\square
\square

$[A D-A 187113$:UMENTATION PAGE

OMC FLE COPP

Form Approved OMB No. 0704-0188

2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribition unlimited.			
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE					
4. PERFORMING ORGANIZATİN REPORT NUMBER(S)		5. MONITORIN A	RGANIZA SRP. 7	$\begin{aligned} & \text { PORT } \\ & ? \end{aligned}$	
6a. NAME OF PERFORMING ORGANIZATION	6b OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION			
6c. ADDRESS (City, State, and IIP Code)		7b. ADDRESS (City, State, and ZIP Code)			
8a. NAME OF FUNOING:SPONSORING organization	8b OFFICE SYMBOL (If applicable) 1711	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER$\therefore 1-0512-860162$			
8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF FUNDING NUMBERS			
		PROGRAM ELEMENT NO	$\begin{aligned} & \text { PROJECT } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { TASK } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { WORK } \\ & \text { ACCES } \end{aligned}$

11. TITLE (Include Security Classification)
12. PERSONAL AUTHOR(S)

| 13a. TYPE OF REPORT | 13b TIME COVERED
 FROM | 14. DATE OF REPORT (Year, MOnth, Day) | 15. PAGE COUNT |
| :--- | :--- | :--- | :--- | :--- |
| 16 SUPPLEMENTARY NOTATION | | | |

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

AFOSR-TK. 女7-1560

NOTE ON BOUNDARY STABILIZATION OF WAVE EQUATIONS ${ }^{1}$

John E. Lagnese
Department of Mathematics
Georgetown University
Washington, DC 20057

[^0]Abstract. An energy decay rate is obtained for solutions of wave type equations in a bounded region in \mathbb{R}^{n} whose boundary consists partly of a nontrapping reflecting surface and partly of an energy absorbing surface. Unlike most previous results on this problem, the results presented here are valid for regions having connected boundaries.

Key:words. Wave equations, boundary stabilization, exponential stability.

Let Ω be a bounded. open . connected set in $\mathbb{R}^{n}(n \geq 2)$ and Γ denote its boundary. Assume that Γ is piecewise smooth and consists of two parts. Γ_{0} and Γ_{1}, with $\Gamma_{1} \neq \phi$ and relatively open in Γ, and Γ_{0} either empty or having a non-empty interior. We set $\Sigma_{0}=\Gamma_{0} \times(0, \infty) . \quad \Sigma_{1}=\Gamma_{1} \times(0, \infty)$. Let k be an $L^{\infty}\left(\Gamma_{1}\right)$ function satisfying $k(x) \geq 0$ almost everywhere on Γ_{1}. Consider the problem

$$
\begin{equation*}
w^{\prime \prime}-\Delta w=0 \quad \text { in } \Omega \times(0, \infty) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\partial w / \partial v=-k w \quad \text { on } \Sigma_{1}, \quad w=0 \text { on } \Sigma_{0} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
w(0)=w^{0}, \quad w^{\prime}(0)=w^{1} \quad \text { in } \Omega \tag{3}
\end{equation*}
$$

where $=d / d t$ and v is the unit normal of r pointing towards the exterior of Ω.

Associated with each solution of (1.1) is its total energy at time t :

$$
E(t)=\frac{1}{2} \int_{\Omega}\left(w^{\prime 2}+|\nabla w|^{2}\right) d x
$$

A simple calculation shows that

$$
E^{\prime}(t)=-\int_{\Gamma_{1}}{ }^{k w} \cdot 2 \mathrm{~d} \Gamma \leq 0
$$

hence $E(t)$ is nonincreasing. The question of interest for us is the following: Under what conditions is it true that there is an exponential decay rate for $E(t)$. i.e..

$$
\begin{equation*}
E(t) \leq C e^{-\omega t} E(0), \quad, t \geq 0 \tag{4}
\end{equation*}
$$

for some positive ω.
The first person to establish (4) for solutions of (1)-(3) was G.

