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A B S T R A C T
For a simple connected graph G = (V,E), let d(u) be the degree of the vertex u of G.
The general Sombor index of G is defined as

SOα(G) =
∑
uv∈E

[
d(u)2 + d(v)2

]α
where SO(G) = SO0.5(G) is the recently invented Sombor index. In this paper, we
show that in the class of connected graphs with a fixed degree sequence (for which the
minimum degree being equal to one), there exists a special extremal BFS-graph with
minimum general Sombor index for 0 < α < 1 (resp. maximum general Sombor index
for either α > 1 or α < 0). Moreover, for any given tree, unicyclic, and bicyclic degree
sequences with minimum degree 1, there exists a unique extremal BFS-graph with
minimum general Sombor index for 0 < α < 1 and maximum general Sombor index
for either α > 1 or α < 0.

Keywords: Sombor index; general Sombor index; degree sequence; majorization; BFS-

graph

1 Introduction

Throughout this paper we consider undirected simple connected graphs. Let G be such

a graph with vertex set V(G) and edge set E(G). Let d(u) = dG(u) and N(u) = NG(u)

denote, respectively, the degree and neighbor set of the vertex u ∈ V (G). If V(G) =

{v1, v2, . . . , vn} and di = d(vi), 1 ≤ i ≤ n, then π = (d1, d2, . . . , dn) is said to be the
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degree sequence of G. In what follows, we always suppose that d1 ≥ d2 ≥ · · · ≥ dn

and denote by Γ(π) the class of connected graphs with degree sequence π. A connected

graph with n vertices and n + c − 1 edges will be referred as a c-cyclic graph. In

particular, when c = 0, 1, and 2, a c-cyclic graph is also called a tree, unicyclic graph,

and bicyclic graph, respectively.

Recently, Gutman proposed a geometric approach for interpreting degree-based

graph invariants [9], and according to this approach, he introduced the so-called Som-

bor index, defined as,

SO = SO(G) =
∑

uv∈E(G)

√
(d(u)2 + d(v)2) . (1)

Eventually, this graph invariant attracted much attention, and in a series of researches

its main mathematical properties have been determined; see, for instance [1, 4–8, 17,

18,21] and the review [12].

One of the several modifications of the original Sombor index, Eq. (1), is the

general Sombor index [10, 16], defined as

SOα = SOα(G) =
∑

uv∈E(G)

[
d(u)2 + d(v)2

]α
where α 6= 0 is a real number. Evidently, SO0.5(G) = SO(G).

It is of evident interest to determine the elements of Γ(π), extremal w.r.t. a certain

graph invariant. Several such researches have been published [2,11,13,14,19]. Among

these results, in many cases the extremal graphs are BFS-type (BFS = breath first

search).

Definition 1. Let G be a connected graph. We say that G is a BFS-graph if there

exists a vertex ordering v1 ≺ v2 ≺ · · · ≺ vn of V(G) satisfying:

(i) d(v1) ≥ d(v2) ≥ · · · ≥ d(vn) and h(v1) ≤ h(v2) ≤ · · · ≤ h(vn), where h(vi) is the

distance between vi and v1;

(ii) let v ∈ N(u)\N(w) and z ∈ N(w)\N(u) such that h(v) = h(u) + 1 and h(z) =

h(w) + 1. If u ≺ w, then v ≺ z.

Definition 2. [14] For a c-cyclic degree sequence π = (d1, d2, ..., dn) with dn = 1 and

n ≥ 3, if G is a BFS-graph such that {v1, v2, v3} forms a triangle of G when c ≥ 1,

then G is called a special extremal BFS-graph.
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Recently, Gutman posed the problem of determining extremal graphs with min-

imum or maximum Sombor index among the class of connected graphs with given

degree sequence (via private communication). In this paper, we settle the minimum

case. Actually, we can go further by showing the following

Theorem 3. For any given degree sequence π = (d1, d2, . . . , dn) with dn = 1, there

exists a special extremal BFS-graph with minimum SOα(G) in the class of Γ(π) for

0 < α < 1, and there also exists a special extremal BFS-graph with maximum SOα(G)

in the class of Γ(π) for either α > 1 or α < 0.

Hereafter, we use the symbol p(q) to define q copies of the real number p. In [22]

the authors show that for any tree degree sequence π there exists a unique BFS-

tree, here denoted by TM(π). The BFS-trees are also called greedy trees in the

literature, e.g. [11, 19]. In fact, we can also construct a unique unicyclic BFS-graph

UM(π) by the following breadth-first-search method for any unicyclic degree sequence

π = (d1, d2, . . . , dn), where dn = 1 [14]: The unique cycle of UM(π) is a triangle with

V (C3) = {v1, v2, v3}. Select the vertex v1 as the root vertex and begin with v1 of

the zeroth layer. Select the vertices v2, v3, v4, v5,. . . , vd1+1 as the first layer such

that N(v1) = {v2, v3, v4, v5, . . . , vd1+1}. Let N(v2) = {v1, v3, vd1+2, vd1+3, . . . , vd1+d2−1}

and N(v3) = {v1, v2, vd1+d2 , . . . , vd1+d2+d3−3}. Then, append d4 − 1 vertices to v4 such

that N(v4) = {v1,vd1+d2+d3−2, . . . , vd1+d2+d3+d4−4}, and so on. Informally, the BFS-

unicyclic graph is constructed from a BFS-tree by adding an edge between v2 and v3.

