) 
Recalling that cf > 0, we see that the imaginary part of (2.3) implies 

of G and integration over (yl, yz) then leads to 

Jp[ I G’ I + k2 I G 1’1 + Jp[g/3 - $ U”] I G/ W I = 0. (2.4) 

This is clearly impossible if gp- t U f 2  is non-negative throughout, so that a 
necessary condition for instability is that gp- tVz be somewhere negative, or, 
as Miles expressed it, a sufficient condition for stability is that gP - V Z  should 
be everywhere non-negative. If the local Richardson number J(y)  = gP/UlZ is 
to be well defined everywhere, it  is necessary to be cautious about points at which 
U‘ = 0, so that there is a minor difficulty in converting the dimensional stability 
condition gP-BU’2 2 0 to the dimensionless one J(y) 2 & if U is not strictly 
monotonic. This is obviously a trivial difficulty, however; if one prefers the 
statement J 2 a, it is probably simplest to define J at points at which U’ = 0 to  
be its limiting value, + 03 being allowed. 

3. The semicircle theorem 

P and integrate over (yl, yz), as in the derivation of (2.3), to get 
Returning for a moment to the original equation (2 .1) ,  let us multiply it by 

JpW2[ (FfIZ+k2[p l z1 - [g /3~F[2  = 0, (3.1) 

[p[(U- C,l2 - 41 [IF’ 12 + k2 jP(Z1 -JgpP [PI2 = 0, 
2ic ,Jp(U-cr)  [ I I ” ’ I ” + Z  [F[Z] = 0. 

or, separating the real and imaginary parts, 

(3.2) 

(3.3) 

Equation (3.3) gives the result that c,, must lie in the range of U if ct > 0, which 
goes back to Synge (1933) and has been given under various conditions by several 
other writers (references are given in I). However, it  seems that rather more 
can be said. Let Q = [IPf12+k21F12]. Then, under the assumption ci > 0, 
(3.2) and (3.3) can be written 

JUQ = C, JQ, (3.4) 

JU”Q = (c,” + 9)  IQ + IgpP lplz. (3.5) 

Suppose now that a < U ( y )  < b. Then 

0 3 l ( u - a ) ( U - b ) Q  = JUzQ-(a+b)(UQ+abJQ 
= [c: + C: - (a  + b )  C, + ab] JQ + JgpP 

= { [ ~ , - 3 ( a + b ) I ~ + ~ $ -  [ 8 ( a - b ) 1 2 ) J Q + J ~ ~ / 3  lF12- 

Since p 2 0 and Q > 0, this implies 

[c, - +(a + b)]’ + cf < [+(a - b)I2. (3.6) 

Thus, the complex wave velocity c for any unstable mode must lie inside the semi- 
circle in the upper hav-plane which ~ L M  the range of U for diameter. 
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I have not been able to find that this rather striking extension of the familiar 
statement 'cr must lie in the range of U for an unstable wave' has been pointed 
out before, although it is slightly reminiscent of some results of Synge; unfor- 
tunately he started with a different integral relation, which does not give so 
simple a result. 

4. The growth rate 
Miles's theorem and the semicircle theorem limit the values of the Richardson 

number and the complex wave velocity which are accessible to unstable modes. 
It is of interest to have a similar bound on the growth rate kc, possible for an 
unstable wave. A very simple bound of this type can be obtained from (2.4), by 
observing that I Wl-2 < ci2. Thus (2.4) gives 

" J P  IGI2 = JP[au'z-gPI IG/WJZ-JP lG'12 

and so k2cq < max [&U'z - gp].  (4.1) 

This estimate is not usually sharp-for example, the Couette flow, with U' 
constant, is known to be neutrally stable-but in most cases it will probably 
give the correct order of magnitude of the maximum growth rate. It is sufficient 
to show that c, must approach zero as the wavelength decreases to zero, given 
the boundedness of U';  but there is a likelihood that in fact kc, --f 0 as k -+ co, and 
with sufficient assumptions the still stronger statement that all waves shorter 
than some critical wavelength are stable is probably true, as illustrated by the 
examples of Drazin and Holmboe cited in I. 

5. Connexion with Rayleigh's theorem 
The proofs of Miles's theorem and the semicircle theorem given above are very 

similar to the ordinary proof of Rayleigh's theorem on the necessity of an in- 
flection point for instability in homogeneous parallel inviscid flow. Synge (1933) 
gave a generalization of Rayleigh's theorem for the case of stratified flow. All 
three results can be obtained in a unified way as follows. 

Assuming c, > 0, let F = W-"H, some definite branch being selected if n is 
not an integer. Substituting this in (2.1), one obtains 

[ p p ( l - n ) p ] '  - [k2pWW-n) + nWl-Z"(pF)' 

+pW-Zn(n(l-n) iY2-gP)]H = 0. (5.1) 

and integration over (yl, y2) gives the integral relation Multiplication of this by 

/ p ~ 2 ( l - n ) [ ( ~ ' j z + k z  ( ~ l 2 ] + n l ~ 1 - 2 n ( p F ) '  1 ~ 1 2  

+/pW-2n[n(1-n) U'2-g/3] IHIz = 0. ( 5 4  

Taking n = 0 in (5.2) leads to the semicircle theorem, n = 4 gives Miles's 
theorem, and n = 1 gives Synge's generalization of Rayleigh's theorem, which 
states that a necessary condition for instability is that (pU')' - 2Bgp I Wl-2 (U - cr) 
should change sign in (yl, yz). 
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Finally, it should be mentioned that if the rigid upper boundary (y = y2) of 
the fluid is replaced by a free surface at zero pressure, the boundary condition 
H(y,) = 0 for (5.1) is replaced by H' = [nW-1U'+gW-2]H at y = pa. Equation 
(5.2) then becomes 

jpW2(1-lt)[ I H'12 + k2 I H 12] + n IW1-2n(pU')' I H l2  

From this equation one can, however, derive Miles's theorem (n = 9) and the 
semicircle theorem (n = 0) by very slight modifications of the arguments given 
above. The generalization of Rayleigh's theorem does not go through. That this 
is to be expected is shown by the example p = const., U = 0 for y < 0, U = y 
for 0 < y < 1, g = 0, in which the flow is stable if the upper surface (y = 1) is 
rigid, but unstable if it is free. 

+JpW-ZB[n(l -n)-g#8] IH12-[p(nW'-2"U'+gW--2n) IH12],-,* = 0. (5.3) 
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