
Note on Generalization in Experimental Algorithmics

Naren Ramakrishnan

Virginia Polytechnic Institute and State University

and

Raúl E. Valdés-Pérez

Carnegie Mellon University

A recurring theme in mathematical software evaluation is the generalization of rankings of algo-
rithms on test problems to build knowledge-based recommender systems for algorithm selection.
A key issue is to profile algorithms in terms of the qualitative characteristics of benchmark prob-
lems. In this methodological note, we adapt a novel all-pairs algorithm for the profiling task
— Given performance rankings for m algorithms on n problem instances, each described with p

features, identify a (minimal) subset of p that is useful for assessing the selective superiority of
an algorithm over another, for all pairs of m algorithms. We show how techniques presented in
the mathematical software literature are inadequate for such profiling purposes. In conclusion, we
also address various statistical issues underlying the effective application of this technique.

Categories and Subject Descriptors: G.4.2 [Mathematical Software]: Certification and Testing

General Terms: Experimental Algorithmics

Additional Key Words and Phrases: Profiling, Performance Evaluation, Benchmark Studies

1. INTRODUCTION

The testing and comparative analysis of numerical algorithms is a significant aspect
of mathematical software evaluation. Experimental algorithmics deals with the de-
sign of methodologies for the consistent evaluation of algorithms on realistic test
problems, interpreting the results of evaluations (rankings etc.) and generalizing
such interpretations within the problem domain. While other studies have under-
scored the importance of effective design and reporting procedures [Crowder et al.
1979], our goal in this brief methodological note is to address the task:

Profiling: Given performance rankings for m algorithms on n problem

This work was partially supported by National Science Foundation grant #EIA-9974956 to Ra-
makrishnan and National Science Foundation grants #IRI-9421656 and #IIS-9819340 to Valdés-
Pérez. Authors’ addresses: Naren Ramakrishnan, Department of Computer Science, Virginia
Polytechnic Institute and State University, VA 24061, USA. Raúl E. Valdés-Pérez, Computer
Science Department, Carnegie Mellon University, Pittsburgh, PA 15213-3891, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.



2 · N. Ramakrishnan and R.E. Valdés-Pérez

Problem Laplace? Square Domain? Const. Coeff.? Algorithm
(Right Side)

p1 Y Y Y FFT6
p2 Y Y Y FFT6
p3 N N Y DCG4
p4 N N N DCG4
p5 Y N N COLL
p6 Y N Y COLL

Fig. 1. Best algorithm performances for 6 elliptic PDEs. FFT6, DCG4 and COLL refer to
PELLPACK modules for sixth order FFT 9-point differences, Dyakunov conjugate gradient with
fourth order accuracy and Collocation with band Gauss elimination, respectively.

instances (each with p descriptive features), identify a (minimal) subset
of p that discriminates the performance of an algorithm over another,
for all pairs of the given algorithms

Such generalizations are important in the design of recommender systems [Ramakr-
ishnan 1997], performance evaluation systems [Boisvert et al. 1979; LaRose 1993],
problem solving environments [Houstis et al. 1998], and in the knowledge discov-
ery of qualitative information from scientific experiments [Valdes-Perez 1999]. The
traditional approach is to use a decision tree algorithm (or other machine learning
technique) to learn a classifier from the problem feature space to the algorithm
space, using the performance measures to identify good mappings. While such
generalizations are shown to achieve high predictive accuracy on independent test
sets of problems, we contend that they are inadequate for determining high-level
descriptors of algorithm performance.

The rest of this note is organized as follows: In Section 2, we identify drawbacks
with common generalization approaches and present situations where traditional
techniques fail. The profiling algorithm is presented next, followed by a careful
experimental evaluation on a testbed of elliptic PDE problems. We also address
various statistical and methodological issues underlying the application of the pro-
filing technique.

2. EXAMPLES

Typically machine learning and AI techniques have been used to construct classifiers
that (i) take a problem description as input and map it to a ‘best’ algorithm, or (ii)
take a problem description and an algorithm as input and map the combination to
the expected ranking of the algorithm on the given problem instance. For example,
in a PDE problem solving context, a problem description would correspond to a list
of features (e.g., whether it is Laplacian, has a square domain, and constant coef-
ficients) and the ‘best’ algorithm/rankings would correspond to evaluation metrics
such as order-of-convergence or time required to achieve a certain level of accuracy.

