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Singularity of specific heat near the transition point is investigated in terms of the dis­
tribution of. zeros of the partition function in the complex temperature plane. In the case of 
a centrally symmetric two-dimensional distribution of zeros, the singularity of the radial dis­
tribution function of zeros reflects directly the anomaly of specific heat. Consequently, it is 
shown that in general the specific heat does not necessarily take the same critical indices 
above and below the transition point. The modified Slater KDP model solved exactly by Wu 
gives a nice example to our theory. The radial distribution function of zeros in the complex 

z(=eC!lcT) plane for this model is given by the equation g(r) =1/(rc2rv4-=i2). Then, the sin­
gularity of the specific heat for this model takes the form 

C+"'(T-Tc)- 112 for T>Tc 

and 

§ 1. Introduction 

The concept of complex magnetic field has been proved to be very useful 
for the purpose of investigating critical behaviors in magnetic systems.1

)-
5

) The 
concept of complex temperature is also powerful in studying the singularity of 
specific heat in a phase transition.3

),B)-lo) We are particularly interested in the 
relation between critical indices above and below the Curie point. If we accept 
the axiom that the thermodynamic potential of a system can be continued ana­
lytically beyond the critical point, the same critical indices are obtained above 
and below the transition point.3),

4
),1l)-

14
) 

In the present paper, the singularity of specific heat is discussed from the 
viewpoint of distribution of zeros in the complex temperature plane. Recently, 
Abe has asserted the equality of the critical indices of specific heat above and 
below the transition point, assuming that the zeros of the partition function for 
a system lie on a straight line or an infinite sum of straight lines in the complex 
temperature plane.9

) This assumption about the distribution of zeros is too severe 
to explain a variety of the second order phase transitions. Here, it is shown 
that in general the specific heat does not necessarily take the same critical 
judices above and below th~ transition point~ Th0t is, in general~ the specific 
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heat may behave as follows (or may have more complex singularity, which IS 

not considered here) , 

(1·1) 

and 

(1· 2) 

where a' is not necessarily equal to a. The above properties of the specific 
heat are exemplified in terms of a centrally symmetric two-dimensional distribu­
tion of zeros in the complex temperature plane. 

§ 2. Zeros of the canonical partition function 

The partition function of a system with N particles may be expressed as 
follows, 6l - 9) 

(2 ·1) 

where z is a parameter which represents a function of temperature and {z1c} 
are zeros of the partition function EN (z). When the partition function EN (z) 
is a polynomial of z, as in the case of the Ising model and the Slater KDP 
modeJ,I5

J-lSJ the expression (2 ·l) is self-evident. Otherwise, the number of the 
zeros of the partition function may be infinite even for N finite, so that there 
arises a problem whether the expression (2 ·1) converges or not. Here, 
this problem remains untouched, and hereafter we will study the system of which 
th~ partition function is given by the expression (2 ·1). 

In the limit of N infinite in Eq. (2 ·1), the free energy per particle is 

F(z) = - kT lim -1 log EN (z) 
N->ro N 

where 

and g (x, y) IS 

complex z-plane. 
function satisfies 
plex z-plane, 

=F(O) -kT(( log(1- -~ ·· ) g(x, y)dxdy, 
).) z(x,y) 

(2. 2) 

z(x, y) =x+· iy, 

the distribution function of zeros at a point z (x, y) in the 
Owing to the hermiticity of the Hamiltonian, the distribution 

the following symmetry relation about the real axis in the com-

g(x,-y) =g(x, y). (2. 3) 

In terms of Eq. (2 · 3), the free energy can be expressed by the following 
integrat 
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_ kT)) [Cz~x)~l+y2 J F(z) -F(O)-- log_---------------~ g(x, y)dx dy, 
2 x2 + y2 

(2·4) 

= - k~)) log[!-:
2

±~~=-~~1'"-~~~-9_-] g (r cos cp, r sin cp) rdrdcp. 
2 r -

(2·5) 

The energy of the system is given by 

(2·6) 

where 

~~ 
z-.x 

Esing (z) = - 2 ----2 g (x, y) dx dy 
(z--.x) -!-y 

(2·7) 

or 
00 27l' ' 

~ ~ 
z-r cos 

Esino· (z) = 2 + 2 2 g (r COS cp, r sin cp) rdrdcp. " . z r - zr cos ~o (2·8) 
0 0 

For brevity, let us consider a centrally symmetric distribution function 

g(x, y) =Y(r). (2·9) 

The general case will be discussed in the Appendix. Then, Eq. (2 · 8) in terms 
of Eq. (2·9) is 

where 

1 oo~ ~'!' ( z - ar ) Esing·(z) =--- g(r)dr r+----- dcp, 
z a--cos cp 

0 0 

. z2 +· r2 
a=---

2zr 

The integration over cp in Eq. (2 ·10) gives the following results, 

00 

Esing (z) = -:--) g(r) r[1 + sign (z2
- r 2

) J dr, 
0 

where we have used the formula 

for a>1. 

