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NOTE ON DELETING A VERTEX AND WEAK INTERLACING OF
THE LAPLACIAN SPECTRUM*

7ZVI LOTKER'

Abstract. The question of what happens to the eigenvalues of the Laplacian of a graph when
we delete a vertex is addressed. It is shown that

Ai — 1< A7 < Ny,

where ); is the ith smallest eigenvalues of the Laplacian of the original graph and A} is the ith smallest
eigenvalues of the Laplacian of the graph G[V —v]; i.e., the graph obtained after removing the vertex
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v. It is shown that the average number of leaves in a random spanning tree F(G) > 5y

A2 > an.
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1. Introduction. Given a graph G = (V, E) with n vertices V = {1,...,n} and
E edges, let A be the adjacency matrix of G, i.e. a; ; = 1 if vertex ¢ € V' is adjacent to
vertex j € V and a; ; = 0 otherwise. The Laplacian matrix of graph G is L =D — A,
where D is a diagonal matrix where d;; is equal to the degree d; of vertex ¢ in G.
The Laplacian of a graph is one of the basic matrices associated with a graph. The
spectrum of the Laplacian fully characterizes the Laplacian (for more detail see [1]).
Since L is symmetric and positive semidefinite, its eigenvalues are all nonnegative.
We denote them by A; < ... < \,. One of the elementary operations on a graph is
deleting a vertex v € V', we denote the graph obtained from deleting the node v by
G[V — v], and the Laplacian Matrix of G[V — v] by L”. Finally let \} < ... < AY_,
be the eigenvalues of LY. A well known theorem in Algebraic Graph theory is the
interlacing of Laplacian spectrum under addition/deletion of an edge; see for example
[1, Thm. 13.6.2]) quoted next.

THEOREM 1.1. Let X be a graph with n vertices and let Y be obtained from X
by adding an edge joining distinct vertices of X then

Aic1(L(Y)) < N(L(X)) < XN(L(Y)),

for alli=1,...,n, (we assume that \g = —0).

We remark that the eigenvalues of adjacency matrices A(G) and A(G[V —v]) also
interlace; see, for example, [1, Thm. 9.1.1]. A natural question is whether we get
a similar behavior for the Laplacian when we add/delete a vertex. In this note we
study this question.
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Related Work. This work uses two theorems from Matrix Analysis. The first is
Cauchy’s Interlacing theorem which states that the eigenvalues of a Hermitian matrix
A of order n interlace the eigenvalues of the principal submatrix of order n — 1,
obtained by removing the ith row and the ith column for each i € {1,...,n}.

THEOREM 1.2. Let A be a Hermitian matriz of order n and let B be a principal
submatriz of A of order n — 1. Then the eigenvalues of A and B are interlacing i.e.
AM(A) <M (B) <A (A) < < Am1(B) <A (A).

Proof of this theorem can be found in [2].

The second theorem we use is the Courant-Fischer Theorem. This theorem is an
extremely useful characterization of the eigenvalues of symmetric matrices.

THEOREM 1.3. Let L be a symmetric matriz. Then

1. the ith eigenvalue \; of L is given by

) ' Lx
A; = min max ;
U zcU ztx

2. the (n — i+ 1)st eigenvalue Ap—; 1 of L is given by

. z'Lx
Ap—it1 = mMax min
U

zeU ztx’

where U ranges over all © dimensional subspaces.

Proof of this theorem can be found in [3, p. 186]. Let v € V be a vertex. Let
P be the principal submatrix after we delete the row and column that correspond to
the vertex v of the Laplacian. Denote the eigenvalues of P by p; < -+ < p,_1.

2. Weak Interlace for the L, L". In this section we show a weak interlacing
connection between the L and L. Since L is a symmetric matrix we can use Cauchy’s
interlacing theorem. The next corollary simply applies this theorem for L and P.

COROLLARY 2.1. M1 < p1 < < pp_1 < A

The next lemma uses the Courant-Fischer Theorem in order to prove weak inter-
lacing for L, P.

LEMMA 2.2. Foralli=1,..,n—1, p; <AV +1

Proof. Let I, = P — LY. Note that I, is a (0,1) diagonal matrix whose jth
diagonal entry is 1 if and only if j is connected to v in G. Fix i € {1,...,n—1}. Using
the Courant-Fischer Theorem it follows that

. {xth
_i+1 = max min
Pr—it U zeU' ztx

U CR",dim(U) =i,z € U = span(U)},

where z! is the transpose of x. Substituting LV + I,, in P it follows that

o' (LY + )z
ztx

U CR", dim(U) =i,z € U = span(U)}.

