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NOTE ON CONDITIONAL MODE ESTIMATION 
FOR FUNCTIONAL DEPENDENT DATA 

S. Dabo-Niang, A. Laksaci 

1. INTRODUCTION

Let us introduce n  pairs of random variables 1, ,( , )i i nX Y  that we suppose 
drawn from the pair ( , )X Y  valued in F R  where F  is a semi-metric space. 
Let d  denotes the semi-metric. Assume that there exists a regular version of the 
conditional probability distribution of Y  given X  which is absolutely continu-
ous with respect to the Lebesgue measure on R  and has bounded density. As-
sume that for a given x  the conditional density xf  of Y  given X x  is uni-
modal and the conditional mode, denote by ( )x  is defined by 

( ) ( )x
y Rx argmax f y

In the remainder of the paper, x  is fixed in F  and xN  denotes a neighbor-

hood of x . We define the kernel estimator ˆ xf  of xf  as follows: 

1 1 1
1

1
1

( ( , ) ( )
,

( ) ( )ˆ ( )
( ( , )( )

n
H K i H ix i

n
K ii

h K h d x X H h y Y
f y y R

K h d x X

here the numerator is equal to zero when the denominator approaches zero. K
and H  are kernels functions and ,K K nh h  (resp. ,H H nh h ) is a sequence of 
positive real numbers. Note that a similar estimate was already introduced in the 
special case where X  is a real random variable by many authors, Rosenblatt 
(1969) and Youndjé (1993) among others. For the functional case, see Ferraty et
al. (2006). A natural and usual estimator of ( )x , denoted ˆ( )x  is given by: 

ˆ ( )) ˆ( x
y Rx argmax f y  (1) 
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Note that this estimate ˆ( )x  is not necessarily unique, so the remainder of the 
paper concerns any value ˆ( )x  satisfying (1). 

The main goal of this paper is to study the nonparametric estimate ˆ( )x
of ( )x , when the explanatory variable X  is valued in the space F  of eventu- 
ally infinite dimension and when the observations 1, ,( , )i i i nX Y  are strongly 
mixing.

The interest of the nonparametric estimation of the conditional mode for 
strong mixing processes comes mainly from the fact that the mode regression 
provides better estimations than the classical mean regression in some situations 
(see for instance Collomb et al. (1987), Quintela and Vieu (1997), Berlinet et al. 
(1998) or Louani and Ould-Saïd (1999) for the multivariate case). 

Currently, the progress of informatics tools permits the recovery of increas-
ingly bulky data. These large data sets are available essentially by real time moni-
toring, and computers can manage such databases. The object of statistical study 
can then be curves (consecutive discrete recordings are aggregated and viewed as 
sampled values of a random curve) not numbers or vectors. Functional data 
analysis (FDA) (see Bosq (2000), Ferraty and Vieu, (2006), Ramsay and 
Silverman, (2002)) can help to analyze such high-dimensional data sets. The sta-
tistical problems involved in the modelization of functional random variables 
have received increasing interests in the recent literature (see for example Dabo-
Niang (2002), Dabo-Niang and Rhomari (2003, 2009), Masry (2005) for the non-
parametric context). In this functional area, the first results concerning the condi-
tional mode estimation were obtained by Ferraty et al. (2006). They established 
the almost complete convergence of the kernel estimator in the i.i.d. case. This 
last result has been extended to dependent case by Ferraty et al. (2005). Ezzahri-
oui and Ould-said (2006, 2008) have studied the asymptotic normality of the ker-
nel estimator of the conditional mode for both i.i.d. and strong mixing cases. The 
monograph of Ferraty and Vieu (2006) presents an important collection of statis-
tical tools for nonparametric prediction of functional variables. Recently, Dabo-
Niang and Laksaci (2007) stated the convergence in pL  norm of the conditional 
mode function in the independent case. 

In this paper, we consider the case where the data are both dependent and of 
functional nature. We prove the p-integrated consistency by giving the upper 
bounds for the estimation error. Theses results can be applied to predict time se-
ries, by cutting the past of the series in continuous paths. 

The paper is organized as follows: the following Section is devoted to fixe the 
notations and hypotheses. We state our results on Section 3. All proofs are given 
in the Appendix. 
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2. NOTATION AND ASSUMPTIONS

We begin by recalling the definition of the strong mixing property. For this we 
introduce the following notations. Let ( )k

iF Z  denote the -algebra generated by 
{ },jZ i j k .

Definition: Let , 1, 2, . }...{ iZ i  denote a sequence of random variables. Given a positive 
integer n , set 

*
1( ) ( ) ( ) ( ) : ,{ ( ( )) }k

k nn sup P A B P A P B A F and BZ kZF N

The sequence is said to be -mixing (strong mixing) if the mixing coefficient ( ) 0n  as 
n .