Chen [1], under the following assumptions: $k(x) 2 k_{0}>0$ on Γ_{1}, and there is a point $x_{0} \in \mathbb{R}^{n}$ such that

$$
\begin{gather*}
\left(x-x_{0}\right) \cdot v \leq 0, \quad x \in \Gamma_{0} \tag{5}\\
\left(x-x_{0}\right) \cdot v \geq r>0, \quad x \in \Gamma_{1} . \tag{6}
\end{gather*}
$$

Chen slightly relaxed (5) and (6) in a later paper [2]. The most general result to date in terms of the assumed geometrical conditions on Γ appears in [5]. There it is proved that (4) is valid provided there exists a vector field $h(x)=\left[h_{1}(x) \cdots, h_{n}(x)\right] \in C^{2}(\bar{\Omega})$ such that
(9) the matrix $\left(\partial h_{i} / \partial x_{j}+\partial h_{j} / \partial x_{i}\right)$ is positive definite on $\bar{\Omega}$.

This last result has subsequently been reproved by Lasiecka-Triggiani [7] and Triggiani [9] using methods different from those in [5]. In all of the ∞ papers cited, the estimate (4) was obtained from estimates on $\int_{0} E(t) d t$ by employing a result of Datko [3] (later extended by Pazy [8]). Thus in all cases the constants C and ω are not given explicitly in terms of problem data.

An important observation is that when Γ is smooth, the conditions (5) and (6) (resp.. (7) and (8)) together force $\bar{\Gamma}_{0} \bar{\Gamma}_{1}=\phi$. Thus if $\Gamma_{0} \neq \phi$. the above results cannot apply to regions Ω having a connected boundary.

However, in a recent paper [4]. Kormornik and Zuazua succeeded in relaxing condition (6) of Chen to

$$
\begin{equation*}
\left(x-x_{0}\right) \cdot v<0 \quad \text { on } \Gamma_{1} \tag{10}
\end{equation*}
$$

thus allowing for regions with smooth connected boundaries, but at the expense of replacing the boundary condition (2a) by

$$
\begin{equation*}
\left.\partial w / \partial v=f\left(x-x_{0}\right) \cdot v\right) w \quad \text { on } \Sigma_{1} . \tag{11}
\end{equation*}
$$

In addition, the proof in [4] gives explicit estimates of the constants C and ω in (4) in terms of the geometry of Ω, more specifically. in terms of the constants μ_{0} and μ_{1} which appear in (16). (17) below.

The purpose of this paper is to extend the result of [4] in two ways: first, by replacing the specific vector field $x-x_{0}$ in (5) and (10) by a general vector field $h(x)$ satisfying (7), (9), and

$$
\begin{equation*}
h \cdot v \geq 0 \text { on } \Gamma_{1} \tag{12}
\end{equation*}
$$

and, second, by replacing the boundary condition (11) by

$$
\begin{equation*}
\partial w / \partial v=-k^{*}(h \cdot v) w^{\prime} \quad \text { on } \Sigma_{1} \tag{13}
\end{equation*}
$$

where $\mathrm{k}^{*} \in \mathrm{~L}^{\infty}\left(\Gamma_{1}\right)$ satisfies $\mathrm{k}^{*} 2 \mathrm{k}_{0}>0$ on Γ_{1}. Note that if $\mathrm{h} \cdot v \geq \gamma>0$ on Γ_{1}, the boundary condition (2a) may be written as (13) with $k^{*}=k /(h \cdot v)$. Hence, in this situation, we recover (a sharpened form of) the main result of [5] (see Theorem below). Also, as in [4]. we will obtain explicit estimates on the constants C and ω in (4) in terms on constants associated with the geometry of Ω, the gain k^{*} and the vector field h.

The formal statements of the two results to be proved are as follows. THEOREM. Let we begular solution to (1). (2b) and (13). Then there is a constant ω (which may be explicitly estimated) such that

$$
\begin{gathered}
\int_{0}^{\infty} E(s) d s \leq(1 / \omega) E(0), \\
\int_{t}^{\infty} E(s) d s \leq e^{-\omega t} \int_{0}^{\infty} E(s) d s, \quad t \geqslant 0 .
\end{gathered}
$$

COROLLARY. Under the hypotheses of the Theorem.