(2·10) 

(2 ·11) 

(2 ·12) 

(2 ·13) 

As the parameter z can be taken as a positive function of temperature, the 
final expression for Esin~ (z) becomes of the form 
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(2·14) 

This final result can be easily interpreted in an electrostatic analogue/),9
) where 

Esing (z) is the electric field (at the point z) produced by the charge distribution 
g (r) which is uniform in the direction to the xy plane (for example, see Figs. 
1,.......3). Then, the specific heat corresponding to the energy Esing(z) is given 
in the following simple form 

1 d } ( ) dz Csino· (z) = - - {zEsincr (z) = 2ng z ----. 
--" z dT " dT 

(2 ·15) 

From this expression for the specific heat, we find that if the radial distribution 
function g (r) is regular in the whole range of r, the specific heat has no singula­
rity (there occurs no phase transition), and also we find that, in general, if all 
the derivatives of g (r) up to the (n -1) -th order are continuous, and the n-th 
derivative is divergent or discontinuous, then the system shows the (2 + n) -th 
order phase transitions. In particular, if g(r) diverges at r=rc, then we can 
classify the singularities of the specific heat in the following way. 
i) If the distribution function takes the following form near the critical point, 
as is shown in Figs. 1-a and 1-b, 

r,-r)-a for r<rc, 
g (r) ::::::::_ 0 

for r>rc, 
(2·16) 

then the singularity of the specific heat is 

. ~ rr,-z)~" for z(T)<rc 
CSlllg'-

0 for z(T) >rc. 
(2 ·17) 

An example in this case will be discussed in the following section. 
ii) If the distribution function takes the following form, as is shown In Figs. 
2-a and 2-b, 

T 
Fig. 1-a. Zeros distribute inside the circle 

of the radius rc. 

for r<rc 

for r>rc, 

g(r)i 
I 

fc r 

(2 ·18) 

Fig. 1-b. Illustrating a schematic distribu­
tion function which is divergent just 
below r 0• 
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y 
,': 

. X 

Fig. 2-a. Zeros distribute outside the 
circle of the radius rc. 

Fig. 3-a. Zeros distribute both inside and 
outside the circle of the radius rc. 

then, the singularity of the specific heat is 

t_l~ 
rc r 

Fig. 2-b. Illustrating a schematic distri­
bution function which is divergent 
just above rc. 

fc r 

Fig. 3--b. Illustrating a schematic distribu­
tion function which is divergent both 
above and below rc. 

(2 ·19) 

iii) If the distribution function takes the following form, as IS shown in Figs. 
3-a and 3-b, 

t-r)-" for r<rc 
g(r) ~ , 

for (r-rc)-a r>rc, 
(2 ·20) 

then, the singularity of the specific heat is 

~(r,--z)-" for z<rc 
Csing~ (z- rc) -a' for z>rc. 

(2. 21) 

§ 3. An example of the 1rnodified Slater KDP model 

Recently, Wu has solved exactly the Slater model of the two-dimensional 
potassium dihydrogen phosphate crystal (KDP) under the additional assumption 
that the dipoles are excluded from pointing along one direction of the crystal 
axis.17

) In the Slater KDP model/5
) we consider a diamond:..type lattice (four 

nearest neighbors to each site) with directed arrows attached to all the lattice 
bonds. The rule is that there are always two arrows pointing toward and two 
arrows pointing away from a given lattice site, Then there are altogether six 
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(I) (2) (3) (4) (5) (6) 

Fig. 4. Energies e1 =e2 =0, e3=e4=e5=e6 =E>O are associated 
with the six configurations. 

possible arrow configuration.s that can be associated to a site. A zero site energy 
is associated with two of the six configurations and an energy s>O with the 
remaining four (see Fig. 4). Wu has imposed the further restriction that only 
one of the zero-energy configuration is allowed. By the use of a Pfaffian, he has 
obtaided the exact partition function for an infinite rectangular lattice wrapped 
around a torus. The solution is 

Nz,. 2,. 

log E = 8n2) d() \ dcp log [1 + 2e-
213

fkT 

0 0 

+ ze- 28/kT cos(()- cp) - 2e-EfkJ' (cos ()+cos cp)], 

which IS easily rewritten in the following form, 

Ns N 2n 2:c 

log Ec= kT + Srr2 ~ ~ log .f(O, cp, .z) dOdqJ, 
II II 

where 

f(O, cp, .z) = [.z-- (cos 0+ cos cp)] 2 + (sin O+sin cp) 2 

and 

z =.-::: z (7') = eSfkT• 

Now, the zeros of the partition function are g1ven by the solution 

. z = .r -1- iy =cos (j + cos cp ± i (sin (J + sin cp) 

for the equation 

f(O, cp, .z) == 0. 