Fig. 1 describes a scenario that contains data pertaining to six PDE problems,
each with three symbolic features, and involving three algorithms. For simplicity
assume that we are interested only in the best algorithm performance and that the
performance rankings of algorithms for each problem instance are distilled into this
form, as shown in Fig. 1.

(1) Consider using a decision-tree classifier to learn the data shown in Fig. 1. Deci-



Generalization in Experimental Algorithmics · 3

sion tree approaches incrementally add nodes starting from the root, typically
choosing decision criteria at each internal node that maximize an information-
theoretic measure. The end result is a classifier that can be used as a discrim-
inator for any new problems. For example, the information required (in bits)
to classify the data in Fig. 1 is given by:

I = −
2

6
log

2

6
−

2

6
log

2

6
−

2

6
log

2

6
= 1.5850

where the logarithms are taken with respect to base 2. Assume that we split
based on the first feature - the presence of a Laplace operator. The information
required at this stage will then be:

I1 = −
4

6
(
2

4
log

2

4
+

2

4
log

2

4
) −

2

6
(
2

2
log

2

2
)

= 0.6667

If we split, instead, based on the other two features, the respective calculations
are:

I2 = 0.6667

I3 = 1.3333

As noted in [Lucks and Gladwell 1992], traditional decision tree algorithms
(such as ID3 [Quinlan 1986; Addison et al. 1991] etc.), use a greedy approach
to select relevant features. For example, the gain using each of the above
attributes is given by:

Gain1 = 1.5850− 0.6667 = 0.9183

Gain2 = 1.5850− 0.6667 = 0.9183

Gain3 = 1.5850− 1.3333 = 0.2517

and hence such algorithms choose the first or second attribute since the in-
formation gain is highest in its case. Continuing in this manner, the decision
tree for Fig. 1 would construct a profile for the FFT6 algorithm as the con-
junction ‘Laplace ∧ Square Domain ∧ Constant Coefficients’. However, the
technique fails to identify the more concise profile for the FFT6 algorithm,
namely ‘Laplace ∧ Square Domain’. In addition, it can be observed that these
two features are also enough to identify the selective superiority of all pairs of
the three algorithms. Notice that while constant coefficients typically play a
vital role in the success of FFT algorithms, it is not a useful feature for dis-
criminating FFT6’s performance over the other listed algorithms, for the data
given in Fig. 1. Decision trees also suffer from other drawbacks — duplication
of subtrees in disjunctive concepts (replication) and partitioning of data into
fragments, where a high-arity attribute is tested at each node (fragmentation).

(2) Similar difficulties arise with various other learning techniques, such as neural
networks [Weerawarana et al. 1996] and other restricted classes of function ap-
proximators [Lucks and Gladwell 1992]. For example, using a neural network
with the data in Fig. 1 will require that PDE problem features be represented



4 · N. Ramakrishnan and R.E. Valdés-Pérez

by a characteristic-vector (for the input layer of a neural network), and that the
the output layer correspond to the algorithm whose performance is expected
to be best. Such attribute-value based approaches are inadequate because they
treat all feature inputs as activations which can be operated upon numeri-
cally. Furthermore, it would be difficult to recover the simple profile above
from a trained neural network. Thus, profiling techniques must be able to
reason about issues in performance evaluation by taking into account the sym-
bolic/categorical nature of relevant problem features (like the presence/absence
of a Laplacian operator).

(3) In addition, the profiling approach should be able to isolate as many irrelevant
variables (features) as possible from the induced generalization. Consider the
study [Houstis and Rice 1982] which evaluates if higher order methods are
better for linear elliptic PDEs whose solutions have singularities or similar
difficulties. This population includes the pathological example (Problem 54
from the ELLPACK population [Rice and Boisvert 1985]):

[(1 + x2)ux]x + ([1 + a(y)
2
] uy)y

−[1 + (8y − x − 4)
2
]u = f(x, y), 0 < x, y < 1

u = g(x, y) for x = 0, 1 and y = 0, 1

a(y) = 4 y2 + 0.9

b(x, y) = max[0, (3 − x/a(y))
3
]

c(x, y) = max[0, x − a(y)]

d(x, y) = 0 if c(x, y) < 0.02

d(x, y) = e−b(x,y)/c(x,y) if c(x, y) ≥ 0.02

where the true solution is

2.25 x [x − a(y)]
2
(1 − d(x, y))/a(y)

3
+ 1/[1 + (8 y − x − 4)

2
].

