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Abstract
We present an example of a difference equation of arbitrary order, possessing the
right-hand side function that is homogeneous to a certain degree and nonincreasing
in each variable, which has a unique positive equilibrium, as well as solutions that do
not converge to the equilibrium. The example shows that the main result in the
paper: O. Moaaz, Dynamics of difference equation xn+1 = f (xn–l , xn–k) (Adv. Differ. Equ.
2018:447, 2018), is incorrect.

MSC: 39A10; 39A22

Keywords: Difference equation; Unbounded solutions; Nondecreasing function;
Homogeneous function

1 Introduction
Let, as usual, N be the set of positive integers, Z the set of integers, R the set of reals, and
C the set of the complex numbers. By Nk , where k ∈ Z, we denote the set of all j ∈ Z such
that j ≥ k. If p, q ∈ Z and such that p ≤ q, then the notation j = p, q means that j takes the
values of all integers between p and q (including p and q).

Difference equations and systems of difference equations have been studied analyti-
cally for more than three hundred years. The first important results were obtained by
de Moivre [3, 4] and D. Bernoulli [2]. For some classical results, see, for example, [5, 7–
13, 15]. All these references are to some extent devoted to finding closed-form formulas for
solutions to linear or nonlinear difference equations and systems of difference equations.
There has been some renewed interest in the solvability of difference equations and sys-
tems of difference equations, their invariants, and applications of obtained closed-form
formulas for their solutions and/or invariants (see, for example, [1, 16–28] and related
references therein). It is a common fact that many solvable difference equations and sys-
tems are transformed by some suitable changes of variables to some solvable linear ones
[1, 19, 22, 23, 25–28].

Of the many classes of difference equations and systems of difference equations solvable
in closed form, here we mention an important class, which is used in this note. In addition,
we also mention a simple method for getting a sequence of difference equations or systems
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of difference equations from a given one, which can sometimes be used to obtain some
counterexamples in the theory of difference equations.

1.1 Product-type difference equations
Some recent investigations on solvability are devoted to product-type difference equations
and systems of difference equations, or to some difference equations and systems that can
be reduced to them using some suitable transformations (see, e.g., [22–24] and the related
references therein).

General product-type difference equation is

xn+k = anxα
(k–1)
n

n+k–1xα
(k–2)
n

n+k–2 · · ·xα
(0)
n

n , n ∈N0, (1)

where the sequences (an)n∈N0 , (α(j)
n )n∈N0 , j = 0, k – 1, as well as the initial values xj, j =

0, k – 1, are real or complex.
In some cases, equation (1) can be solved by taking the logarithm, but in the case of

complex initial values xj, j = 0, k – 1, coefficients and exponents, some other methods can
be used (see, e.g., [22–24] and the related reference therein). Since the equation is related
to the general linear difference equation, it is of great importance.

1.2 Difference equations with interlacing indices
There is a simple method enabling to construct a family of ‘cloned’ difference equations
from a given one. The equations are called the difference equations with interlacing indices
[27]. The equations appear from time to time in the literature, and it seems that some
authors are not aware that they are obtained by cloning some simpler difference equations
(see the examples and analyses conducted in [25–28]). However, the equations can be
useful in providing some counterexamples in the theory of difference equations (see, e.g.,
[6]). Systems of difference equations with interlacing indices can also be constructed by
the cloning method. Now we briefly describe the method.

The general form of the difference equation with interlacing indices is the following

yn = h(yn–k , yn–2k , . . . , yn–lk), n ∈N0, (2)

where l ∈N, and k ≥ 2.
If we define k sets of indices by

I l
j :=

{
(s – l)k + j : s ∈N0

}
, j = 0, k – 1,

we obviously have

I l
i ∩ I l

j = ∅, i �= j,

and

k–1⋃

j=0

I l
j = N–lk .
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Let

y(j)
s := y(s–l)k+j, s ∈N0, j = 0, k – 1,

then from (2), we have

y(j)
s = h

(
y(j)

s–1, y(j)
s–2, . . . , y(j)

s–l
)
, s ∈N0,

for j = 0, k – 1.
This means that the sequences (y(j)

s )s∈N0 , j = 0, k – 1 are k solutions to the equation

zn = h(zn–1, zn–2, . . . , zn–l), n ∈N0, (3)

with unrelated initial values.
Using this procedure in the reverse direction, from equation (3), one can obtain a family

of cloned equations in (2), i.e., a family of difference equations with interlacing indices.

1.3 Global convergence results and a claim
One of the main problems in the theory of difference equations is the convergence of the
solutions to the equations. There are many results on convergence in the literature, some
of which can be found in the literature mentioned above.

The following difference equation

xn+1 = f (xn–k , xn–m), n ∈N0, (4)

where k, m ∈N0, has been recently studied in [14].
The following claim is the main result concerning the difference equations appearing in

[14] (Theorem 3.3 therein).