$$
E(t) \leq e \cdot e^{-\omega t} E(0) . \quad t \geqslant 1 / \omega .
$$

Remark 1. If the initial data (3) satisfies $w^{0} \in H^{1}(\Omega), w^{1} \in L^{2}(\Omega), w=0$ on Γ_{0}.
it is well known that (1)-(3) has a unique weak solution such that ($\left.w, w^{\prime}\right) \in C\left([0, \infty): H^{1}(\Omega) \times L^{2}(\Omega)\right), w=0$ on Σ_{0} in the sense of traces, and $k^{1 / 2} w^{\prime} \in L^{2}\left(0 . T ; L^{2}\left(\Gamma_{1}\right)\right)$, for every $T>0$. The proof of Theorem requires
additional regularity of w. namely $\left(w, w^{\prime}\right) \in C\left([0, \infty): H^{2}(\Omega) \times H^{1}(\Omega)\right)$. When $\bar{\Gamma}_{0} \bar{T}_{1} \neq \phi$. this latter requirement may not be satisfied even for smooth data and boundary since singularities may develop at points on $\bar{\Gamma}_{0} \bar{\Gamma}_{1}$. On the other hand, when $\bar{\Gamma}_{0} \bar{\Gamma}_{1}=\phi$ the solution will always possess the necessary regularity if $w^{0} \in H^{2}(\Omega), w^{1} \in H^{1}(\Omega), w^{0}=0$ on $\Gamma_{O^{\prime}}, \partial w^{0} / \partial v+k w^{1}=0$ on Γ_{1}.
Remark 2. The Theorem and Corollary may be extended to generalized wave equations with time independent coefficients as in [5] but under the weaker condition (12) and also to linear elastodynamic systems (cf. p. 167 of [5] and also [6]). We omit details.

Proof of Corollary. Since $E(t)$ is nonincreasing, for every $r>0$

$$
T E(t+\tau) \leq \int_{t}^{\infty} E(s) d s \leq(1 / \omega) e^{-\omega t} E(0)
$$

or

$$
\begin{equation*}
E(t+T) S\left(e^{\omega T} / \omega T\right) e^{-\omega(t+T)} E(0) . \quad T>0 \tag{14}
\end{equation*}
$$

The first factor on the right has its minimum at $T=1 / \omega$ and for this value of T (14) becomes

$$
E(t+1 / \omega) \leq e \cdot e^{-\omega(t+1 / \omega)} E(0) . \quad t \geq 0
$$

Proof of Theorem. We assume that $\Gamma_{0} \neq \phi$. The argument may easily be modified to handle the opposite case as in [5] or [9].

Define the matrix $H=\left(\partial h_{i} / \partial x_{j}+\partial h_{j} / \partial x_{i}\right)$. By assumption we have

$$
\begin{equation*}
H \xi \cdot \xi>h_{0}|\xi|^{2}, \quad \xi \in \mathbb{R}^{n}, x \in \Omega . h_{0}>0 \tag{15}
\end{equation*}
$$

Since multiplication of h by positive constant leaves Γ_{0} and Γ_{1} invariant, we may (and do) assume that $h_{0}=1$ in (15).

Define constants μ_{0} and μ_{1} by

$$
\begin{align*}
& \int_{\Gamma_{1}} v^{2} d x \leq \mu_{0} \int_{\Omega}|\sigma v|^{2} d x \tag{16}\\
& \int_{\Omega} v^{2} d x \leq \mu_{1} \int_{\Omega}|\sigma v|^{2} d x \tag{17}
\end{align*}
$$

for all $v \in H^{1}(\Omega)$ such that $v=0$ on I_{0} for $\epsilon>0$ and fixed. define

$$
F_{e}(t)=E(t)+\epsilon \rho(t)
$$

where

$$
\rho(t)=2\left(w^{\prime}, h \cdot \nabla w\right)+\left(\left(h_{j, j}-1\right) w, w^{\prime}\right) .
$$

We note that

$$
|\rho(t)| \leq C_{0} E(t)
$$

hence

$$
\begin{equation*}
\left(1-t C_{0}\right) E(t) \leq F_{\epsilon}(t) \leq\left(1+\epsilon C_{0}\right) E(t) \tag{18}
\end{equation*}
$$

where C_{0} depends on h and μ_{1}. We will show that for ϵ sufficiently small.

