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This paper is the continuation of a systematic study of the electronic states of a random 

lattice by the Green's function method. In this article, the second-order correction to the 

self energy part of the one electron Green's function is given by taking into account the 

exact average over a random distribution of impurities. With the low concentration approxima

tion, the same result is also derived through an alternative method (the Matsubara-Toyozawa 

method). 

§ l. Introduction 

As was mentioned in the Introduction and review of the second paper of 

this series/> there are several essential points in the problem of a random lattice 

which have not yet been given any satisfactory explanation. Among them, one · 

of the most interesting properties of a random lattice is that the energy or 

frequency spectrum of a random lattice shows a very fine structure with many 

peaks; this fact is quite suggestive in many respects. The fine structure is, on 

the one hand, to be expected from the fact that the eigenvalues produced by the 

islands of impurities inbedded in the ideal lattice correspond to the energies or 

frequencies at which the peaks appear in the level density of a random_ system; 

this was first numerically predicted by Dean et al}> and later proved generally 

by Hori and Fukushima. 3
) Another piece of evidence for the appearance of fine 

structure is the discovery of the special frequencies 4
> in the energy or frequency 

distribution of a random lattice at which the level density always vanishes under 

some given condition. The physical significance or content of this fact, however, 

has not yet been completely clarified. 

The aim of the present article is to see how the above problem may be 

clarified by the Green's function technique, in the hope of finding a general 

way to treat higher-dimensional cases. In view of the fact that nothing like 

the true fine structure has been attained through the perturbational methods so 

far carried oue> or from the results of expansion in powers of the concentration 

c by means of the Green's function method,6> it is suspected that it is precisely 

the exact treatment of Ps (c)- the coefficients of the curnulant average introduced 

in II- which is the key to the achievement of a correct understanding. 

With this in mind, the second-order self-energy part 17 (2) is treated in the 

present paper, by taking exact account of P.~ (c). This is a correction which 
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760 F. Y onezawa and T. Matsubara 

is better than .£ (1) by one step; the formulation of .£ (1) was given m II. An 

attempt to obtain the explicit expression for the second-order correction .£ (2) 

is important in the sense that this leads to the investigation, through the Green's 

function method, of the connection between the local modes produced by a 

cluster of two impurity atoms with the peaks in the energy spectrum of a random 

system. In this connection, the local modes of an impurity and a cluster of 

two impurities are evaluated in § 2, while in § 3 it is shown how the second

order self-energy part .£ (2) may be calculated by Edwards' method7
> if we deal 

with P.. (c) accurately. 

The complete correspondence between the results for .£ (1) reached by 

Edwards' method and by the M-T method8> has been given in p> under the 

assumption that P.. (c) =c. This restriction for P.. (c) can be removed so that 

the proof is made on a more general basis ; the detailed discussion of this will 

appear in one of the succeeding papers. The main purpose of having constructed 

.£ (1) through two methods is to provide two different formulations so that one 

of them may be chosen for a given problem in consideration of the properties 

or the content of the problem. Besides, when we want to improve the appro

ximation, we shall see that in general one of them will prove to be more suitable 

for use than the other, in accordance with the nature of the approximation and 

with the manner of improving it. This is the idea of re-evaluating .£ (2) using 

the M-T method to show that we get the same result as that obtained by Edwards' 

method. Here again, for the sake of simplicity, the same restriction is laid 

down on P.. (c); this does not affect the generality of the proof. Lastly, in § 5, 

further aspects of the problem are briefly considered. 

§ 2. A single impurity and two impurities 

Before we begin the general discussion of the second-order correction, it 

is as well to review the simple cases in which systems with only one impurity 

atom and two impurity atoms are treated. Knowledge of these simple systems 

will turn out to be useful when we discuss the correspondence between the 

localized modes and the many fine peaks appearing in the frequency spectrum of a 

random lattice. 

First, let us consider the case of a single impurity inserted into an otherwise 

ideal lattice and assume that this one impurity atom attracts electrons with a 

potential of the delta-function type 

v(r-Ra) =- Va'o(r-R 0). (2 ·1) 

For the sake of simplicity, a one-band approximation Is adopted so that the 

matrix elements of the potential are free from the indices n which denote various 

bands ; thus, for this potential, Eq. (2 ·10) in II becomes 

Vkk' = - Vo'" exp [- £ (k- k') · Ra] zt~;: (Ra) uk' (Ro). (2·2) 
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Note on Electronic State of Random Lattice. III 761 

Further simplification is introduced by assuming that u~.- (r) is constant every

where in the space, I.e. 

u,~ (r) =constant= 1/ v.Q' (2. 3) 

where Q is the normalization volume. With this wave function, Eq. (2 · 2) IS 

rewritten simply as 

V~;;"' = ·- Va exp [- i (lr -Jc') · Ra] (2. 4) 

where V 0 = Vo' / !2. It does not spoil the generality of the formulation even if 

Ro is taken to be the origin. VVith all these considerations, the secular equation 

given by Eq. (2 · 7) in II reduc:.es to 

(2·.5) 

Solving Eq. (2 · 5) for ~A~.-, we have an equation which determines E: 
k 

1 

Vo 
(2· 6) 

All the solutions but one are found at E=e1 •. , and the exceptional one IS a 

discrete level below the band. It is easy to show that this discrete level is a 

localized mode. 