Then, we obtain 

l
x= cos (J +cos cp 

y = ± (sin () + sin cp) . 

(3. 2) 

(3 ·3) 

(3 ·4) 

(3 ·5) 

(3 ·6) 

(3 ·7) 

The distribution function g(x, y) for this model is calculated from the Jacobian, 

a (0 m) 1 g ex v) = 2 · ' '~' · · --'·· ~c ) , 2' u x, y 8n 
(3 ·8) 

where the factor 2 arises from the fact that the set of the variables 0 and q; is 
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the double-valued function of the set of the variables x and y. In terms of 
Eqs. (3 · 7) and (3 · 8) we can easily find that 

1 
g (::c, Y) = 2 ;· · 2 + z 1

4
·· 2 2 (3 · 9) 

n "x y v -.x -y 

which IS centrally symmetric, and consequently can be written as 

g(x, y) =g(r) = ···-·}cc-~··-. 
n2 rV4-r2 

(3 ·10) 

This distribution function is just of type (i) discussed m the previous section, 
where a=1/2 and rc=2. Therefore, from Eq. (2·15) the singular part of the 
specific heat takes the forn1 

Ceing=2ng(.z)dz :-= ·- _B '2. 1 (.z-·2_._ 1 )-1/2. 
dT nk7 .z 4 

Finally, the specific heat is expressed by 

and 

c-l· = - k. _(eli) csi ng- (z) = n/:~~2 ( e-2EjkT -- ! ) -1/2 

d T 

(3 ·11) 

(3 ·12) 

Of course, these final results have already been obtained by Wu. Here, we want 
to emphasize that the different behaviors of the specific heat above and below 
the transition point can be easily understood from the partition function in the 
complex temperature plane. 
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Appendix 

From the symmetry relation (2 · 3), the distribution function can be expanded 
In terms of Legendre polynomials as follows, 

ro 

g(r, cp) =g(r,--cp) == ~ gn(r)Pn(cos ~?) (A:1) 
?t=cQ 

where 

· 2n+ 1 f 
g n (r) = -

2 
··· j g (r, ~7) Pn (cos cp) sin cpdcp. (A·2) 

0 

Then, the singular part of the energy in terms of (2 ·8) is 
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1250 M. Suzuki 

(A·3) 

where 

1 co~ ~rc ( z - ar ) EC:') . (z) = -~-- g (r) r + ------------ P (cos ) d 
smg z n a - cos (jJ n . (jJ (jJ (A·4) 

0 0 

and 

(A·5) 

Here, let us investigate the properties of functions {fn(a)} defined by 

J.(a) = ~ ~._(~~~~ drp. 
0 

From the recurrence formula for Legendre polynomials 

(n+ 1)Pn+l(z)- (2n+ 1)zPn(z) + nPn~1 (z) =0, 

we obtain the recurrence equation 

(n + 1)fnH (a) - (2n + 1) afn (a) + nfn~l (a) = - Rn, 

with 

rc { 0 for n odd, 

Rn=-= ~ Pn(cos qJ)dqJ= n[(n-1)!!] 2 

0 n!! for n even, 

and 

(A·6) 

(A·7) 

(A·8) 

(A·9) 

(A ·10) 

(A·11) 

Consequently, the function fn(a), in terms of Eqs. (A·8), (A·9), (A·10) 
and (A ·11) takes the form 

where An(a) and Bn(a) are polynomials of the variable a. 
singular . part of the energy becomes 

1 OJ 

En~g (z) = -~ ~ Un (r)dr{rAn (a) [1 +sign (z2
- r 2

) J 
0 

(A ·12) 

Therefore, the 
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2z ~ 
=-;-~ Un(r) rAn(a)dr+ Rn(z), (A·13) 

0 

where 

(A ·14) 

which shows the lower singularity than the first term in Eq. (A ·13) in the case 
of the singular distribution function Un(r), and cousequently Rn(z) can be 
neglected in our discussion. 

Thus, the singular part of the specific heat can be expressed in the follow­
Ing way, 

(A ·15) 

This means ·that in general the distribution function of zeros reflects directly 
the anomaly of the specific heat. 
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