
Network Working Group Richard Schantz

RFC # 671 BBN-TENEX

NIC # 31439 December 6, 1974

 A Note on Reconnection Protocol

INTRODUCTION

 This note documents the experience we have had in implementing a

 modified, experimental version of the Telnet reconnection protocol

 option within the context of the Resource Sharing Executive (RSEXEC).

 The reconnection protocol specifies a procedure for transforming a

 configuration from one in which the initiating process has

 connections to two correspondent processes, to one in which there is

 a direct connection between the correspondents. When the procedure is

 successfully completed, the initiating process is no longer in the

 communication path between the correspondents.

 Resource sharing computer networks and distributed computing will

 increasingly give rise to specialization by task among the computer

 installations. In such an environment, a "job" is the dynamically

 varying interconnection of a subset of these specialized modules.

 Connections are the "glue" in "bonding" the job together.

 Reconnection provides for a dynamically changing "bonding" structure.

 (For a more complete discussion of the utility of reconnection, see

 RFC 426).

 This document deals with reconnection in terms of its current ARPANET

 definition as a Telnet protocol option. The first section defines a

 modified reconnection protocol. The second section discusses general

 network implementation details, while the final section describes

 aspects of the TENEX/RSEXEC implementation.

 Familiarity with the new ARPANET Telnet protocol (RFC 495) is

 assumed.

I. PROTOCOL for RECONNECTING TELNET COMMUNICATION PATHS

 A process initiates the reconnection of two of its Telnet connections

 by sending (or requesting its "system" to send) the

 <IAC><DO><RECONNECT> Telnet command sequence over each of the two

 send connections. The process initiating the reconnection is

 attempting to cause the direct connection of the objects of the two

 Telnet connections. In this manner, the initiating process can remove

 itself from the communication path between Telnet objects.

Schantz [Page 1]

RFC 671 A Note on Reconnection Protocol December 1974

 The initiating process awaits positive responses to both reconnection

 requests before proceeding further with the reconnection. A

 reconnection request may be accepted by replying with the Telnet

 sequence <IAC><WILL><RECONNECT>. It may be rejected by sending the

 Telnet sequence <IAC><WONT><RECONNECT>. Rejection of both requests

 means normal communication may resume at once. Rejection of one

 request (but not the other) requires that the process agreeing to the

 reconnection be notified by sending it the Telnet sequence

 <IAC><DONT><RECONNECT> in response to its acceptance reply.

 After receiving positive responses to both requests, the initiating

 agent next selects the object of one of the Telnet connections for a

 passive role in the subsequent connection attempt. The other is

 designated as the active participant. The passive participant is to

 listen on a set of sockets, and the active participant is to send

 Request for Connections (RFCs) for those sockets. By designating

 roles, we are trying to reduce the probability of synchronization

 problems.

 The initiating process next enters into subnegotiation with the

 process designated as being passive. This subnegotiation involves

 sending the Telnet sequence <IAC> <SB> <RECONNECT> <PASSIVE>

 <NEWHOST> <NEWSOCKET1> <NEWSOCKET2> <NEWSOCKET3> <NEWSOCKET4> <IAC>

 <SE>. The <PASSIVE> parameter indicates that the recipient is to

 listen for RFCs from the socket pair denoted by <NEWHOST>

 <NEWSOCKET1-4>. The "NEWHOST" is one 8-bit byte designating the

 address of the host on which the active process (i.e., the one to

 reconnect to) resides. NEWSOCKET1-4 are four 8-bit bytes indicating

 the 32-bit send socket number of the Telnet pair from the active

 process. The <IAC><SE> fields terminate the subnegotiation

 parameters. The initiating agent awaits a response from the passive

 process before proceeding. The legal responses are:

 1) Telnet sequence <IAC><WONT>(RECONNECT>

 Meaning: The passive process has decided not to complete the

 reconnection, after having initially indicated willingness. This

 may be due to unexpected parameters during the subnegotiation

 (e.g., it refuses to connect to NEWHOST), or perhaps some error

 condition at the passive host.

 2) Telnet sequence <IAC><SE>

 Meaning: Positive acknowledgement of the subnegotiation

 sequence. The passive process has accepted the reconnection

 parameters and will proceed with reconnection.

Schantz [Page 2]

RFC 671 A Note on Reconnection Protocol December 1974

 If the reply was <WONT><RECONNECT>, the initiator is obliged to send

 the Telnet <IAC><DONT><RECONNECT> to the active participant, to

 cancel the outstanding reconnection request. A confirming

 <IAC><WONT><RECONNECT> should follow.

