NOTE ON QUASI-UNIFORM SPACES AND REPRESENTABLE SPACES

 \mathbf{BY}

P. FLETCHER (BLACKSBURG, VIRGINIA)

1. Introduction. In this paper we define the concept of a representable topological space. With each representable space we associate a compatible quasi-uniformity in a natural way. Using this quasi-uniformity we show that a connected representable space is homogeneous and that the full homeomorphism group of a representable space is a topological semigroup under the topology of quasi-uniform convergence.

A general introduction to quasi-uniform spaces may be found in [5]. Throughout this paper \circ denotes the usual composition of relations.

- **2. Preliminaries.** Let X be a non-empty set and let $\mathscr U$ be a filter on $X \times X$ such that
 - (i) each element of \mathcal{U} is a reflexive relation on X,
 - (ii) if $U \in \mathcal{U}$, there exists $W \in \mathcal{U}$ such that $W \circ W \subset U$.

Then \mathscr{U} is a quasi-uniformity on X.

Let X be a set and let $\mathscr U$ be a quasi-uniformity on X. Let $\mathscr T_{\mathscr U}=\{A\subset X\colon \text{if }a\in A\text{ then there exists }U\in\mathscr U\text{ such that }U(a)\subset A\}.$ Then $\mathscr T_{\mathscr U}$ is a topology on X, called the quasi-uniform topology on X generated by $\mathscr U$. If $(X,\mathscr T)$ is a topological space and $\mathscr U$ is a quasi-uniformity on X such that $\mathscr T=\mathscr T_{\mathscr U}$, then $\mathscr U$ is a compatible quasi-uniformity.

We let H(X) denote the group of all homeomorphisms from a space X onto itself and let i denote the identity of H(X). If $A \subset X$, then $A' = \{h \in H(X): h_{|_A} = i_{|_A}\}$ and if G is a subgroup of H(X), then $G' = \{x \in X: g(x) = x \text{ for each } g \in G\}$. If $G \subset H(X)$ and $A \subset X$, then $G(A) = \{g(a): g \in G, a \in A\}$. We often write A'' for (A')', x' for $\{x\}'$ and G(x) for $G(\{x\})$.

Definition. A topological space (X, \mathcal{F}) is representable provided that if F is a closed set and $x \in X - F$, then F'(x) is a neighborhood of x.

3. Representable spaces. We prove

THEOREM 1. Let (X, \mathcal{F}) be a representable space and for each $A \subset X$ let $U_A = (\bigcup \{\{x\} \times A'(x) \colon x \in X - A\}) \cup (A \times X)$. Let $\beta = \{U_A \colon A \text{ is closed}\}$. Then β is a subbase for a compatible quasi-uniformity \mathscr{U} on X.

Proof. For each $A \subset X$, $\Delta \subset U_A = U_A \circ U_A$ so that β is a subbase for a quasi-uniformity \mathscr{U} on X. Let $x \in A \in \mathscr{T}$. Then $U_{X-A}(x) = (X-A)'(x) \subset A$. Thus $\mathscr{T} \subset \mathscr{T}_{\mathscr{U}}$. Now let A be a proper $\mathscr{T}_{\mathscr{U}}$ -open set such that $x \in A$. Then there is a finite collection $\{F_i\}_{i=1}^n$ of closed subsets of X such that

$$x \notin \bigcup_{i=1}^{n} F_{i}$$
 and $x \in \bigcap_{i=1}^{n} [U_{F_{i}}(x)] \subset A_{i}$

Since

$$x \notin \bigcup_{i=1}^n F_i, \qquad \bigcap_{i=1}^n \left[U_{F_i}(x)\right] = \bigcap_{i=1}^n F_1'(x)$$

and since (X, \mathcal{F}) is a representable space, $\bigcap_{i=1}^n F_i'(x)$ contains a \mathcal{F} -open set about x. Thus $\mathcal{F} \subset \mathcal{F}_{\mathscr{U}}$ and \mathscr{U} is a compatible quasi-uniformity.

COROLLARY. Let (X, \mathcal{F}) be a representable space, let F be a closed set and let $x \in X - F$. Then $F'(x) \in \mathcal{F}$.

Proof. Let $z \in U_F(x)$. Then $U_F(z) \subset U_F \circ U_F(x) = U_F(x)$. Thus $F'(x) = U_F(x) \in \mathscr{F}_{\mathscr{U}} = \mathscr{F}$.

THEOREM 2. Every connected representable space is homogeneous.