The salient feature of this problem is that it has a wildly behaving solution that
has singularities. When a(y) is parameterized as a(y) = 4 y2 + β, for instance,
the singularity behavior is observed whenever x − 4 y2 = β or 4 y2 = −β. As
the solution has a fairly sharp ridge of considerable complexity (this is caused
by the careful choice of the Dirichlet boundary condition), PDE discretizers
typically exhibit a ‘two-phase’ phenomenon. Initially, the grid refinement is
used to resolve the sharp ridge, and this phase is characterized by low accuracy
and slow convergence while the latter phase has an apparently faster conver-
gence behavior (when the ridge is resolved). As a result, orders of convergence
are difficult to estimate from measured data (one accepted practice is to drop
the initial, low accuracy points). The discretization phase often results in a
matrix that is symmetric, positive definite, and diagonally dominant. For cer-
tain specific problem instances, an exact answer can be obtained which makes
it difficult to rank algorithms on an order-of-convergence measure. Also, the
two-phase phenomenon renders the estimation of convergence quite hard (and
sometimes impossible). However, it is observed in experimental runs that a



Generalization in Experimental Algorithmics · 5

benchmarks

algorithms (ranks) benchmarks

properties

(yes/no)

(one/zero)

or

Fig. 2. Input Design for the Profiling Algorithm.

fourth order HODIE method is, in general, better than a second order method,
such as the 5-point star algorithm. Given adequate coverage and a represen-
tative problem population, a profiling algorithm should be able to obtain the
high-level qualitative conclusion “Higher order methods are better” (such as
attained in [Houstis and Rice 1982]) despite the other behavioral aspects of
individual problems such as presented above.

3. THE PROFILING ALGORITHM

We present a profiling algorithm that uses an all-pairs approach to identify the
most concise profiles for a given classification. The input is assumed to consist of
rankings of algorithms for each problem described by a sequence of discrete/numeric
features. Fig. 2 shows two matrices that contain all the relevant data. The first
matrix contains ranks (alternatively, raw measurements if the units of measurement
are uniform) for each algorithm on each benchmark and expresses the empirical
results. The second matrix expresses our understanding of the properties that
each benchmark has. Generally, one is not interested in the performance on a
benchmark per se, but rather is interested in a more general property that is not
directly measurable, but is possessed to some degree by one or more benchmarks.
In the present case, this second matrix contains only yes/no (or one/zero) entries,
i.e., a benchmark either entirely has or lacks a property.

One could multiply (or join, in the relational database sense) the two matrices
together and thus obtain information on the rankings of the alternative algorithms
with respect to the various properties. One could further process this result into a
judgment of the single best algorithm, depending on one’s need for certain of the
properties. However, the goal here is not to recommend a single best algorithm,
but to extract some insight into the comparative strengths of each algorithm.

The overall procedure is described in Fig. 3 and has three main stages. The
first stage is a brute-force computation of a CNF that conjoins feature lists for
all mC2 combinations of algorithms. Each feature list contains a list of attributes
that can contrast the given pair of algorithms. This CNF is then simplified using
standard problem-reduction techniques [Valdes-Perez et al. ] and then converted
to a DNF that can yield smallest profiles for each of the algorithms. Since there
may exist more than one such minimal profile for each algorithm, the final stage
involves a further inner-loop that minimizes the use of features across profiles for
all the algorithms. To tune the contrast between algorithms represented by the
profiles, the algorithm allows the specification of the ceiling of overlap allowed to
infer contrast. Though this algorithm is intractable in the worst case (due to the



6 · N. Ramakrishnan and R.E. Valdés-Pérez

Stage 1:

For each (i, j) ∈ algorithms
Form a disjunction of features that can contrast i from j

in terms of its selective superiority over the problems

Form a CNF of these disjunctions by conjoining them

Stage 2:

Simplify the CNF using term-rewriting subsumptions

Convert CNF → DNF

Use the DNF to identify smallest profiles for each algorithm

Stage 3:

For every algorithm that has multiple profiles
Choose the profile that
maximizes coordination across the algorithms

Fig. 3. The All-Pairs Profiling Algorithm.