 The <IAC><SE> reply means that the passive participant has begun its

 connection shutdown, and will listen on the appropriate sockets. The

 initiator may now close its connections to the passive participant

 and supply the parameters to the active participant. This can be

 done with the assurance that it (the initiator) has done all it can

 to ensure that the passive process listens before the active process

 sends its RFCs. Failure to coordinate these actions may result in the

 failure of the reconnection, if, for example, the passive host does

 not queue unmatched RFCs. Persistence on the part of the active

 participant should be an integral part of the protocol, due to

 uncertainties of synchronization.

 The parameter list sent to the active participant is the Telnet

 sequence <IAC> <SB> <RECONNECT> <ACTIVE> <NEWHOST> <NEWSOCKET1>

 <NEWSOCKET2> <NEWSOCKET3> <NEWSOCKET4> <IAC> <SE>. The <ACTIVE>

 parameter indicates to the recipient that it is to send RFCs to the

 socket pair denoted by <NEWHOST><NEWSOCKET1-4>. The initiator again

 waits for a reply. The legal replies are:

 1) Telnet sequence <IAC><WONT><RECONNECT>

 Meaning: Process will not complete the reconnection (e.g., it

 couldn’t parse the parameter string).

 Possible action of initiator: Attempt to re-establish

 communication with the passive participant by sending RFCs for

 the sockets on which the passive participant is listening. This

 will succeed if the listener is willing to accept connections

 from either the host/socket specified by the reconnect

 parameters or the host/socket of the former connection. If it is

 successful in reestablishing the connection, the initiator could

 send the Telnet sequence <IAC><DONT><RECONNECT> to confirm that

 reconnection has been aborted.

 2) Telnet sequence <IAC><SE>

 Meaning: Positive confirmation of the reconnection

 subnegotiation. The active participant indicates with this reply

 that it will close the connections to the initiator and send the

 necessary RFCs to connect to the passive participant. The

 initiator may close the connections to the active participant,

 thereby removing itself from the communication path between the

 objects of the reconnection.

Schantz [Page 3]

RFC 671 A Note on Reconnection Protocol December 1974

DEFAULT CONDITIONS and RACES

 The default for this option is as for most other Telnet options: DONT

 and WONT. An initiator uses the <DONT><RECONNECT> Telnet sequence to

 return to the default state, while a participant uses

 <WONT><RECONNECT> to maintain or return to the default state. The

 reconnection state is only a transient one. When accepted by all

 parties, the reconnection state lasts only until the reconnection is

 completed. Upon completion, and without further interaction among the

 parties, the state of the new connection is the default state, with

 the negotiated reconnection forgotten.

 Since reconnection is an option concerning the entire Telnet

 connection, the asynchronous nature of the option processing

 mechanism exemplified by many other Telnet options (e.g., echo), is

 not applicable. That is, a race condition occurs when two

 <IAC><DO><RECONNECT> requests cross each other in the network. A

 solution to this problem was presented in RFC 426; the following is a

 modified version of that protocol extension. The modification is

 concerned mainly with preserving the right of a process to deny a

 reconnection attempt by another process, while having its own

 reconnection request pending.

 The race condition is detected when a process receives a

 <DO><RECONNECT> while awaiting a reply to a <DO><RECONNECT> it has

 previously issued on the same Telnet connection. (This condition is

 detected at both ends of the connection). The strategy to resolve the

 race utilizes a function, evaluated at both ends of the connection,

 to determine which reconnection request shall take precedence. The

 evaluation involves comparing the numbers obtained by concatenating

 the host address (which becomes the high order 8 bits) and the

 receive socket number (becomes the low order 32 bits) for the two

 ends of the Telnet connection. The process owning the receive socket

 with the larger of the two concatenated numbers will have its

 reconnection attempt precede that of the other process. Thus, if

 there is a Telnet connection between host A local sockets X,X+1 and

 host B local sockets Y,Y+1, and if <A><X> is greater than <Y>,

 then the reconnect request from <A><X> must he completed (or aborted)

 before the reconnection request from <Y> can be considered. This

 is achieved by requiring that the process with the higher

 <host><socket> number reply to the reconnect request of the other

 process with an <IAC><WONT><RECONNECT>, thereby canceling

 (temporarily) the reconnection attempted from the lower numbered

 <host><socket>. Since the request emanating from the higher

 <host><socket> process is given precedence, the process with the

 lower <host><socket> can reply to the reconnection request as if it

 had not issued a reconnection request of its own. That is, it may

 reply <IAC><WILL><RECONNECT> to accept the reconnection attempt or

Schantz [Page 4]

RFC 671 A Note on Reconnection Protocol December 1974

 <IAC><WONT><RECONNECT> to refuse the attempt. This process should

 note, however, that the rejection it receives to its reconnect

 request is due to protocol requirement, and may not reflect the

 actual desire of the corresponding process. It should also note that

 its reconnection request may be re-issued after the first

 reconnection activity is complete. This is an example of a situation

 where an option change request can be re-issued after a denial,

 without a corresponding change in state.