There exist many processes fulfilling the strong mixing property. We quote 
here, the usual ARMA processes which are geometrically strongly mixing, i.e.,
there exist (0,1)  and 0a  such that, for any 1n , ( ) nn a  (see, e.g.,
Jones (1978)). The threshold models, the EXPAR models (see, Ozaki (1979)), the 
simple ARCH models (see Engle (1982)), their GARCH extension (see Bollerslev 
(1986)) and the bilinear Markovian models are geometrically strongly mixing un-
der some general ergodicity conditions. 

Throughout the paper, when no confusion is possible, we will denote by C  or 
'C  some strictly positive generic constants, ( )jg the thj  order derivative of the 

function g , and we suppose that the response variable Y  is p -integrable. Our 
nonparametric model will be quite general in the sense that we will just need the 
following assumptions: 

(H1) ( ( , )) ( ) 0xP X B rx r    where   ( , ) : ( , ){ }B x r x F d x x r
(H2) For all 2k , we suppose that: 

1 1

1

1

1
1

( ) 1 , ( , ... ) ( , )

( ) 0,

max( ( ( , ) ,1 ) ) (), (

k k

k j

k i i i i

k
vk

i i n i x x

i For all i i n the conditional density of Y Y given X X

exists and is uniformely boundes
ii There exists v such that

max P d X x r j k r O )( .)k r

(H3) ( , )i i i NX Y  is an -mixing sequence of mixing coefficient ( )n  satis- 
        fying 

2
11) , ,( k

k p
k

va max max k p
v

 such that ( ) an N n Cn
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(H4) xf  is 2 times continuously differentiable with respect y  on R  such 

        that, 2
1, 2( )y y R ;

21 2 12 ( ) ( )
1, 2 1 2 1 2 1 2 1 2( ) ( )( ) ( , , ),( 0, 0) bx j x j b

xx x N f y f y d x x y y b b

 for 0,1,2j  with the convention (0)x xf f

(H5) K  is a function with support 0 1( , )  such that 0 ( ) .C K t C
(H6) H is of classe 2C , of compact support and satisfies 

   ( ) 1,H t dt and

2 ( ) ( ) ( 0 )
1, 2 1 2 1 2( )( ) , 0,1,2 .( )j jy y R H y H y C y y j with H H

(H7) There exists 1, 2, 0 , such that 

1
3 1

1 1( )
a

a a
H x K n HnCn h h n and lim h  with (5 17 )/2a .

The concentration propriety (H1) is less restrictive that the fractal condition in-
troduced by Gasser et al. (1998) and is known to hold for several continuous time 
processes (see for instance Bogachev (1999) for a gaussian measure, Li and Shao 
(2001) for a general gaussian process and Ferraty et al. (2006) for more discus-
sion). In order to establish the same convergence rate as in the i.i.d. case (see 
Dabo-Niang and Laksaci (2007)), we reinforce the mixing by introducing (H2) 
and (H3). Note that we can establish the convergence results without these mix-
ing assumptions, however, the convergence rate expression will be perturbed, it 
will contain the covariance term of the observations. Assumptions (H4) is the 
regularity condition which characterizes the functional space of our model and is 
needed to evaluate the bias term in our asymptotic developments. Assumptions 
(H6) and (H7) are standard technical conditions in nonparametric estimation. 
They are imposed for sake of simplicity and brevity of the proofs. 

3. MAIN RESULTS

We establish the p-mean rate of convergence of the estimate ˆ( )x  to ( )x .

Theorem 1: Under hypotheses (H1)-(H7), and if 3 ( )H x Knh h , we have for all 
,[ [1p
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1 2

1
2

3
ˆ 1( ) ( ) ( )

( )
b b

p K H
H x K

x x O h h O
nh h

.

where 1/. ( |.| )p pE .

Proof of Theorem 1: For all 1, ., ,i n  let 1( ( , ))i K iK K h d x X ,
1( ) ( ( ))i H iH y H h y Y  and 

1 11 1

1 1,ˆ ˆ( ) .( )
n n

x x
N i i D i

i iH
f y K H y f K

nh EK nEK

We consider a Taylor development of the function (1)ˆ x
Nf  at the vicinity of 

ˆ( )x , in particular for the point ( )x ,

1 1 2 *ˆ ˆˆ ˆ ˆ( ) ( )( ) ( ) ( ( ) ( )) ( ( ))x x x
N N Nf x f x x x f x

where *( )x  is between ˆ( )x  and ( )x . By the unimodality of xf  and assump-
tion (H6), we have 