Proof. Let (X, \mathscr{T}) be a representable space. Let $U_{\varphi} = \bigcup \{\{x\} \times H(X)(x) \colon x \in X\}$. Let $x \in X$. For each $y \in X - U_{\varphi}(x)$, $U_{\varphi}(x) \cap U_{\varphi}(y) = \emptyset$.

It follows from the Corollary to Theorem 1, that $U_{\varphi}(x)$ is both open and closed. Hence $H(X)(x) = U_{\varphi}(x) = X$.

Since the entourages of the subbase β of Theorem 1 are reflexive and transitive, β is not a subbase for a uniformity whenever (X, \mathcal{F}) is not 0-dimensional ([1], Theorem 1). Nevertheless, if for each $U \in \mathcal{U}$ we let

$$W(\,U)\,=\,\{(f,\,g)\,\epsilon\,H\,(X)\times H\,(X)\colon\,\big(f(x)\,,\,g\,(x)\big)\,\epsilon\,U\ \ \text{for each}\ \ x\,\epsilon\,X\}$$
 and let

$$\mathscr{W} = \{W(U): U \in \mathscr{U}\},\$$

then \mathscr{W} is a quasi-uniformity on H(X). The quasi-uniformity \mathscr{W} is called the quasi-uniformity of quasi-uniform convergence with respect to \mathscr{U} and $\mathscr{T}_{\mathscr{W}}$ is the topology of quasi-uniform convergence for H(X). The topology of quasi-uniform convergence has been studied in [6].

THEOREM 3. Let (X, \mathcal{F}) be a representable homogeneous Hausdorff space, let \mathcal{U} be the compatible quasi-uniformity for X described in Theorem 1, and let H(X) have the topology of quasi-uniform convergence with respect to \mathcal{U} . Then H(X) is a topological semigroup.

Proof. By Theorem 1 of [2], it suffices to show that if $h \in H(X)$, then h is a \mathscr{U} -quasi-uniformly continuous function. Let $h \in H(X)$ and let A be a closed subset of X so that $U_A \in \mathscr{U}$. Then $U_{h^{-1}(A)} \in \mathscr{U}$. Let $(x, y) \in U_{h^{-1}(A)}$.

If $h(x) \in A$, then $(h(x), h(y)) \in U_A$. If $h(x) \notin A$, then $x \notin h^{-1}(A)$ so that $y \in (h^{-1}(A))'(x)$. There exists $g \in (h^{-1}(A))'$ so that g(x) = y. Then $h \circ g \circ h^{-1} \in A'$ and $h \circ g \circ h^{-1}(h(x)) = h(y)$. It follows that $(h(x), h(y)) \in U_A$.

Definition [4]. A space X is S.L.H. (strong local homogeneity) if for every neighborhood of any point x, there exists a subneighborhood U(x) such that for any $z \in U(x)$ there exists a homeomorphism $g \in (X - U(x))'$ with g(x) = z.

Definition [3]. A space X is a Galois space provided that for each closed set F, F = F''.

THEOREM 4. Every S.L.H. space without isolated points is a representable (Galois) space.

Proof. Let X be an S.L.H. space without isolated points, let F be a closed subset of X and let $x \in X - F$. There is a neighborhood U of x such that $U \subset (X - F) \cap (X - U)'(x)$. Then $F \subset X - U$ so that $x \in U \subset (X - U)(x) \subset F'(x)$. Thus X is representable.

Clearly $F \subset F''$. Suppose that $y \in F'' \cap (X - F)$. Then $\{y\} = F'(y)$ is an open set, since X is representable. This contradicts the assumption that X has no isolated points. Consequently, F = F'' and X is a Galois space.

REFERENCES

- [1] B. Banaschewski, Über nulldimensionale Räume, Mathematische Nachrichten 13 (1955), p. 129-140.
- [2] P. Fletcher, Homeomorphism groups with the topology of quasi-uniform convergence, Archiv der Mathematik 22 (1971), p. 88-93.
- [3] P. Fletcher and R. L. Snider, Topological Galois spaces, Fundamenta Mathematicae 68 (1970), p. 143-148.
- [4] L. R. Ford, Jr., Homeomorphism groups and coset spaces, Transactions of the American Mathematical Society 77 (1954), p. 490-497.
- [5] M. G. Murdeshwar and S. A. Naimpally, Quasi-uniform topological spaces, Noordhoff 1966.
- [6] S. A. Naimpally, Function spaces of quasi-uniform spaces, Indagationes Mathematicae 68 (1965), p. 768-771.

Reçu par la Rédaction le 15. 8. 1969; en version modifiée le 12. 11. 1969 et 29. 6. 1970