$$
\begin{equation*}
F_{\epsilon}^{\prime}(t) \leq \notin E(t)+C \in \int_{\Omega} v^{2} d x \tag{19}
\end{equation*}
$$

where C depends on $h . \mu_{0}$ and μ_{1}.
One has

$$
\begin{gather*}
\rho^{\prime}(t)=2\left(w^{\prime \cdot} \cdot h \cdot \nabla w\right)+2\left(w^{\prime} \cdot h \cdot \nabla w \cdot\right)+\left(\left(h_{j, j}-1\right) w^{\prime} \cdot w^{\prime}\right)+ \tag{20}\\
\left(\left(h_{j, j}-1\right) w, w^{\prime}\right) .
\end{gather*}
$$

From (1). (2) we have

$$
\begin{equation*}
\left(w^{\prime} \cdot v\right)+(\nabla w, \nabla v)+b\left(w^{\prime}, v\right)-\int_{\Gamma_{0}}(\partial w / \partial v) v d \Gamma=0 \tag{21}
\end{equation*}
$$

for every $v \in H^{1}(\Omega)$, where

$$
\mathrm{b}\left(w^{\prime} \cdot v\right)=\int_{\Gamma_{1}} \mathrm{k}^{*}(\mathrm{~h} \cdot v) \mathrm{w}^{\prime} \mathrm{vd} \Gamma
$$

We use (21) to calculate $\left(w^{\prime} \cdot h \cdot \nabla w\right)$ and $\left(\left(h_{j, j}-1\right) w, w^{\prime \prime}\right)$ in (20). One has
(22) $\quad\left(w^{\prime \cdot} \cdot \mathrm{h} \cdot \nabla w\right)=-(\nabla w \cdot \nabla(\mathrm{~h} \cdot \nabla w))-\mathrm{b}\left(w^{\prime} \cdot \mathrm{h} \cdot \nabla w\right)+\int_{\Gamma_{0}}(\partial w / \partial v) \mathrm{h} \cdot \nabla \mathrm{wd} \Gamma$.

A direct calculation gives

$$
\begin{array}{r}
(\nabla w \cdot \nabla(h \cdot \nabla w))=\int_{\Omega} h_{i, j} w_{i} w_{j} d x-(1 / 2) \int_{\Omega} h_{j, j}|\nabla w|^{2} d x+ \tag{23}\\
(1 / 2) \delta_{\Gamma} h \cdot v|\nabla w|^{2} d \Gamma .
\end{array}
$$

Similarly.

$$
\begin{gather*}
\left(\left(h_{j, j}-1\right) w \cdot w^{\prime}\right)=-\int_{\Omega}\left(h_{j, j}-1\right)|\nabla w|^{2} d x-\int_{\Omega} h_{j, i j} w w_{i} d x- \tag{24}\\
b\left(w^{\prime} \cdot\left(h_{j, j}-1\right) w\right) .
\end{gather*}
$$

We also have

$$
\begin{equation*}
\left(w^{\prime} \cdot h \cdot \nabla w^{\prime}\right)=(1 / 2) S_{\Gamma_{1}}(h \cdot v) w^{2} \mathrm{~d} \Gamma-(1 / 2) S_{\Omega} h_{j, j} \nabla^{2} \mathrm{dx} \tag{25}
\end{equation*}
$$

Use of (22) - (25) in (20) gives

$$
\begin{gather*}
\rho^{\prime}(t)=-2 \int_{\Omega} h_{i, j} w_{i} w_{j} d x+\int_{\Omega}|\nabla w|^{2} d x-\int_{\Omega} w^{2} d x- \tag{26}\\
\int_{\Omega} h_{j, 1 j} w_{1} d x-\int_{\Gamma}(h \cdot v)|\nabla w|^{2} d \Gamma+2 \int_{\Gamma_{0}}(\partial w / \partial v) h \cdot \nabla w d \Gamma+ \\
\int_{\Gamma_{1}}(h \cdot v) w^{\prime 2} d \Gamma-2 b\left(w^{\prime} \cdot h \cdot \nabla w\right)-b\left(w^{\prime} \cdot\left(h_{j, j}-1\right) w\right) .
\end{gather*}
$$

The integrals over Γ_{0} viz.
(27) $\quad 2 \int_{\Gamma_{0}}(\partial w / \partial v) h \cdot \nabla w d \Gamma-\int_{\Gamma_{0}} \mathrm{~h} \cdot v|\nabla w|^{2} \mathrm{~d} \Gamma=\int_{\Gamma_{0}}{ }^{\mathrm{h} \cdot v(\partial w / \partial v)^{2} \mathrm{~d} \Gamma} \leq 0$.