1 1 ˆˆ( )( ) ( )( )x x
Nf x f x =0, and 2 (( )) 0xf x

Thus, if ˆ 0x
Df , we have 

1 1
2 *

ˆ 1( ) ( ) ( ( ) (ˆ ( ) ( )ˆ ( ( ))
) )x x

Nx
N

x x f x f x
f x

 (2) 

It is shown in Theorem 11.15 of Ferraty and Vieu (2006, P.179) that, under 
(H1)-H(7), 

ˆ( ) ( ) 0 ( . .)x x almost completely a co

So, by combining this consistency and the result of Lemma 11.17 in Ferraty and 
Vieu (2006, P.181) together with the fact that * ( )x  is lying between ˆ( )x  and 

( )x , it follows that 

2 2* ( ) 0.ˆ ( ( )) ( . .)x x
Nf f x cox a

Since 2 (( )) 0xf x , we can write 
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2 *

10, ˆ ( ))
. .

(x
N

C such that C a s
xf

It follows that 

1 1 1/ˆ( ) ( ) ( ) ( ) ( (ˆ ˆ( ) ) .( 0))x x x p
N p Dx x Cf x f x P f

Theorem 1 is then a consequence of the following lemmas. 

Lemma 1: Under hypotheses (H1)-(H3), (H5)-(H6), we have, 

1
21 1

3
1( ) [ ( ) ]

(
ˆ ˆ( ) (

)
)x x

N N
p H x K

f x E f x O
nh h

(3)

Lemma 2: If the hypotheses (H1), (H4)-(H6) are satisfied, we get 

1 21 1ˆ ( ) ([ ( ) ] ( ) ( ))x x b b
N K HE f x f x O h h

Lemma 3: Under the conditions of Lemma 1, we get 

1
2

1/ 1( ( 0ˆ ))
( )

x p
D

x K
P f O

n h
.
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APPENDIX 

Proof of Lemma 1: Let 

1 11 1( )( ( )) [ ( ( ))( ) .]i i H i i H iK H h x Y E K H h x Y

Then 

1 1
2

11

1( )ˆ ˆ[ ) ]( ( )()
n

x x
N N i

p iH p

f x E f x
nh EK

Because of (H1) and (H5) we can write 1 ( ))(x KEK O h . So, it remains to show 
that 

1
( ( ))

n

i p H x K
i

O nh h

The evaluation of this quantity is based on ideas similar to that used by Yoko-
yama (1980). More preciously, we prove the case where 2p m  (for all *m N )
and we use the Holder inequality for lower values of p . Indeed, if 2p m , we 
have

1 2

1

1

2 2
, ,

2
, 11 1 1 1

2

jk
j

j j k
k

j
j

m kn m
pp p p

i m i
p pi k i i n j

p m

E C E  (4) 

where 1 2 , ,
2

1 2

(2 )!
! ! !

kp p p
m

k

mC
p p p

. The stationarity of the couples 1, ,( , )i i i nX Y

allows us to write 

1

1 1 1 1 1
11 1 1 , ,1 1 1

j j j
jj j

bk k k b

k k k
p p p
i i

ei i n i i n e e nj j j
E E n E

Now, we show by induction on m  that the last term above is bounded for all 
k  and jp , 1 j k  as follows 

1

1 1 1

*
1

1

/2
1

11 , , 1

2 , 2 , ,

( ) :
( )( )j

j
bk b

k

j j
i

k
p q

H x K
ee e n j

k m p N p q m C n N

A m
n E C nh h
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Firstly, in the case where 1m , we have 1q  or 2q . If 1q , then (1)A
is necessarily satisfied since the i  are centered. Indeed, 1q  implies that 1k

and then 
1
2

1 1 ([ .] )( )H x KnE C nh h  However, if 2q , we distinguish two 
cases: 2k  or 1k . For the last case, we have under (H1), that 

2

1
[ ] C ( )

n

i H x K
i

E nh h  while for the first case we use the same ideas as those 

used in the proof of Lemma 11.13 of Ferraty and Vieu (2006, P. 175) and obtain 

1
[ ( )]i i H x K

i j n
E nh h  (5) 

Thus, ( )A m  is true for 1m . The next step is to show that ( )A m  is hereditary. 
In other words, we suppose that ( )A m  is true and we prove ( 1)A m . Obvi-
ously, we can suppose that 2q  (because the upper bound to prove is always 

true if 1q ). Thus, for all 2 2k m  and *

1
2 2

k

j j
i

p N p q m , we 

have

1 1

1 1 1 1

1

1 11 , , 1 11 ,1 1

j j
j j

b bk s j sb b

k kk n
p p

e ee e n s e e e j sj j
n E n E (6)