CNF → DNF conversion, [Garey and Johnson 1979]), there are various domain-
specific considerations that render it practical for experimental algorithmics. More
details of the basic profiling methods are available [Valdes-Perez et al. ].

To illustrate the operation of the profiling technique, consider its application to
the data in Fig. 1. Stage 1 results in the CNF:

(and (or L S)

(or S)

(or L))

The first line, for instance indicates that the algorithms FFT6 and DCG4 can be
contrasted using either the L (Laplace) or the S (Square Domain) feature. The
second line indicates that only the feature S can distinguish between FFT6 and
COLL, and so on. Notice now that since (or S) and (or L) subsume (or L S),
the latter can be safely deleted. We thus obtain the CNF:

(and (or S) (or L))

and its equivalent DNF:

(or (and S L))

In this case, there is only one disjunction with the two features S and L. In
general, this stage of the algorithm involves choosing one of the various simplest
disjunctions. We now identify the profiles for each of the algorithms using these
attributes. Notice that the data shown in Fig. 1 eliminates the need for Stage 3,
since there are no alternative profiles for any given algorithm.

While the all-pairs technique has exponential complexity in the worst case, it is
our experience that various considerations in experimental algorithmics ensure that
it works very well in practice. For example, numerical algorithms are frequently de-
signed to address special problem difficulties, hence such aspects can subsume other



Generalization in Experimental Algorithmics · 7

differences in pairwise comparisons of algorithms. For example, the Dyakunov CG
algorithm is only applicable when the operator is in self-adjoint form, so inducing
a more general construct will not be useful. In addition, there are various approxi-
mation algorithms, such as the set-covering heuristic that can substantially reduce
the search space with graceful degradation in overall accuracy.

The goal of the profiling approach is to gain a broad qualitative understanding
of algorithm performance to guide further detailed studies. In this respect, the
all-pairs technique is a useful analytical tool.

4. EXPERIMENTAL STUDIES

First we describe the statistical issues involved in setting up the benchmarking data
before profiling is even attempted. Then we present the profiling results and relate
these to previous reports on the same data.

4.1 Statistical Issues

The first step involves ensuring that the rankings of algorithms are statistically
significant to permit generalization. This requires selecting a family of statistical
methods, determining a suitable level of significance, and finally performing an
appropriate hypothesis test. We address each of these aspects below:

—Selection of a Statistical Technique: On a fundamental modeling note, the exper-
imental algorithmicist has a choice of parametric vs. non-parametric methods.
The former are typically appropriate when a distributional assumption (most
often, normality) can be verified to hold, whereas the latter assume no prior
knowledge on the distribution of samples. Irrespective of the method of choice,
a decision needs to be made regarding the nature of the null hypothesis being
tested. This is not always an easy selection because the implications of deciding
in one direction might be more serious than the other. To a certain extent, it de-
pends on the final use of the results of the statistical test. For example, consider
testing the hypothesis that a new algorithm is substantially better than various
others. Selecting in favor of this hypothesis produces immediate advantages for
an automated recommender system for numerical algorithms. However, reject-
ing this hypothesis has implications for understanding the behavioral aspects of
the underlying problem population! Depending on the situation, the actual hy-
pothesis being tested might need to be reformulated. If parametric methods are
chosen, the results can be sensitive to the actual values of the observations. For
example, using the log of the error measured on a PDE grid instead of the actual
value can adversely affect the p−value in a t-test. Furthermore, the literature on
parametric methods demonstrates that the presence of outliers can influence the
final result.