Next, we formulate the problem of a system with two impurity atoms of 

the same kind at Ro = 0 and R1 == R. The potential in this case is 

V(r) = -- Vo' {o(r) +o(r-R)}. (2·7) 

With the same approximations as were used for the single-impurity system 

discussed above, the matrix element of the potential (2 · 7) 1s given by 

Vk~t'=- Va{l+exp[ -i(k-k') ·R]}, 

and the secular equation becomes 

(2·8) 

To find the new eigenvalues, we first introduce A (R) by the definition 

A (R) = ~ exp (ilr · R) A 10 
k 

and then solve Eq. (2 · 9) for A (O) and A (R). Thus we have 

{1 + Vof(E, 0)} A (0) + Vaf(E, - R) A (R) = 0, 

Vof(E, R) A (O) + {1 + Vaf(E, 0)} A (R) = 0, 

where 
f(E, R) = ~ exp(ik · R) =~Go (k) exp (iii· R) 

/r E-ek ,. 

(2 ·10) 

(2 ·11) 

.(2 ·12) 

and Go (k) IS an unperturbed Green's function defined by Eq. (2 · 20) in II. 
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762 F. Yonezawa and T. Matsubara 

The resulting secular equation for E is 

(2 ·13) 

where we have used the relation 

f(E,-R) =f*(E, R). (2 ·14) 

Incidentally, the secular equation (2 · 6) which determines the discrete level for 

the single-impurity case is written in the new formalism as 

1 + Vo~Go (k) = 1 + Vof(E, 0) = 0. (2 ·15) 
k 

~ 3. Many impurities 

With the preparations made in § 2, it is now much easier to understand 

the problem of many impurities distributed completely at random in the host 

lattice. On using the same assumptions as in § 2 that only one band is involved 

and that the potential of the impurities is of an attractive delta-function type, 

the equation for the one-electron Green's function is given by (see Eq. (2 ·19) 

in II) 

where GJ.ok' (E) = [ G (E)],..,..,. In order to make clear the relation between the 

equations and the corresponding diagrams, let us write down the leading terms 

of the expansion of G,..", (E) : 

G~rk' (E)= o~ck' [Go (k)- Go (k) NP1 (c) VoGo (k) 

+ {N2P/ (c) V 0
2Go3 (k) + NP2 (c) Vo2Go2 (k) ~Go (k')} 

k' 

+ ···]. (3·2) 

Note that Eq. (3 · 2) is the matrix element of the true Green's function after 

the average over the impurity sites has been carried out, and it is obvious that 

the averaged Green's function G 1 .-~ .. , (E) is diagonal with rE;:spect to k so that 

Gld•' (E) is written as G (k) r'J,..,..,, 

In II, we have seen that all the diagrams up to third order in V 0 are taken 

into account if the first order self-energy part is calculated self-consistently. 

The lowest-order diagram discarded from the first-order correction is the fourth

order diagram shown in Fig. 1 (a). All the rest of the fourth-order diagrams 

are included in }; (1). Out of all the fifth-order diagrams, only the one diagram 

given in Fig. 1 (b) is omitted from the first-order self-energy part. On collecting 

all this information, it may be suspected that, when we want to take one more 

step towards a better approximation, the diagrams which should be u:tained 

are those pictured in Fig. 2 (a). If the potential is strong and short range, 

multiple scattering in higher order predominates, so that it is necessary to sum 
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Note on Electronic State of Random Lattice. III 763 

all the diagrams shown in Fig. 2 (b). This is actually the case for the present 

problem since the potential under consideration is of the delta-function type 

which is extremely short range. 

/,,. .. ..:x. ........ \ 

~-\-\-'--\--, 

\,'"><:""',,' 

(a) 

(b) 
(b) Z(2) 

Fig. 1. The fourth and fifth-order 

digrams discarded in S (1). 