Theorem A Assume that f has non-positive partial derivatives and is homogeneous with
degree s. Then equation (4) has a unique positive equilibrium x∗, and every solution to the
equation converges to x∗.

In this note, we show that the claim in Theorem A is not true by giving an example of
equation (4) such that the function f is homogeneous (with a degree to be chosen appro-
priately) and has non-positive partial derivatives, and equation (4) has a unique positive
equilibrium x∗ and solutions that do not converge to the equilibrium.

2 A counterexample to Theorem A
In this section, we give a counterexample to Theorem A. To construct the counterexample,
we are looking for a difference equation belonging to the above classes of equations; that
is, we are looking for a product-type difference equation with interlacing indices that is
solvable in the closed form.

Example 1 Consider the difference equation

xn+k =
1
xα

n
, n ∈N0, (5)
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where k ∈N, and α > 1, which is a special case of the general difference equation of higher
order

xn+k = f (xn+k–1, . . . , xn), n ∈N0, (6)

where k ∈N, and f is an arbitrary function.

Here we are interested in positive solutions to equation (5). Hence, we assume that

xj ∈ (0, +∞), j = 0, k – 1.

For the case of equation (5), we have that

f (t1, . . . , tk) =
1
tα
k

(7)

is the right-hand side function, which generates their solutions along with the initial val-
ues.

Since

∂f
∂tj

(t1, . . . , tk) = 0, j = 1, k – 1

and

∂f
∂tk

(t1, . . . , tk) = –
α

tα+1
k

< 0,

when tk > 0, we have that the function (7) has non-positive partial derivatives on the set
(0, +∞)k , from which we choose our initial values.

On the other hand, since

f (λt1, . . . ,λtk) =
1

(λtk)α
=

1
λα

1
tα
k

= λ–αf (t1, . . . , tk)

holds for every λ > 0, we see that the function defined in (7) is homogeneous with degree
–α.

Further, if

xn ≡ x∗, n ∈N0

is an equilibrium solution to equation (5), then it must be

x∗ =
1

(x∗)α
,

from which it immediately follows that x∗ = 1, which means that equation (5) has a unique
positive equilibrium.
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Now note that equation (5) is a difference equation with interlacing indices, which is
obtained by cloning the following product-type difference equation of first order

yn+1 =
1
yα

n
, n ∈ N0, (8)

that is, equation (5) consists of k copies of equation (8) with initial values not connected
to each other.

Equation (8) obviously has the same equilibrium. Hence, to show that the claim of The-
orem A is not true, it is enough to show that equation (8) has solutions, which do not
converge to the equilibrium.

Now note that by iterating equation (8), we get

y2n+2 = yα2
2n (9)

and

y2n+3 = yα2
2n+1, (10)

for n ∈N0.
By a simple inductive argument from relations (9), (10), and equation (8) with n = 1, one

can easily obtain

y2n = yα2n
0 (11)

and

y2n+1 = yα2n
1 =

1
yα2n+1

0
, (12)

for n ∈N0.
Taking α > 1, we have

lim
n→+∞α2n = lim

n→+∞α2n+1 = +∞. (13)

Hence, if y0 ∈ (0, 1), then letting n → +∞ in (11) and (12) and using (13), it follows that

lim
n→+∞ y2n = 0 (14)

and

lim
n→+∞ y2n+1 = +∞. (15)

Besides this, if y0 > 1, then letting n → +∞ in (11) and (12) and using (13), we obtain

lim
n→+∞ y2n = +∞ (16)
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and

lim
n→+∞ y2n+1 = 0. (17)

From the relations (14)–(17), we see that if any initial value of equation (8) belongs to
the set (0, +∞) \ {1}, the solution is unbounded. This fact implies that if any initial value
of equation (5) belongs to the set (0, +∞) \ {1}, the solution is unbounded.

The above analysis shows that the claim of Theorem A is not true.

Remark 1 Note that the only bounded positive solution to equation (5) is the one which
is generated by the initial values

x0 = x1 = · · · = xk–1 = 1. (18)

The solution is, in fact, the equilibrium solution xn ≡ 1, n ∈ N0, which is easily proved
using the initial values (18) in equation (5), together with a simple inductive argument.

Remark 2 The above consideration also shows that the equilibrium solution is the unique
positive solution to equation (5) that converges, which indicates to what extent the claim
in Theorem A fails.

Remark 3 Note also that the linearized equation associated with equation (8) about the
equilibrium point is

zn+1 = –αzn, n ∈N0, (19)

from which, along with the assumption α > 1, it follows that the equilibrium is a repeller.
Note that from (19), we have |zn| = αn|z0|, n ∈ N0, from which together with (13), we see
that for each z0 �= 0, the solution to (19) goes to infinity as n → +∞.

Given that equation (8) is solvable and has a closed-form formula for its solutions, from
which their long-term behavior is easily described, linearization is not required. However,
the linearization argument also suggests in which direction counterexamples should be
sought.
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