 ASIDE:

 The usefulness of reconnection is severely limited by its

 specification as an option for Telnet (i.e., terminal like)

 connections, rather than as part of a host-host protocol, which would

 allow it to be applied to general connections. First, it is

 questionable whether most systems will allow a user task to maintain

 more than one Telnet connection. If not, a process on such a system

 can not readily initiate a reconnection request.

 Second, there are certain indirect benefits that would result from

 including reconnection in a host-host protocol. Placing it at that

 level could simplify some of the timing problems in establishing the

 new connection. For example, an NCP would be aware when a

 reconnection was in progress, and therefore would not need to act as

 hastily with an RFC for a socket currently in use (i.e., connection

 still open) but involved in the reconnection. Since it is dealing

 with another NCP directly, it can expect to receive the "reconnect go

 ahead" reasonably soon, barring system crash. Also, the information

 necessary to complete the reconnection subnegotiation is available at

 the NCP level, whereas it must be duplicately maintained by the

 Telnet service routine when the potential for reconnection exists.

 Finally, the entire notion of reconnection is framed in terms of the

 entities of host-host protocol. By placing it at a higher level

 without adequate provision at the host-host level, an artificial and

 rigid constraint is placed on the type of communication path, which

 may be part of a reconnection. Since host-host protocol is the basis

 for function oriented levels, the notion of redirecting communication

 paths certainly is more suited to the semantically uninterrupted

 realm of OPENing and CLOSEing connections, rather than the realm of

 "open an 8 bit ASCII path with the conventions that ..."

II. IMPLEMENTATION DETAILS

 1. A process initiating a reconnection designates one of the object

 processes as passive (i.e., to listen for RFCs), and the other as

 active (i.e., to send RFCs). The reconnection protocol does not

 specify the assignment of the active/passive roles, so the process

Schantz [Page 5]

RFC 671 A Note on Reconnection Protocol December 1974

 is free in its selection. However, information regarding the types

 of participants in the reconnection attempt may dictate a role

 selection which will contribute to the eventual successful

 completion of the reconnection. Ignoring such information could

 conceivably force cancellation of the attempt. Certain types of

 hosts (e.g., space limited TIPs) may be better suited for active

 participation, since it need not go through the procedure of

 verifying the identity of the sender. The passive process should

 go through such verification. Other types of hosts (e.g., one

 whose NCP will not let an arbitrary process listen on a socket)

 may be better suited for the active role. As more systems

 implement the reconnection option, the preferences of various

 types of systems will become known, and more definitive rules may

 emerge.

 2. To avoid possible deadlock, the active (passive) process must

 simultaneously send (listen for) RFCs for both send and receive

 connections, which will form the new Telnet connection. Since the

 reconnection protocol does not specify an ordering for

 establishing the connections, it is important that passive

 processes listen in parallel on both the potential send and

 receive sockets, and that active processes send RFCs in parallel

 for both the potential send and receive sockets.

 3. There are two levels of error recovery involved in reconnection.

 One level is required to handle the conditions where network and

 system delays cause the attempt to establish the new connection to

 get out of synchrony (e.g., the RFC arrives at the passive host

 before the passive process listens), or cause system timeouts.

 When these conditions occur the sockets/connections should be

 returned to a state in which the faulting operation can be

 automatically retried. The second level of recovery involves the

 failure of all such attempts to establish communication with the

 active (passive) process, the duration of these attempts may be

 influenced by such factors as the recovery procedures available,

 and whether or not a human user is awaiting the outcome. Recovery

 at this point is difficult since the connections with the

 initiating process have already been broken. Attempts to connect

 to some reasonable alternative (perhaps local, perhaps attempting

 to connect back to the original source of the reconnection) should

 be initiated if second level error recovery is necessary,

 indicating complete reconnection failure.

 4. A useful addition to the reconnection mechanism would be the

 definition of a standard way to reestablish contact with the

 reconnection initiator on task termination (including can’t

 complete reconnection).

Schantz [Page 6]

RFC 671 A Note on Reconnection Protocol December 1974

III. TENEX RELATED DETAILS

 The context for our experiments was that of a TIP user using a

 TIPSER/RSEXEC. The TIPSER/RSEXEC would first authenticate the TIP

 user and then serve as a command interpreter. Among the available

 commands was one called TELCONN (TELnet CONNect) for connecting to

 other sites for service. A TELCONN command would trigger an attempt

 by the TIPSER/RSEXEC to reconnect the "TIP" directly to the host,

 which was the target of the TELCONN request (normally this would

 usually be a logger process at the host). When the reconnection is

 completed, the TIP is directly connected to the new job, and the

 TIPSER/RSEXEC is completely eliminated from the communication path.