—Determining a Level of Significance: Statistical tests have not been originally
designed for the comparative analysis of algorithms. Thus, care must be taken
to ensure that they are tailored appropriately for the situation. For example,
how does one select an appropriate level of significance? Assume that we are
interested in pairwise tests of significance at the 0.03 level. One could conduct
mC2 tests for each of the n problems in turn and use a simple paired t-test to
determine if the comparisons are significant. The flaw in this line of reasoning



8 · N. Ramakrishnan and R.E. Valdés-Pérez

arises from the fact that even if each of the tests has a probability of 3% of a Type
I error (rejecting the hypothesis when it is actually true), it doesn’t necessarily
imply that together, they have the same probability of Type I error! It is easily
shown that the true probability of a Type I error, instead, is actually given by
1 − (0.03)

mC2 . For large m, this figure approaches 1! The straightforward fix to
this problem is to recalculate the significance level of individual tests for a given
composite level of significance. As a good first approximation, each individual
comparison can be tested for the required level of significance divided by mC2.
This is commonly referred to as the Bonferroni correction and studies that do
not pay close attention to this detail have earned the notorious title of ‘fishing
expeditions.’

—Hypothesis Testing: The general multi-treatment analysis technique is the distribution-
free Friedman, Kendall and Babington-Smith test [Hollander and Wolfe 1973].
The goal is to test the hypothesis that the algorithms are equally effective versus
the alternative that there is an ordering/ranking among them. Since this is a
non-parametric method, the first step is to replace the absolute measurements
by means of ranks. Within each row, the algorithms are ranked from least to
highest (according to the performance measure) and assigned ‘ranks’. The av-
erage of the ranks is then computed for each column. This scheme serves two
useful purposes: (a) by computing ranks within each row first, it offsets any
natural advantages that one problem provides over other problems, and (b) by
averaging ranks across the columns it ensures that the results are invariant under
monotonic transformations. It also addresses (to a certain extent) the noise and
outliers issue inherent in the PDE population. A test statistic is then computed
and hypothesis testing proceeds depending on the level of significance. We refer
the interested reader to ([Hollander and Wolfe 1973], Chapter 7) for more de-
tails. In addition, if the various algorithms (treatments) can be ordered, then a
more efficient distribution-free test (the Page test) exists that can be used to test
the null hypothesis. For example, solving a PDE with a varying number of dis-
cretization nodes is one instance where the treatments have a natural ordering.
The Page test is more appropriate when a particular ordering of the algorithms
is being tested, since it uses a statistic that is sensitive to the orderings. In this
article, we have utilized a least-squares approximation to arrive at a more high
level descriptor (described below).

4.2 Results

To validate this methodology and the all-pairs technique, we considered the bench-
mark set involving 37 PDEs from the population described in an earlier Transac-

tions on Mathematical Software article [Weerawarana et al. 1996] and eight PELL-
PACK modules — ‘PS5’, ‘P3C1C’, ‘DCG’, ‘DCG4’, ‘HODIE’, ‘FFT2’, ‘FFT4’,
and ‘FFT6’ — used in the same study. PS5 is the five–point star module — a
second–order finite difference scheme with ‘as is’ indexing and band Gauss elim-
ination. P3C1C is a fourth–order collocation scheme with Hermite bicubics and
Gauss elimination. DCG uses a second–order finite difference scheme, Dyakunov
iteration with a generalized marching algorithm and a conjugate gradient method.
DCG4 is the same as DCG except that it uses Richardson extrapolation to obtain a



Generalization in Experimental Algorithmics · 9

PS5 is
better than DCG2, DCG4

for problems with smo cc
much better than P3C1C

for problems with smo e
better than all others

for problems with s vs

P3C1C is
much better than DCG2, DCG4
better than PS5, HODIE

for problems with bc c
much better than FFT2
better than PS5, HODIE

for problems with rs c
much better than for PS5

for problems with rs h
better than for FFT4, FFT6

for problems with rs s

FFT6 is
much better than PS5, P3C1C, DCG2, DCG4, FFT2

for problems with op laplace
much better than FFT2, FFT4

for problems with rs s

much better than P3C1C, HODIE, FFT2, FFT4, DCG2, DCG4
for problems with smrhs s

DCG2 is
much better than P3C1C
better than PS5

for problems with op selfadj
much better than PS5, DCG4

for problems with smo dd
better than PS5, P3C1C
somewhat better than DCG4
slightly better than HODIE, FFT2, FFT4, FFT6

for problems with s wf

Fig. 4. Results from profiling 8 PELLPACK modules on 37 PDE problem instances. The figure
demonstrates four such profiles.