Fig. 2. The diagrams to be included in the second

order self-energy part. (a) 2.'0 (2) (b) I(~:) 

With this goal in mind, we first sum the diagrams in Fig. 2 (a). For the 

moment, Ps (c) is approximated by c. By making use of the prescriptions given 

in Fig. 2 of II, the contribution fron1 the first diagram in Fig. 2 (a) is shown 

to be 

(- VotN~c~ I: 0 (k -- k1 + k2 k3) 0 (kl- k2 + lc3- ,k') Go (k1) Go (k2) G 0 (k3) 

/f1/i;2k:l 

while the second diagram gives the contribution 

4 

(- VoY N 2c2 I: 0 (k -- k1 + k2 -- k3 + k4- k') 0 (kl- k2 + ks -- k4) f[Go (ki) 
l•l··•kj, i=l 

= -o'(f-c-k')Nc2Vo5L:If(E, R) I\ 
it 

where we have used Eq. (2 ·12) and the identity 

No (k1- k2 + k:;- k4) =I: exp [- i (k1 -- k2 + k3- k4) · R]. 
u 

From these, it is immediately inferred that the contribution from the diagrams 

in Fig. 2 (a) is expressed by the sum of the infinite series 

00 

o(k-k')Nc
2
Vo~{exp( -ik·R) I: Vo 2n-Hf(E, R) if(E, R) l2

n 

R n=l 

m 

- ~ Vo2n-121 f(E, R) 12n+2}' 
n=l 

which yields 
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764 F. Yonezawa and T. 1\llatsubara 

Next, let us evaluate the second-order self-energy part represented by 

Fig. 2 (b). Each diagram of the series in Fig. 2 (b) is actm;tlly an infinite sum 

of diagrams. For instance, the first diagram in Fig. 2 (b) is the infinite sum 

of those diagrams, a typical one of which is drawn in Fig. 3 (a). In this diagram 

s1 is the multiplicity of the scattering qy the first impurity before any scattering 

by the second impurity sets in, while t1 is the multiplicity of the scattering by 

the second impurity which takes place between two separate interactions of an 

electron with the first impurity and so forth. We have to associate with this 

diagram the cumulant factor Ps (c) Pt (c) with s = s1 + s2 and t = t1 + t 2, and sum up 

OVer all possible combinations of the non-vanishing integers Sb S2, £1 and £2. 

Let Bs,v be the number of the partitions of s into p groups, then the contribution 

from the first diagram in Fig. 2 (b) is calculated as 

o (k- k') N~exp (- il£ · R)f(E, R) [f(E, R) )2 

H 

00 00 

x ~P.~ (c) Bs,2 (- VoY [f(E, 0) r-z ~ Pt (c) Bt,z (- VoY [f(E, O)] t-z. 
1=2 t=~ 

Quite similarly, the second diagram in Fig. 2 (b) is the infinite sum of diagrams 

such as Fig. 3 (b) and contributes 

00 

o(k-l£')N~If(E, R) I
4
2:.:Ps(c)B.,,s(- VoY[f(E, 0)]"-a 

B S-3 

<:/) 

X L:Pt (c) Bt,z (- VoY [f(E, .0) J t- 2
• 

t=2 

Fig. 3. 

(a) A typical diagram included in the first 

diagram in Fig. 2 (b). 

(b) A typical diagram included if1 the 

second diagram in Fig. 2 (b). 

On inspection of the above results, it IS concluded that the contribution from 

the (2p- 3) rcl diagram in Fig. 2 (b) is generally given by 

S ~;::;-a)= o (k- k') N~ exp (- ik · R)f(E, R) [f(E, R) j
2
<p-l) [f(E, O)] - 2

" 

.H 

00 00 

x ~ Ps(c)Bs.v[f(E, O)]"(- VoY· L:Pt(c)Bt,p[f(E,O)]t(- VoY 
So~p t-~P 

(p > 2) (3 ·4) 
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.1Vote on ELectronic State of Randont Lattice. III 765 

while the (2p- 2) nd diagram contributes to the self-energy part 

S)zJ~;- 2 l=iJ(k-h')N~If(E, R) l27'[f(E, 0)]-<zr,n) 
R 

oo m 

x 2::: Ps (c) Bs. p+l [- Vof(E, O)] s · ~Pt (c) Bt. p [- Vof(E, 0)] 
1

• 

•=P+l l=p 

(p>2) (3 ·5) 

The quantity Bs,p 1s related to the generating function h(x) =x/1-x by 

00 

[h (x) J P === (x/1- x) 71 = L; B •. 7, x\ (3· 6) 
S=7J 

so that the general expression of B., P is determined as 

_ 1 ds · 
7
, i _ (s -1)! 

Bs, P- ~-~- [h (x)] 1 J;~o- ~--~- ~--~ · · - ~. · • 

s ! dx" I ( jJ - 1) ! ( s - jJ) ! 
(3. '7) 

There are two ways of performing the summation of Eqs. (3 · 4) and (3 · 5) 

over all p larger than 2 ; one is by means of the generating function of P. (c) 

and other is by making use of the generating function of B., P· We shall present 

here only the first method. As has been proved in II, P. (c) is the coefficient 

of x"/ s! in the expansion of the generating function 

g(x: c) =log(l-c+c exp[x]), (3 ·8) 

that IS, 

['' I 

P. (c) = ~;s g (x: c)' (3 ·9) 

Therefore, in Eqs. (3 · 4) and (3 · 5), P.~ (c) or 1-'t (c) can be replaced by the 

differential operator l)jJ" or D/ which is to operate on the generating function 

g (x: c) or g ( y: c). Thus Eq. (3 · 4) results in 

S£J~;-'Jl = o (1£ -lr') N~ exp ( ~- ik · R)f(E, R) I f(E, R) l 2 cp~l) [f(E, O)] - 211 

