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NOTE ON AERODYNAMIC HEATING*

By H. W. EMMONS (Harvard University)

The acceleration of an initially stationary semifinite viscous fluid by the sudden

starting from rest of the infinite bounding plane at velocity U parallel to the plane has

been derived many times. See for example, Aerodynamic Theory.1 The equations of

motion for this case assuming constant physical properties reduce to the well known heat

conduction equation,

du d2u ,,.
(1)

yielding as the solution for the velocity distribution

u = U -172 f exp [ —/32] d0. (2)
"" Jv/2 <»«)*/»

The question of the temperature distribution resulting from the energy dissipated

has not been previously discussed to the author's knowledge and seems worthy of a note.

The energy equation reduces for the present case to

dT d2T v (duY . .
It - a w + c. V55 1 • (3)

where the physical constants a, v, the thermal diffusivity and kinematic viscosity, show

the rate of spread of the energy and the momentum respectively. Their ratio is the Prandtl

Number

ft-fif(4)

A particular integral Tv of (3) may be written down by the method of sources

t - [' f l (*»)* exp{_ (y " X)!A dr dx . (5)
' I L c„ \dy) exp \ 4a(t - r)j [47ra(« - r)]I/2 { )

On substituting the velocity distribution from (2)

r- - S /,' T {- ~ [4^ - ' <6>

This result may be simplified as follows:

r)]1

dws:

Let £ = —{y — X)/[4a(t — r)]1/2 be used to replace X. One integration then yields

= Vl ['
xCp J o

exp \ ~
4 at — 4 or + 2 vt

Now let f = y2/(4at — 4ar + 2vt)

2v 1/2

dr. (7)
_r(4a£ — 4ar + 2vt)

TT2 «C2/Pr)(»V4a() { i j.

T-- Z-WV - L, 11" • (8»

*Received June 2, 1950.

*W. F. Durand, Aerodynamic Theory, vol. Ill, p. 64.
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A trigonometric substitution f = y2/iat sin2 6 gives finally

Tv = — [Pr/(2 - Pr)]1/2 - Iexp {-y2/4at sin2 B\ dd. (9)
Cp IT J,in-MPr/2] ■/»

Since there were no sources except those of dissipation, this becomes the solution for the

adiabatic plate if we add Eq. (9) to the initial temperature T0 . We take then as the

particular integral the solution for an adiabatic plate

Tv = T0 + — [Pr/(2 - Pr)]1/2 - ['" exp {-tf/4at sin2 6} dd. (10)
Cj, 7T J8in-'[Pr/2]>/»

To satisfy any other boundary condition at the plate, it is only necessary to add the

appropriate complementary function chosen from the many known solutions of the heat
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conduction equation. In particular, for a rate of heat transfer q we add the complementary

function

Tc = y (m/t]i/2 exp {-y2/4at} rj2 f exp [—/32] dp). (11)
K \ 7r J y/2[at ] */* '

Returning now to a consideration of the solution for an adiabatic plate, we note that

while the integration must in general be carried out numerically, the most important
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question, that of the plate temperature, can be answered without difficulty. If y = 0

Eq. (10) gives for the plate temperature

T = T0 + 2[Pr/(2 - Pr)],/2(l - ? surHPr/2]"2) ■ (12)

Thus for the infinite plate the recovery factor is

r = 2[Pr/(2 - Pr)]1/2(l - ? sin-I[Pr/2],/2),

which is to be compared to the corresponding recovery factor for a finite plate with a

steady boundary layer

r = Pr1/2. (13)

For this latter result see for example Emmons and Bainerd2. Figure 1 compares these two

results. The equilibrium temperature of an accelerated plate is independent of time and

is very nearly the same as that of the plate in steady flow of the same velocity. The tem-

perature distribution of Eq. (10) has been obtained by graphical integration and is shown

in Fig. 2.

2

DISTANCE FROM PLATE - y/«/at

Fig. 2.

By comparing the thickness of the boundary layer of Eq. (2), and Fig. 2 with that of a

point on a steadily moving plate distant x from the leading edge it is found that the

'Emmons and Bainerd, Temperature effects in a laminar compressible fluid boundary layer along a flat

plate, J. Appl. Mech., p. 4 (1941).
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non-steady layer would equal the steady layer in times given approximately by

I ~ for velocity,

(yx
t — -jj for temperature.

Thus to a reasonable approximation it can be said that by the time a point on a suddenly

accelerated plate moves 5 times its distance from the leading edge, its boundary layers

will have become steady state ones.

PLASTIC WAVE PROPAGATION IN A BAR OF MATERIAL

EXHIBITING A STRAIN RATE EFFECT1

By L. E. MALVERN (Carnegie Institute of Technology)

1. Introduction. The propagation of a transient wave of plastic deformation due to

longitudinal impact on a bar has been treated by Donnell,2 and White and Griffis,3 by

a non-linear superposition method. The partial differential equations governing the

wave propagation were derived independently by Taylor4 and von Karman5 under the

assumption of a relation between stress and strain independent of strain rate. Constant

velocity tension impact tests at the California Institute of Technology6,7 gave fair

agreement with the theory. Some systematic discrepancies were, however, observed.

In the tension impact tests the maximum residual strain was smaller than predicted

by the theory, and the observed force-time variation at the fixed end during impact

showed that the stress there was greater than the theory predicted. It has been sug-

gested6 that these discrepancies were due to the use in the theory of an invariant relation

between stress and strain independent of strain rate. At the high strain rates involved

in deformation under impact a considerable deviation from the static stress-strain

relation may be expected. The present work extends the theory to apply to materials in

which the stress is a function of the instantaneous plastic strain and strain rate.

1Reoeived June 5, 1950. The results presented here were obtained in the course of research conducted

at Brown University under Contract N7onr-358 sponsored jointly by the Office of Naval Research and the

Bureau of Ships. This paper is part of a thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy at Brown University, October, 1949.

2L. H. Donnell, Longitudinal wave transmission and impact, A.S.M.E., Trans. 52 (1), APM 153-167

(1930).
3M. P. White and L. Griffis, The permanent strain in a uniform bar due to longitudinal impact, J. Appl.

Mech., A.S.M.E., Trans. 69, A-337-A-343 (1947).
4G. I. Taylor, Propagation of earth waves from an explosion, British Official Report R.C. 70 (1940).

5Th. v. Karman, On the propagation of plastic deformation in solids, N.D.R.C. Report No. A-29

(O.S.R.D. No. 365) (1942).
6P. E. Duwez, D. S. Wood, D. S. Clark, and J. V. Charyk, The effect of stopped impact and reflection

on the propagation of plastic strain in tension, N.D.R.C. Report No. A-108, (O.S.R.D. No. 988) (1942).

7P. E. Duwez and D. S. Clark, An experimental study of the propagation of plastic deformation under

conditions of longitudinal impact, A.S.T.M., Proc. 47, 502-532 (1947).