10 · N. Ramakrishnan and R.E. Valdés-Pérez

fourth–order scheme. HODIE is a fourth-order finite difference method with Gauss
elimination. The triple modules FFT2, FFT4, and FFT6 are second, fourth and
sixth order finite difference schemes with Fast Fourier Transforms. Both DCG and
DCG4 provide linear system solution by preconditioned conjugate gradient itera-
tion. Parameters such as the maximum number of CG iterations allowed and the
intial guesses are assigned to allow a fair comparison to the other modules that
use direct solvers (as described in [Weerawarana et al. 1996]). Each algorithm was
applied to each problem with a varying number of discretization nodes (for exam-
ple, PS5 utilized 5 × 5, 9 × 9, 17 × 17, 33 × 33, and 65 × 65 grid sizes, and so
on.) and a least squares fit was used to determine the time required to achieve a
relative error of less than 10−5. This was used as the primary measure for ranking
algorithms. This, so far, is essentially the procedure as adopted in [Weerawarana
et al. 1996]. To ensure that the differences between the algorithms were significant
at the 95% confidence level, we used the Friedman, Kendall, and Babington-Smith
test described earlier.

Once the rankings are shown to be significant, we proceed with the generalization
step. The principal characteristics used in this study are those of the operator and
right side (e.g. analytic, constant coefficients, nearly singular behavior, oscillatory,
jump discontinuity, singular, peaked, singular derivatives, entire), boundary con-
ditions (e.g. mixed, homogeneous, Dirichlet, Neumann, constant coefficients) and
those of the domain (e.g. unit square, variable square, rectangle). The features
are encoded as smo cc, rs c following the convention originally presented in [Rice
et al. 1981] for distinguishing features of the PDE problem. The prefix identifies
the nature of the feature and the suffix identifies the specific value of the feature.
For example, smo cc implies that the ‘smoothness of the operator’ is ‘computation-
ally complicated’ and so on. The other prefixes op, rs, s correspond to the PDE
operator, right side and solution properties (if known).

Since the goal of this study was to identify the selective superiorities of algo-
rithms, we extended the all-pairs profiling methods in [Valdes-Perez et al. ] to
ensure that only comparative advantages of algorithms are reported, not deficits.
Thus, a concise profile such as “this algorithm is worse than every other algorithm
on problems having the property P” is rejected in favor of seeking positive state-
ments.

We present four such profiles obtained by the all-pairs algorithm in Fig. 4. The
first profile indicates that when both methods are applicable, the five-point star
algorithm is contrasted from both the Dyakunov algorithms in its superior per-
formance on problems whose operator smoothness is computationally complicated.
It is better than all other algorithms for problems whose solutions have varying
smoothness, and so on. Notice that this latter profile is minimal, since it is suffi-
cient to contrast the PS5 algorithm from all others. The other profiles are reported
as interesting, since they (a) identify features that help absolutely contrast other
combinations of algorithms and/or (b) use the smo cc feature which was an impor-
tant factor in the design of the original PDE population.

In addition, quantitative information is easily obtainable by examining the pro-
files carefully. At a high level, the overlap ceiling helps determine if the perfor-
mances were absolutely or partially contrasted. One could then examine the Fried-
man rank sums from the statistical test to make statements of the form ‘For prob-



Generalization in Experimental Algorithmics · 11

lems with feature op laplace, algorithm FFT6 performed better than algorithm
P3C1C by at least 4 ranks.’ And finally, the examination of individual performance
profiles of algorithms (either error vs. grid-size, or error vs. total time), helps trans-
form the relative rank differences to differences in performance measures.

It should be noted that for the above data, the PYTHIA system described in
[Weerawarana et al. 1996, page 465] reported only 15% valid algorithm recom-
mendations! In other words, 85% of the recommended algorithms were not even
applicable to the presented problems. The main source of difficulty comes from a
PDE characteristic vector

(

⇀

O,
⇀

BC,
⇀

F ,
⇀

D

)

where each of the subvectors encode properties of the PDE operator, boundary
conditions, functions and the domain. This design (i) gives equal emphasis to all
features of the PDE problem and (ii) gives a numeric interpretation to ordinal and
symbolic features, which is not appropriate. The all-pairs technique presented here
can help avoid such invalid predictions. For example, the concise profiles presented
in Fig. 4 can help identify the relevant features and guide further studies. Since
the technique does not utilize a greedy approach (such as a forward or backward
feature selection facility), all concise profiles will be determined.