R 

00 00 

x L:::B •. p[- Vof(E, O)DJJ]"g(x: c) ll:Bt,p[- Vof(E, O)D11]
1g(y: c) l 11 ~o 

S=P :JJ=O t=P 

= o (1>- -1>-') N'i..:., exp ( ik · R)f(E, R) lf(E, R) j
2
<p-l) [f(E, O)] - 27

' 

R 

X [h (- Vof(E, 0) l)jJ) h (- Vof(E, 0) D 11)] 
1'g (x: c) g ( y: c) I:JJ=O,y~o (3 · 4a) 

and similarly 

X [h (- Vof(E, 0) DjJ) It ( -- Vof(E, 0) D 11)] 
71g (x: c) g ( y: c) l:JJ~,o.y=o, (3 ·Sa) 
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766 F. Yonezawa and T. Matsubara 

where use has been made of the relation (3 · 6). Now we are ready to sum 

up (3. 4a) and (3 · 5a) over p to obtain the expression for the second-order 

self-energy part: 

<Yl 

"\1 (!J) (2) ='I.' { Q (~.r>-:3) + 1." (2r>-2)} 
L..Jl>;/;/ L..J iJ kk' iJ hk' 

P=2 

= o(k-k') NVo4 . .. . 
[I+ Vof(E, O)Dx] 2 [1+ Vof(E, O)Dy] 

x ~{if(E, R) 12f(E, R~[l + Vof(E, O)~x]~xp( -ik·R)- Voi(CE, R)I
4
Dy}Qx

2Q7/ 

R [1+ Vof(E, O)Dx] [1+ Vof(E, O)Dy}- Vo 2 lf(E, R) I
2DxDy 

xg(x:c)g(y: c) lx=O,y=O· (3·10) 

Incidentally, in the same notation the first-order self-energy part can be written 

as 

~(b) (I) - VoD;;; ( ) 
kk' = [1+ VofCE, O)Dx] g x: C ;;;=0 

(3 ·11) 

It is possible to express the final result for the self-energy part in a form which 

does not contain the differential operator D;;; or Dy. For this purpose, it is 

more convenient to use, instead of g (x: c), its derivative 

g' (x: c)= c exp(x) = :f= Psn (c) x"/s!, 
1 - c + c exp ( x) s- u 

so that Ps (c) may be expressed as 

00 

1 f' ) . 1 g' (x : c) P. (c)= 'dx dt to- exp (- t) ·-
s 2ni ~ . x" ' 

0 

(3 ·12) 

(3 ·13) 

where g> is the Cauchy integral in the complex x-plane. It is not difficult to 

sum (3 · 4) and (3 · 5) over p by making use of Eq. (3 ·13). As a result, the 

self-energy part with corrections up to the second order is given by 

00 

-Eo (1) +-Eo (2) = }}dx( dt e~p\- :) - Nc Voexp (x) 
2nzJ d x-1- Vof(E, O)t 1-c+cexp(x) 

00 00 

1 ~f . ~ ~ J.Vc
2

st exp (- t -- s + x + y) + dx dy dt d.'l·· ..... . ..... . . 
(2ni)2 

• 
0 0 

[1- c + c exp (x)] [1- c + c exp ( y)] 

X 
Vo

4 

[x+ Vof(E, O)tr[y+ Vof(E, O)s] 

x :E ![(~,}l)!:{(~,_!l)_[.x+ Vof(E, O) t] exp (- ik·R)- Vol f(E, R) l
4
s 

B [x+ Vof(E, O)t] [y+ Vof(E, O)s]- Vo 2lf(E, R) l2ts · 
(3 ·14) 
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Note on Electronic State of Random Lattice. III 767 

It is interesting to note that if we adopted the approximation Ps (c) = c, Eq. 

(3 ·14) would be reduced to 

l,'o(l)+Zo(~)= -]'!cVo + 1\T(}Vo
4 

1 + Vof(E, O) [1 + Vof(E, O)] ~ 

X~ I f(!i, R)l'i'(E, R)[l± Yoj'(E, O)] e)(p ( -:-. ik, · J1.) --: Volf~Q~_, R)l 4 

1:, [1+ Vof(E, o)r- Va 2 lf(E, R) 1

2 

(3 ·15) 

In this approximation, .E0 (1) has a pole at the energy corresponding to the 

discrete level for a single impurity determined .from Eq. (2 ·15), whereas .2,'0 (2) 

has poles at the energies determined from Eq. (2 · 13) which correspond to the 

isolated levels associated with the clusters of two impurity atoms with variahle 

separation R. 