_j+11 = maxmin
Pr—it U zeU{

Using standard calculus we get

P A "o _
Pr—it1 < mLeftxmm{ U CRY, dim(U) =i,z € U = span(U)}

zeU iz
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U CRY, dim(U) = 4,2 € U = span(U)}

+ max min{
U zeU  zlz

<N+ 1.0

We now use the previous lemma to get a lower bound on A}.
LEMMA 2.3. Forallv=1,...,n and foralli=1,...,n—1,

A — 1< A

Proof. Fix i € {1,...,n — 1}. From Lemma 2.2 it follows that p; < AY + 1. Now
this lemma follows from substituting the conclusion of Corollary 2.1 into the previous
inequality A\; < p; <AV + 1.0

The next lemma provides an upper bound on A7.

LEMMA 2.4. Forallv=1,...,n and for alli=1,...n—1,

AP < Aigas

Proof. We prove this lemma by induction on d,, the degree of the node v. If
the degree is d, = 0, then by removing the node v we reduce the multiplicity of the
small eigenvalues, which is 0. Formally A} = A;1; for ¢ = 1,...,n — 1. Therefore the
lemma holds in this case. For the induction step, suppose that the statement holds for
d, = k and consider the case d, = k + 1. Since d, > 0 it follows that there exists an
edge e connecting the vertex v to some other node u. Denote the graph obtained by
removing the edge e from the graph G by X. Let 01 < .... < 0,_1 be the eigenvalues
of the Laplacian of the graph X. From Theorem 1.1 it follows that o; < \; for all
i =1,...,n. Using induction we obtain that A\}_; < o; < \;, foralli=2,...,n0

Now we present our main theorem.

THEOREM 2.5. Forallv=1,...n and foralli=1,....n—1,

A= 1< AV < Ay

Proof. The proof is a direct consequence of Lemmas 2.3 and 2.4. O

We remark that both inequalities above are tight. To see that, we show there
exist graphs such that A; —1 = AY. Consider the graph K,,. It is well known that the
eigenvalues of K, are 0,n,...,n, where the multiplicity of the eigenvalue n is n — 1
and 0 is a simple eigenvalue. Now removing a vertex from K, produces the graph
K,,_1. Again the eigenvalues of K,,_; are 0,n — 1,...,n — 1, where the multiplicity
of the eigenvalue n — 1 is n — 2 and 0 is a simple eigenvalue. To see that there are
graphs that satisfy A} = A;11, consider the graph without any edges.

3. Application to average leafy trees. In this section we use the weak inter-
lacing Theorem 2.5 to obtain a bound on the average number of leaves in a random
spanning tree F(G). Our bound is useful when Ay > an, for fixed a > 0 and
|E| = O(n?). We call such a graph a dense ezpander; in this case we show that the
bound is linear in the number of vertices.
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It is well known that the smallest eigenvalue of L is 0 and that its corresponding
eigenvector is (1,1,...,1). If G is connected, all other eigenvalues are greater than 0.
Let P? denote the submatrix of L obtained by deleting the vth row and vth column.
Then, by the Matrix Tree Theorem, for each vertex v € V' we have t(G) = | det(P")|,
where ¢(G) is the number of spanning trees of G. One can rephrase the Matrix Tree
Theorem in terms of the spectrum of the Laplacian matrix. The next theorem appears
in [1, p. 284]; it connects the eigenvalues of the Laplacian of G and ¢(G).

THEOREM 3.1. Let G be a graph on n vertices and let A\ < Ao < -+ < A\, be the
eigenvalues of the Laplacian of G. Then the number of labeled spanning trees in G is
T A

Let G be a graph. Using the previous theorem it is possible to define the following
probability space: Q(G) = {T : T is a spanning tree in G}. On this set we take a
spanning tree in a uniform probability. We are interested in finding the average
number of leaves in a random spanning tree. Let T be a random spanning tree taken
from Q(G) with the uniform distribution. Denote by F(G) the expected number of
leaves in T'. Using the matrix theorem we can get a formula to compute the average
number of leaves in a random spanning tree.

LEMMA 3.2.

nd, [T, A
F(G) =Yy —xidi=z %
g(n—l)nz Y

Proof. The number of trees that have vertex v as a leaf is dl_i% The lemma
follows by summing over all vertices and dividing by the total number of trees. O
The weak interlacing theorem enables us to bound the average number of leaves
in a dense expander graph. More precisely, we show that F(G) = O(n).
THEOREM 3.3. Let G1 be a graph. If Ao > an, then the average number of leaves
2|E|e a

An

in T is bigger than
Proof.

nd, 102, N
PO = L DT, »

ndy [T25, (N — 1)
_1;/ (n—1) Hz 9 Ai

= (n — 1))\
nd(1 — %)"
2 T
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COROLLARY 3.4. For any constant a > 0, if Ao > an, and |E| = O(n?), then
the average number of leaves in T is O(n).

Conclusion. In this paper we proved a weak interlacing theorem for the Lapla-
cian. Using this theorem we showed that in a dense expander the average number of
leaves is O(n). A natural open question is to show that the average number of leaves
in a random tree is an approximation to the maximal spanning leafy tree.
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