We also have the estimates

$$
\begin{align*}
& \left|b\left(v^{\prime} \cdot h \cdot \nabla w\right)\right|=\left|\delta_{\Gamma_{1}} k^{*}(h \cdot v) w^{\prime}(h \cdot \nabla w) d \Gamma\right| \tag{28}\\
& S S_{\Gamma_{1}}{ }^{h \cdot v}|\nabla w|^{2} d \Gamma+C_{1} S_{\Gamma_{1}}(h \cdot v) \cdot{ }^{2} d \Gamma, \\
& \mid b\left(\left.w^{\prime} \cdot\left(h_{\left.j, j^{-1}\right) w}\right)\left|\leq C_{2} /(2 \delta) S_{\Gamma_{1}}(h \cdot v) w^{\prime 2} d \Gamma+(\delta / 2) S_{\Omega}\right| \nabla w\right|^{2} d x,\right. \tag{29}\\
& \left|\int_{\Omega} h_{j, 1 j}{ }^{w w} w_{i} \mathrm{dx}\right| \leq C_{3} /(2 \delta) \int_{\Omega} w^{2} \mathrm{dx}+(\delta / 2) \mu_{1} \int|\nabla w|^{2} \mathrm{dx} \tag{30}
\end{align*}
$$

where C_{1}, C_{2} depend on h and k^{*}, C_{3} on h and where $\delta>0$ will be chosen below. Use of (27) - (30) and (15) (recall that $h_{0}=1$) in (26) yields

$$
\begin{aligned}
\rho^{\prime}(t) \leq & -\int_{\Omega}\left(w^{\prime}+|\nabla w|^{2}\right) \mathrm{dx}+(\delta / 2)\left(\mu_{0}+\mu_{1}\right) \int_{\Omega}|\nabla w|^{2} \mathrm{dx}+ \\
& \left(\mathrm{C}_{1}+\mathrm{C}_{2} /(2 \delta)+1\right) \int_{\Gamma_{1}}(\mathrm{~h} \cdot v) w^{2} \mathrm{~d} \Gamma+\mathrm{C}_{3} /(2 \delta) \int_{\Omega} \nabla^{2} \mathrm{dx}
\end{aligned}
$$

Choosing $\delta=1 /\left(\mu_{0}+\mu_{1}\right)$ we obtain

$$
\begin{equation*}
\rho^{\prime}(t) \varsigma E(t)+C_{4} \int_{r_{1}}(h \cdot v) w \cdot 2 d x+C_{5} \int_{\Omega} \nabla^{2} d x \tag{31}
\end{equation*}
$$

where $C_{4}=C_{1}+C_{2} /(2 \delta)+1 . C_{5}=C_{3} /(2 \delta)$. Since $k^{*} 2 k_{0}>0$ on Γ_{1}, we obtain from (31)

$$
\begin{aligned}
F_{\epsilon}^{\prime}(t) & =E^{\prime}(t)+\epsilon \rho^{\prime}(t) \\
& =-\int_{\Gamma_{1}} \mathrm{k}^{*}(\mathrm{~h} \cdot v) w^{\prime 2} \mathrm{~d} \Gamma+\epsilon \rho^{\prime}(t) \\
& \leq \notin E(t)+\epsilon C_{5} \int_{\Omega} w^{2} d x+\int_{\Gamma_{1}}\left(\epsilon C_{4}-k_{0}\right)(h \cdot v) w^{\prime 2} d \Gamma \\
& \leq \notin E(t)+\epsilon C_{5} \int_{\Omega} w^{2} d x
\end{aligned}
$$

provided $\epsilon \mathrm{C}_{4} \leq \mathrm{k}_{0}$. This establishes (19).