Obviously, some of the lower-order diagrams are excluded from 270 (1) + 170 (2) 

given by Eq. (3 ·14). As discussed in detail at the end of ~ 4 in II, these 

diagrams come to be included on changing the Green's function appearing in 

the self-energy part into the true Green's function. This can be achieved by 

replacing all f(E, ll) in Eq. (3 ·14) with F(E, R) defined by 

F(E, R) =~G(l~)exp(-ill:·R) (3·16) 
k 

where G (k) is the true Green's function which, on the other hand, is self~ 

consistently determined from the new self-energy part by the relation 

(3 ·17) 

Here we denote the new self-energy part by .2,'(1) + .2,'(2), the explicit expression 

is obtained by putting F(E, R) in place of f(E, R) in Eq. (3 ·14). 

It is easy to check that the change of description in the sense introduced 

in ~ 5 of II does not bring about any change in 17 (2) . In other words, the 

second-order self-energy part fulfils the requirement of dual invariance. Actually, 

however, this proves to be obvious if we consider the problem carefully. As 

we have seen in the discussion of ~ 5 in II, the only term which causes a shift 

in the self-energy is one with T\ (c), while higher-order terms do not suffer any 

change under the change of description because the dual relation of Ps (c) (for 

s2:2) given by Eq. (5 ·12) just cancels the change of sign which comes from 

tl~e potential V. This consideration suggests that all higher-order self-energy 

parts have the property of dual in variance since they do not retain P 1 (c) . 

§ 4. An alternative method 

--The M~T method--

In ~ 3, the second-order self-energy part has been evaluated through Edwards' 

method, while in this section we try to obtain the same result by means of an 
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768 F. Yonezctwa and T. 1\liatsubara 

alternative method (the M-T method) in order to see the correspondence between 

the two methods. As has been examined in l, the criterion for choosing one 

method or the other depends on the properties of the approximations used, on 

the nature of the required quantities or on the aim of the calculation, so that 

it is meaningful to formulate problems through both methods. 

Since a detailed discussion of the application of the M-T method to the 

present problem is given in I, only a brief review of it will be presented here. 

We start with Eq. (3 ·1) which is written as 

G""' (E) = ok~.:'Go (k) -Go (k) Vo~ L:;exp [- i (li- k'') · Rn] G '""';/ (E). ( 4 ·1) 
k" 1:nJ 

T'o facilitate the formulation, we introduce a function Fn (lr,) defined by 

F,. (l£) = ~exp [- i (If- k') · Rn] G,.,k (E), ( 4 · 2) 
k' 

which together with Eq. ( 4 ·1) leads to 

G(k) =Go(k) ~ Ga(k) Vo~F,.(k:), (4·3) 
[n] 

Fn(k) =G0 (k) ·~Val: Z:Go(lr,')exp[-i(l£~1.:') · (R"'--Rm.)]Fm(k). (4·4) 
k' !m.J 

On taking the term with Rn=Rm out of the summation, Eq. (4·4) is put in the 

forrn: 

(4. 5) 

where 

and use has been made of Eq. (2 ·12). To simplify the notation, we shall put 

Va = V and 
1+ Vaf(E, 0) 

Go (k) =Go' (lr.). 
1+ Vaf(E, 0) 

(a) 

(b) 

(c) 

0 

n m 

1 +V0 f(E,O) 

-Vo 
Vl'lt(n-m) =-V W~t(n-m) 

1 +V0 f(E,O) 

2: 
[n] 

Fig. 4. l~ules fur calculating F,(k) with diagrams. 
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Note on Electronic State of Random Lattice. III 769 

To solve Eq. (4·5) by the iteration procedure, it is convenient to derive 

help from the diagrams, the rules for calculating with which are given in Fig. 1. 

It is easy to see that the first few terms of the expansion of Eq. (4·5) cor

respond to the diagrams shown in Fig. 5 (a). A complete investigation has 

been given in I so far as the first-order correction is concerned and we have 

seen that the optical model--~the simplest of all---is the approximation that only 

those diagrams in Fig. 5 (b) are summed up to give Fn (7£). The prescriptions 

in Fig. 4 yield 

(f) 

F~,p (k) =Go' (k) L: (- V)"~ · · · .L;Wk (Rn- Rl) Wk (R1- R2) · · · Wk(Rv--1 -- R"). 
v~o [ll1J IJ(v] 

(4·7) 

Hereupon, it is necessary to average over the random distribution of the impurity 

sites. In I, coincidence of the impurity sites has not been considered but we 

have supposed that the average over various sites can be carried out independently, 

which is in effect equivalent to assuming that Ps (c) is regarded as c for all values 

of s. Of course, it is possible to take account of the coincidence of the impurity 

sites and obtain an exact cumulant average in the M-T method as well, but in 

order to avoid the complexity associated with the accurate treatment of the 

averaging process, we shall adopt the above mentioned approximation and leave 

the exact discussion for a later chance. 

Fn(k) o + ~ + A + 0 

Fig. 5. (a) The diagrammatical representation of F.,Jk). 