We split the above sum as follows 

1 1

1 1

1

1

1 111 , 11 ,1 1

111 , 1

n
j j

j j
b bs j s s j sb b

j
j

bs n j s b

uk kn
p p

e ee e e j s e e e j sj j

kn
p

ee u e e j s j

E E

E

 (7) 

The first term of (7) is such that 

1

1

11

111 , 1
: ( )

n
j k

j
bs j s b

u k
p vk k

n H x K
ee e e j s j

A E Cu h h (8)

For the second term, we have 
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1 1

1 1
1 111 , 1 ,1 1

11 ,

1 2

( )

j j
j j

b bs n j s j sb b

s n j s

k kn
p p

e ee u e e j s e e j sj j

n

s
e u e e j s

B E E

e

B B

 (9) 

Let us first consider the term 1B  and observe that if 2 2k m  and 1s k
then 1jp , for all 1 2 2j m  and the second expectation is null (because 

the i  are centered). So, in the case where none of the expectations is null, we 
have 2 2k m  or 1s k  which imply that 2s m . Moreover, we can prove 
in the same way that 2k s m . We have that, when 1 0B , then

1 1
2 ( 2 2

s k

j j
j j

p m p m  and 
1

2
k

j
j s

p  since either 1s k  or 2kp

and
1

2
s

j
j s

p m . From what precedes, notice that either 1 0B  or 4q  (since 

1
2

k

j
j s

p  and 
1

2
s

j
j

p ). So, we apply ( )A m  and get 

Hence,

1
1 ( ) .

q
H x KB C nh h

n
 (10) 

For the 2B  term, we use the fact that 

2 2 1 1
2

n
k 2 1 1 k 1

( )

, 0.

s n n

n

n n
k k a
s s

e u i u

a a
n n

i u

B e e C i

Cu i Cu
(11)

It is easy to see that the upper bounds (8) and (11) are respectively increasing 
and decreasing with respect to nu . This gives the idea to choose nu  in order to 

balance these two terms. We choose 
1

1(( )( )) kvk a
n H x Ku h h . Then 

1 1 (1 )
1

2 ) ((( ))
k

k
k k k v

k v
a a

H x K H x KA B Ch h h h
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Furthermore, since 2
1

max 1( ,) ,k
k p

k

va max k p
v

 then, we can get some 

small 0  such that (1 )(1 ) ( ) 0k kk v v a  and (1 ) ( 1)( ) 0k k k a .
Consequently

2 ( .)H x KA B Ch h (12)

We easily deduce from (6), (7), (10) and (12), the following upper bound 

1

1, 2 1 1
11 , , 1

( '

.

) ( )

( )

j
j

vk v

k qp
H x K H x K

ee e e n j

q
H x K

n E C nh h C nh h

C nh h

(13)

The last line comes from the fact that 2q  and ( )H x Knh h . So, we con-

clude that ( )A m  is hereditary, so it is true for all *m N . We directly conclude 
from (13) and (4) that 

2

1
( )( ) .

mn
m

i H x K
i

E C nh h

Finally, it suffices to use the Holder inequality to show that for all 2p m

1 1 2

( )
n n

i i H x K
i ip m

C nh h .

This yields the proof of this lemma. 

Proof of Lemma 2: It is easy to see that 

(1) (1) (1) (1)
1 1 12

1

1( ) ( ) ( ) |ˆ[ ( )] ( ) [ [ ( ) ]] ( )( ) .x x x
N

H

E f x f x E K E H x X f x
h EK

By an integration by part and the change of variables 
H

y z
h

, we have 

1(1) (1) (1)
1

1

(1)1( ) ( ) (ˆ[ ( )] ( ) ( ) (( ( )) ( ) ) )x x X x
N HE f x f x EK H t f x h t f x dt

EK
.

Hypotheses (H4) and (H6) allow to get the desired result. 
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Proof of Lemma 3: It is clear that, for all 1 , we have 

( 0) ( 1 ) ( [ ]ˆ ˆ )ˆ ˆx x x x
D D D DP f P f P f E f .

The Markov’s inequality allows to get, for any 0p ,

[ ]
( [

ˆ ˆ[ ]ˆ ˆ ] )

px x
D Dx x

D D p

E f E f
P f E f .

So

1/( ( 0)) )[(ˆ ˆ ˆ ]x p x x
D D D

p
P f O f E f .

The computation of ˆ ˆ[ ]x x
D D

p
f E f  can be done by following the same argu-

ments as those invoked to get (3). This yields the proof 
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SUMMARY

Note on conditional mode estimation for functional dependent data 

We consider -mixing observations and deal with the estimation of the conditional 
mode of a scalar response variable Y  given a random variable X  taking values in a 
semi-metric space. We provide a convergence rate in pL  norm of the estimator. 