Let $\beta>0$ and consider

$$
\begin{align*}
& \int_{t}^{\infty} e^{-\beta(s-t)} F_{\epsilon}^{\prime}(s) d s=-F_{\epsilon}(t)+\beta \int_{t}^{\infty} e^{-\beta(s-t)} F_{\epsilon}(s) d s \tag{32}\\
& \quad s t \in \int_{t}^{\infty} e^{-\beta(s-t)} E(s) d s+\epsilon C_{5} \int_{t}^{\infty} e^{-\beta(s-t)}|\sigma(\cdot, s)|^{2} d s .
\end{align*}
$$

From (18), $F_{\epsilon}(s) \geq 0$ provided $\epsilon C_{0} \leq 1$. From Theorem 2 of [5], we have the estimate

$$
\begin{equation*}
\int_{t}^{\infty} e^{-\beta(s-t)}|w(\cdot, s)|^{2} d s \leq C_{\eta}^{*} E(t)+\eta \int_{t}^{\infty} e^{-\beta(t-s)} E(s) d s \tag{33}
\end{equation*}
$$

where $\eta>0$ is arbitrary and C_{η}^{*} is a constant independent of β. Therefore (32). (33) imply

$$
\begin{equation*}
\epsilon \int_{t}^{\infty} e^{-\beta(s-t)} E(s) d s \leq F_{\epsilon}(t)+\epsilon C_{5}\left[C_{\eta}^{*} E(t)+\eta \int_{t}^{\infty} e^{-\beta(s-t)} E(s) d s\right] \tag{34}
\end{equation*}
$$ where $\epsilon=\min \left(1 / C_{0}, k_{0} / C_{4}\right)$. Choosing $\eta=1 / q C_{5}$ ($q>1$) in (34) gives the estimate

$$
\begin{equation*}
\frac{(q-1) \epsilon}{q} \int_{t}^{\infty} e^{-\beta(s-t)} E(s) d s \leq F_{\epsilon}(t)+\epsilon C_{5} C_{1 / q}^{*} E(t) \leq\left(1+\epsilon K_{q}\right) E(t) \tag{35}
\end{equation*}
$$

where $K_{q}=C_{0}+C_{5} C_{1 / q}^{*}$ does not depend on β. Define $\omega_{q}=(q-1) \epsilon / q\left(1+\epsilon K_{q}\right)$ and let $\beta \rightarrow 0$ in (35) to obtain

$$
\begin{equation*}
\int_{t}^{\infty} E(s) d s \leq\left(1 / \omega_{q}\right) E(t), \quad t \geq 0, \quad q>1 . \tag{36}
\end{equation*}
$$

The conclusions of the Theorem with $\omega=\omega_{2}=\epsilon / 2\left(1+\epsilon K_{2}\right)$ (for example) follow easily from (36).

REFERENCES

[1] G. Chen. Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math Pures Appl.. 58 (1979). pp 249-274.
[2] \qquad . A note on boundary stabilization of the wave equation. SIAM J. Control and Opt. . 19 (1961). pp. 106-113.
[3] R. Datko. Extending a theorem of Liapunov to Hilbert spaces. J. Math.

Anal. Appl., 32 (1970), pp. 610-616.
[4] V. Kormornik and E. Zuazua, C. R. Acad. Sci. Paris, to appear.
[5] J. Lagnese, Decay of solution of the wave equation in a bounded region with boundary dissipation, J. Diff. Eq.. 50 (1983), pp. 163-182. [6] \qquad . Boundary stabilization of linear elastodynamic systems. SIAM J. Control and Opt., 21 (1983). pp. 968-984.
[7] I. Lasiecka and R. Triggiani, Uniform exponential energy decay of the wave equation in a bounded region with $L_{2}\left(0, \infty ; L_{2}(\Gamma)\right)$-feedback control in the Dirichlet boundary condition, J. Diff. Eq., to appear.
[8] A. Pazy, On the applicability of Lyapunov's theorem in Hilbert space. SIAM J. Math. Anal., 3 (1972), 291-294.
[9] R. Triggiani. Wave equation on a bounded domain with boundary dissipation: An operator approach, to appear.
$E N D$
FEb.
1988
OTiC

[^0]: ${ }^{1}$ Research supported by the Air Force Office of Scientific Research through grant AFOSR-86-0162.
 AMS subject classification: 93D15, 35L05

 $$
 { }^{87} \quad 14^{-} \quad 415
 $$