(b) The diagrams for the optical model. 

With the replacement ~-)c:8 and the definition of W~.- (R) g1ven by Eq. 
[n] n 

(4·6), we have 

= c 2:= Go (k') L.::exp [- i (k- k') · R,,J 
};~/ 'It 

:=NcGo(k). (4·8) 

Thus, Eq. ( 4 · 7) becomes 

CD 

Fnop (k) =Go' (k) y; [- Nc VGo (k) ]" 
v -0 
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770 F. Yonezawa and T. lVlalsubara 

_ Go' (k) 

1+ NcVGa(k) 

Ga(k) 

1 + Vaf(E, O) + Nc VaGa (k) ' 
(4·9) 

which together with Eq. ( 4 · 3) gives the Green's function for the optical model 

(4 ·lOa) 

where 

zov (1) = _ NcV = _-NeVa 
1 + Vaf(E, 0) 

(4·10b) 

This is exactly the same as Eq. ( 4 · 4) in II if Ps (c) IS taken to be c for all s. 

This fact suggests that the Edwards' diagrams drawn in Fig. 4 of II correspond 

to the M-T diagrams given in Fig. 5 (b). 

Now, we have to prove that, when F" (li) is approximated by the sum of 

the diagrams in Fig. 6 (a) with such a vertex renormalization as in Fig. 6 (b), 

the resulting second-order self-energy part is equal to Sa (1) + Za (2) in Eq. (3 ·15). 

On referring to the rules given in Fig. 4, YV1i3
l (R) defined by a sum of the 

diagrams in Fig. 6 (b) is shown to be 

CYJ 

vV}~l(R) =Wh(R) jWk(R) 12
(- V/~[- VjWk(R) l] 2

v 

(a) 

(b) 

v~o 

~vk (R) 1 wk (R) 1

2 c- VY' 
1- V 21Wk(R) 1

2 

where 

w~3)(n-m) = n~m + n®m 

= n!;; ) wm 

+ -----

0 

+ ··-

Fig. 6. The second-order approximation in the M-T method. 

(a) The diagrams of Fn(k) which give .l'o(l) +·.l'o(2). 

(b) Renormalization of vertex. 

As IS easily seen, Wk (R) is rewritten by using Eqs, (2 · 12) and ( 4 · 6) as 

W~;;(R) =exp ( -il;;·R)f(E, R), (4·11) 

so that W 1i:'l (R) finally takes the forrn: 

W }}l (R) = (- VYI f(E, R) l~l(E, R) exp (- il;; · R) 

1- V 2
1 f(E, R) 1

2 
( 4 ·12) 
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Note on Electronic State of Randmn Lattice. III 771 

from which the expression for the vertex renormalization ~A immediately follows: 

~A= 1+ ~W)~l (R) + ~ (- V) TV)~l (R) W% (R) 
[1(,] [U] 

= 1 + c ~ (~ YX!f(f;, R) l2f(E, !_?.) ~xp ( ~il£ ·R) + (- V)
4 l f(E, R) 14 

zl 1-- Y 2
1 f(E, R) l:l 

= 1+ -cVo
3 

_ 

[1 + Vof(E, 0)] 2 

x ~ I f(E, ~) 1

2
/(E, R) [1 + Vaf(E, O)] exp( ~il£~/?.)~ Vol f(E, _i~)J~ 

H [1+ Vaf(E, O)r- Ya2 lf(E', R) 1

2 

( 4 ·13) 

with the help of the replacement :L;->c:L;. The infinite sum of the diagrams 
cuJ n 

in Fig. 6 (a) then gives 

co 

Fn(li) =~AGo'(k)~[- v~ANcGo(k)]" 
v -~o 

~AGo' (k) 

1 + Nc~ A VGo (/£) 

~AGo(k) 

1 + Vof(E, O) + Nc~ A VoGo (k) 
(4·14) 

so that the Green's function is obtained, by virtue o:f Eq. ( 4 · 3), as 

=[co-t (k) + -- N_c.~AV.o - -J-1 
- 1 + Vof(E, 0)] ' 

( 4 ·15) 

where agmn ~ has been replaced with c~=Nc. In this approximation the 
[n] n 

self-energy part is obviously given by 

"' __ -,..r yc- _ -NeVa 1'-
..:;,A-· -1vC SA--- -. S~A 

1+ Vof(E, O) 
( 4 ·16) 

and on inserting ( 4 ·13) for ,; A in the above equation, we can readily verify 

that l:A is precisely the same as l:o (1) +.So (2) in Eq. (3 ·15) under the restric

tion that Ps (c) =c. 

As the next stage, let us try and find what kinds of M-T diagrams cor

respond to the self-energy part .2 (1) + .2 (2) in Eq. (3 ·17) which is actually 

derived from Eq. (3 ·15) on changing f(E, ~~&) into IP(E, R). In the A1-T 

method, this result is attained by improving the vertex renormalization (~A->·~B) 

in the way described in Figs. 7 (a) to (g). To be more precise, we first define 

a renormalized W-function Wk (n- m) by a sum of the diagrams in Fig. 7 (a). 