5. CONCLUDING REMARKS

This article has described an all-pairs profiling technique that adapts and extends
the methods in [Valdes-Perez et al. ] for the purpose of extracting concise qualitative
insights from experimental algorithmic studies on the comparative advantages of
alternative algorithms. We applied the technique to prior data on codes for solving
partial differential equations, with good results. The discovered profiles correspond
to the subjective rankings first made in [Houstis and Rice 1982]. Continuous-valued
feature attributes can also be accommodated in the profiling technique by (i) first
sorting and bucketing the measured values of the feature and (ii) subsequently
choosing a test (with a boolean/symbolic value) based on the class distribution and
the subsets induced by the test.

REFERENCES

Addison, C., Enright, W., Gaffney, P., Gladwell, I., and Hanson, P. 1991. Algorithm 687:
a Decision Tree for the Numerical Solution of Initial Value Ordinary Differential Equations.
ACM Transactions on Mathematical Software Vol. 17, 1 (March), pp. 1–10.

Boisvert, R., Rice, J., and Houstis, E. 1979. A System for Performance Evaluation of Partial
Differential Equations Software. IEEE Transactions on Software Engineering Vol. SE-5, 4
(July), pp. 418–425.

Crowder, H., Dembo, R., and Mulvey, J. 1979. On Reporting Computational Experiments
with Mathematical Software. ACM Transactions on Mathematical Software Vol. 5, 2, pp.
193–203.

Garey, M. and Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman, San Francisco.

Hollander, M. and Wolfe, D. 1973. Nonparametric Statistical Methods. John Wiley and
Sons.

Houstis, E. and Rice, J. 1982. High Order Methods for Elliptic Partial Differential Equations
with Singularities. International Journal for Numerical Methods in Engineering Vol. 18,
pp. 737–754.



12 · N. Ramakrishnan and R.E. Valdés-Pérez

Houstis, E., Rice, J., Weerawarana, S., Catlin, A. C., Papachiou, P., Wang, K., and Gai-

tatzes, M. 1998. Parallel ELLPACK: A Problem Solving Environment for PDE Based Ap-
plications on Multicomputer Platforms. ACM Transactions on Mathematical Software Vol.

24, 1 (March), pp. 30–73.

LaRose, B. 1993. The Design and Implementation of a Performance Database Server. Technical
Report CS-93-195 (August), University of Tennessee.

Lucks, M. and Gladwell, I. 1992. Automated Selection of Mathematical Software. ACM

Transactions on Mathematical Software Vol. 18, 1 (March), pp. 11–34.

Quinlan, J. 1986. Induction of Decision Trees. Machine Learning Vol. 1, 1, pp. 81–106.

Ramakrishnan, N. 1997. Recommender Systems for Problem Solving Environments. Ph. D.
Thesis, Dept. of Computer Sciences, Purdue University.

Rice, J. and Boisvert, R. 1985. Solving Elliptic Problems Using ELLPACK. Springer Verlag,
New York.

Rice, J., Houstis, E., and Dyksen, W. 1981. A Population of Linear, Second Order, Elliptic
Partial Differential Equations on Rectangular Domains, Part I. Mathematics of Computa-

tion Vol. 36, pp. 475–484.

Valdes-Perez, R. E. 1999. Principles of Human Computer Collaboration for Knowledge Dis-
covery in Science. Artificial Intelligence 107, 2, pp.335–346.

Valdes-Perez, R. E., Pericliev, V., and Pereira, F. Concise, Intelligible, and Approximate
Profiling of Numerous Classes. International Journal of Human Computer Studies. in press
(special issue on Machine Discovery).

Weerawarana, S., Houstis, E., Rice, J., Joshi, A., and Houstis, C. 1996. PYTHIA: A
Knowledge Based System to Select Scientific Algorithms. ACM Transactions on Mathe-

matical Software Vol. 22, pp. 447–468.