 To avoid programming the TIP, a TENEX process was used to simulate

 the TIP.

 Certain features of TENEX caused problems in creating the desired

 interaction between the TENEX jobs involved in the reconnection

 experiment. They are presented here because there may be similar

 problems in other systems.

 1. Along with the features supplied by the TENEX Telnet interface via

 the ATPTY system call (which transforms a pair of unused network

 connections into a Telnet connection pair), comes a loss of

 certain control functions. A program loses the ability to control

 when data is sent (i.e., loss of the use of the MTOPR system call

 to force transmission of buffered data), and can no longer

 determine the remote host/socket for the network connection (i.e.,

 GDSTS system call). In a highly interactive mode, such as option

 negotiation, short messages remaining in system buffers can result

 in a deadlock. A process must be able to override the buffering

 strategy at the conclusion of a logical message. Failure to have

 access to such a mechanism (e.g., MTOPR) requires that the

 connection be opened in a non-buffered mode, which is wasteful

 most of the time. Similarly, the inability to obtain the remote

 host/socket names of the connection requires that this information

 be remembered by the program for the duration of the connection in

 case it is needed. (This is the case despite the fact that the

 operating system maintains the information in any event. The need

 to access this information arises when we wish to reconnect the

 Telnet connection which linked the "TIP" to the TIPSER/RSEXEC.)

 2. There is no facility in TENEX for handling (initiating or

 responding to) Telnet options not recognized by the Telnet server.

 An interface between a user program and the option negotiation

 mechanism would be useful for testing new options and for

 implementing privates ones. Lack of this interface can be

 circumvented by switching the connection to binary mode

 transmission and reception. This works only if option negotiation

Schantz [Page 7]

RFC 671 A Note on Reconnection Protocol December 1974

 is between two user processes (both aware of the binary

 transmission), since if a user process tried to negotiate with a

 system Telnet server obeying the binary transmission option, the

 required doubling of IACs for binary output would cause the

 request to be misinterpreted at the system Telnet.

 3. The switch to binary transmission requires two option

 negotiations. During this period data transfer is possible.

 However, the actual data transferred is dependent on the state of

 the negotiation at that point (e.g., depending upon the state, the

 IAC character may or may not be doubled). There does not seem to

 be a facility for alerting the process that the option has been

 accepted (rejected) and that all further transmissions will be in

 the new mode (binary). Perhaps suspending the process for the

 duration of the (timed out) option negotiation would eliminate

 this period of uncertainty in the mode switch. In TENEX, this

 could be coupled with pseudo-interrupts to note option negotiation

 failure for certain critical user initiated options.

 4. During peak load conditions, RFCs sent by the operating system

 (NCP) in response to program requests (OPENF system calls) were

 frequently timed out by the system. The passive process listening

 for the RFCs did not get rescheduled quickly enough to reply to

 the RFCs (acceptance or rejection) before they were timed out by

 the system. A confusing situation arose because of the difference

 in initiating the two connections (send and receive) that were to

 form the full-duplex path between the processes. One OPENF

 specified immediate return, while the other waited for completion

 of the RFC. If both requests timed out, the states of the

 corresponding connections were different, and therefore the retry

 mechanism had to handle each differently (i.e., the "immediate

 return" connection had to he closed via CLOSF, whereas the other

 did not). This seems to be an unnecessary complication. Also, the

 frequency of timeout during heavy load conditions may indicate

 that the RFC timeout interval is too short.

 5. In the TENEX user interface to the network there is no concept of

 logical messages when more than one process (fork) shares a

 network connection. Telnet option negotiation sequences are

 examples of strings, which must be sent in proper order, without

 interceding characters of any nature in order to have correct

 meaning. Even when a TENEX "string out" (SOUT) operation is

 executed by a process, which is indicative of some logical

 relationship between the characters of the string, the

 transmission is not guaranteed to be free from interference from

 other processes sending data over the same connection. (Multi-

 process organization for managing network connections is very

 common. One process is typically used to handle user output to the

Schantz [Page 8]

RFC 671 A Note on Reconnection Protocol December 1974

 network, while another process reads data from the network and

 replies as required by protocol to certain network input). These

 processes must synchronize on every output (and input) to assure

 the logical integrity of their messages. This synchronization

 would seem to be more suitably handled by the system routines,

 which manage network connections and handle string I/O.

 [This RFC was put into machine readable form for entry]

 [into the online RFC archives by Alex McKenzie with]

 [support from BBN Corp. and its successors. 7/2000]

Schantz [Page 9]