(4 ·17) 

where ~B is the vertex renormalization constant vvhich is to he determined self-
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772 F. Yonezawa and T . .f\;fatsubara 

I 

consistently. The definition ( 4 · 5) together with the replacement L.;->c I: gives 
[n] n 

rise to 

,....., 

and hence Wk (R) can be easily summed up to give 

Let us put 

W~r (R) = (- V) exp (- ili. R) ~ Go (h') ~xp(ilf'. f) 
k' 1 + Ncfn VGo (li) 

F(E, R) =~ G-o(k)exp(ik·R) 

k 1+Nc~nVGo(k) 

and put ( 4 ·18) m a compact form 
,..._, 

W"(R) = (-- V)exp[ -£k·R]F(E, R). 

{a) ~(R) 

fil.... ~. 

+ / ' + / ~ +-·--

:=: ~ 

(b) 'l ~ 0 + 4 + Q + -·----

:::: L'i 

(d) F,(k) ~ @ + @-;--0 + A+----

-'"'/(3) e ~ 
(e) Wk (R) == +· ~ + ----

.-·-©~ ~{4) 

(f) W~c (R) = + + ~--· 

(g) "8 = c, + 2: { w~"
3
J(R) + w'4) (R)} 

O [R] k k 

=0 
Fig. 7. The second-order self-consistent approximation in the M-T method. 

( 4 ·18) 

( 4 ·19) 

(4. 20) 
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Note on Electronic State of Random Lattice. III 773 

As will be shortly proved, F'(E', R) defined in Eq. (4 ·19) is exactly the same 

function as that obtained from f(E, R) by changing G 0 (k) to G (k). 

In the next place, we perform the first-order renormalization of the vertex 

by introducing 'fJ in Fig. 7 (b) and ~o in Fig. 7 (c). 'lJ is a sum over all the ring 

diagrams obtained through connecting both ends of wk (n- m): 

_ Nc~n V 2Go2 (k) 
- ~ ~--~---~- -~------~-~ ·------~-

k 1+Nc~nVGo(l~:) ' 

while ~o 1s given by 

- 1 2 0 1 f 0 = + 'fj + "fj + 'fj" + ... = 
1-'fj 

1+ Vaf(E, 0) 

1 + Vof(E, O)- Vo~ Nct;n VGo2~k) 
1.: 1 + A!ct; n V Go (1£) 

1 + Vof(E, 0) 

1 + V 0F(E, O) 

The last result follows from the definition (4 ·19) and the relation 

f(E, 0) =I: Go (l£). 

" 

(4. 21) 

( 4. 22) 

We call t;o the first-order vertex renormalization constant because it modifies 

the self-energy part of the optical model zap (1) into the true first-order self

energy part I: (1): 

zap (1) ->t;
0
;;op (1) = ---=-!J!:_~o_\1_~--~-

1 + Vof(E, 0) 

-----=Nc Vo == L (1). 
1 + VoF(E, 0) 

(4· 23) 

Now, we assume that F~~ (k) is given by a sum of diagrams in Fig. 7 (d) with 

renormalization constant t; 8 . Since this is the same as Fig. 6 (a), the expression 

for Fn(k) is also the same as (4·14) except that ~.~ should be replaced by ~n. 

Thus we have 

Fn(l£)= _ ~n9-o'(k)_ 
1 + Nc~ n VGo (h) 

and, on using Eq. ( 4 · 3), 

~nCo (lr) 

1 + Vof(E, 0) -1- JVct;nVoGo(lr) 

Go(k) G (/£) = ----- --

1 + Nc~n VGo (/£) 

(4·2!1) 

(4·25) 
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774 F. Yonezawa and T. Matsubara 

This result proves two facts: First, comparison between ( 4 · 25) and ( 4 ·19) yields 

F(E, R) = ~G (k) exp (ik · R) (4·26) 
k 

and secondly the self-energy part is now given by 

In the last place, we have to determine ~n. We have seen above that ~ 0 

gives rise to a correct first-order self-energy part, but to be consistent and 

include the second-order self-energy part, we must add some correction to ~o. 

This can be easily achieved if we generalize ~A by carrying out the first-order 

renormalization at each vertex and replacing every W~r; (R) with W~r; (R). That 

is, of the three terms in ~A, Eq. ( 4 · 13) or Fig. 6 (b) , 1 should be replaced 

with ~ 0 , W£l (R) with W 1 ~ 3 ) (R) as in Fig. 7 (e) and W 1 ~ 4 ) (R) = (- V) W2l (R) x 

Wl(R) with W 1 ~ 4 l(R) as in Fig. 7(f). With (4·20) and (4·22), W 1 ~ 3 )(R) and 

W 1 ~ 4 l (R) are constructed in the form 

and 

Wi2) (R) = ~o
4
l~k~~I

2
Wk C~) 

1-~oiW~r;(R)I 

~0 

1+ VoF(E, O) 

.~ 

. Vo3 IF(E, R)I 2F(E,R)exp( -ik·R) 

[1+ VaF(E, 0)] 2
- Va2 IF(E, R) 1

2 

w c~l CR) = ~-~~L!~!f..S~2t_ 
" 1-~o 2 1Wk(R)I 2 

~o _ _Vo
4

IF(]i;,~~)i
4

_ 

[1+ VoF(E, 0)] 2 [1+ VoF(E, 0)] 2
- Vo

2
IF(E, R) 1

2
• 

Collecting these results into ~ n given in Fig. 7 (g), we have 

~n=~o+ ~{W};) (R) + W}i) (R)} 
[R] 

= ~0 {1- -[1 + v~J(~, o) ]2 

(4· 28) 

(4. 29) 

x ~.lf(E, R) I
2

F(E, [~~ [~ 0 trt:~~J 2 ~ ~o;~~~i,~~;:~ 2 - Y~lf(E, R) 1
4

} • 

(4·30) 

It is an easy task to check that the self-energy part (4·27) together with (4·30) 

satisfies the relation 

~n=~(1) +~(2) ( 4. 31) 

when P.~ (c) =c. Thus our original purpose has been accomplished. 
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§ 5. Discussion and summary 

Let us first consider the relation between the local modes of one impurity 

and of the cluster of two impurities and the fine spikes of a rand01n system 

which appear in the band gap of the regular lattice. The level density including 

the first-order correction 1: (1) has been calculated with the approximation that 

electrons in the main band are taken to be free and that the concentration c of 

impurities is so small that P.~ (c) is regarded as c. The result of the ·computa

tion is pictured in Fig. 15 of I. It is obvious from this figure that an impurity 

band arises around the local mode of an impurity--the smallest of the solutions 

given by Eq. (2 · 6). The level density including the second-order correction 

given by Eq. (3 ·14) is examined and leads to the similar conclusion that, for 

the very small values of c, the impurity levels are found at the eigenenergies 

which are derived from Eq. (2 ·14). In this way, the correspondence between 

the local modes caused by the islands of impurity atoms and the many spikes 

in the energy spectrum of a disordered system may be seen through the Green's 

function method as well. 

On the other hand, the existence of the special frequencies is not so easily 

seen. For instance, Fig. 15 of I shows that, when c deviates from zero, the 

band gap is rapidly smeared up irrespective of the magnitude of Vo, so that 

the band gap does not persist. This breakdown actually comes from the fact 

that taking Ps (c) as c is a terribly bad approximation except for extremely 

small values of c. Therefore, we require a numerical result or a general proof 

based on a formulation which treats Ps (c) without any approximation. The 

results of the calculation will be reported shortly. 

From Eq. (2 · 17) of II written as 

.D(E) = -limim[ 
1

. tr G(E+io)] 
3-~n, 7C 

which relates the Green's function with the state density, It Is concluded that 

the special frequencies are determined by those energy values E which give 

real values to G (E), since the state density vanishes for such E. 

In the next place, we consider how the approximation for the self-energy 

part is improved. From a mathematical point of view, it may be supposed to be 

adequate to sum up all the third-order diagrams in which three impurities are 

involved; the diagrarn in Fig. 8 (a) is one of them. But, as a matter of fact, 

it will be seen that the diagrams in Fig. 8 (b) play a more important role; the 

summation in this case is carried out by using the criterion that only one or 

two impurities are concerned with the scattering of an electron at any arbitrary 

instance. By way of example, let us consider the point A on the electron line 

in Fig. 8 (a). At this moment, all the three impurities are in the process of 

interaction with the electron. If we take the point B on the electron line In 
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(a) 

(b) 

F. Yonzea·wa and T. Matsubara 

Fig. 8 (b), it is apparent that the interaction of the 

electron with the first impurity has already been 

completed and the interaction with the last one 

has not yet set in, so that only the second and 

third impurities are interacting with the electron. 

Fig. R Higher order diagrams. 

The physical picture of the former approxi

mation is that the effective ranges of two or three 

impurities overlap and are isolated from the 

effective ranges of the rest of the impurities. 

This is the opposite of the assumption that the 

two kinds of atoms are mixed up completely at 

random; that is, the probability for several 

impurities to gather in the host lattice is very 

small. In the latter case, the diagrams are sum

med on the ground that the effective ranges of 

all the impurities are distributed almost uniformly 

and that there is only a poor chance for the 

formation of islands. This is expected to be more realistic for the problem 

under consideration. 

In ~ 3 and ~ 4, the formulation of Z (2) has been demonstrated by means 

of two different methods. It can be shown that the M-T method is more useful 

in dealing with the latter of the two approximations described in the above, 

because this method gives a more visual insight into the problem. The detailed 

discussion will be given elsewhere. 
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