As an example, considering the unicyclic degree sequence π1 = (5, 4, 3(3), 2(10), 1(8)),

UM(π1) is depicted in Fig. 1.
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Figure 1: The graphs UM(π1), B1 and B2.
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Denote by R(G) the reduced graph obtained from G by recursively deleting

pendent vertices to the resultant graph until no pendent vertices remain. If c ≥ 1 and

G is a c-cyclic graph, then R(G) is unique and R(G) is also a c-cyclic graph.

Some paths Pl1 , Pl2 , ..., Plk are said to have almost equal lengths if their lengths

pairwise differ at most by 1, that is, |li − lj| ≤ 1 for 1 ≤ i < j ≤ k. Let B1 and B2

be the two bicyclic graphs depicted in Fig. 1. If π = (d1, d2, ..., dn) is a bicyclic degree

sequence with dn = 1, then
∑n

i=1 di = 2n + 2, which implies that π should be one of

the following two cases. When dn = 1, we construct a unique bicyclic graph BM(π) of

Γ(π) as follows:

(i) If dn = 1 and d1 ≥ d2 ≥ 3, then let BM(π) be a BFS-graph such that R(BM(π)) =

B1 and the remaining vertices appear in a BFS-ordering.

(ii) If d1 ≥ 5 > d2 = 2 and dn = 1, then let BM(π) be the bicyclic graph with n

vertices obtained from B2 by attaching d1 − 4 paths of almost equal lengths to the v1

of B2 (see Fig. 1).

Definition 4. [3] For a given degree sequence π = (d1, d2, . . . , dn) with dn = 1, we say

that G is a precisely extremal graph of Γ(π), if G has minimum SOα(G) among

all graphs of Γ(π) for 0 < α < 1 and G has maximum SOα(G) among all graphs of

Γ(π) for either α > 1 or α < 0.

Theorem 5. For any c-cyclic degree sequence π = (d1, d2, . . . , dn) with dn = 1, then

(i) TM(π) is a precisely extremal graph for c = 0;

(ii) UM(π) is a precisely extremal graph for c = 1;

(iii) BM(π) is a precisely extremal graph for c = 2.

In Theorems 3 and 5, we can only confirm that there exists a (precisely) extremal

BFS-graph, as the extremal graphs of Γ(π) are always not uniquely. For instance, let

π2 = (4, 2(8), 1(4)) and let H1 and H2 be the two trees as shown in Fig. 2. It is easily to

see that H1 is the unique BFS-tree of Γ(π2) and SOα(H1) = SOα(H2) for any α 6= 0.
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Figure 2. The trees H1 and H2.
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The research of extremal graph in the class of connected graphs with given degree

sequence has close relation with the Majorization theorem. Now, we introduce the

notation of Majorization.

Definition 6. [15] Let (x) = (x1, x2, ..., xn) and (y) = (y1, y2, ..., yn) be two different

non-increasing sequences of real numbers. We write (x)� (y) if and only if
∑n

i=1 xi =∑n
i=1 yi, and

∑j
i=1 xi ≤

∑j
i=1 yi for all j = 1, 2, ..., n. The ordering π � π′ is said to

be a majorization.

Theorem 7. Let π and π′ be two c-cyclic degree sequences and let G and G′ be a

maximum extremal graph of Γ(π) and Γ(π′), respectively. If c ∈ {0, 1, 2} and π � π′,

then SOα(G) < SOα(G′) for α > 1.

2 Proof of Theorems 3 and 5

This section is dedicated to the proofs of Theorems 3 and 5. We need to introduce more

notations. A symmetric bivariate function f(x, y) defined on positive real numbers is

called escalating (resp. de-escalating) if

f(x1, x2) + f(y1, y2) ≥ (resp., ≤ ) f(y1, x2) + f(x1, y2) (2)

holds for any x1 ≥ y1 > 0 and x2 ≥ y2 > 0, and the inequality in (2) is strict if x1 > y1

and x2 > y2.

Further, Wang [20] defined the connectivity function of a connected graph G

associated with a symmetric bivariate function f(x, y) to be

Mf (G) =
∑

uv∈E(G)

f(d(u), d(v)) .

It is easily to see that SOα(G) is just a special case of Mf (G).

The proofs of Theorems 3 and 5 rely on the following two lemmas:

Lemma 8. [14] For any given degree sequence π = (d1, d2, . . . , dn) with dn = 1, there

exists a special extremal BFS-graph G such that Mf (G) is maximized in Γ(π) when

f(x, y) is escalating and Mf (G) is minimized in Γ(π) when f(x, y) is de-escalating.
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Lemma 9. [14] Let π = (d1, d2, . . . , dn) be a given c-cyclic degree sequence with

dn = 1. In the class of Γ(π),

(i) if c = 0, then TM(π) has maximum Mf (G) when f(x, y) is escalating, and TM(π)

has minimum Mf (G) when f(x, y) is de-escalating;

(ii) if c = 1, then UM(π) has maximum Mf (G) when f(x, y) is escalating, and UM(π)

has minimum Mf (G) when f(x, y) is de-escalating;

(iii) if c = 2, then BM(π) has maximum Mf (G) when f(x, y) is escalating, and BM(π)

has minimum Mf (G) when f(x, y) is de-escalating;

Throughout this paper, denote by h(x, y) =
(
x2 + y2

)α
, where min{x, y} > 0.

From Lemmas 8–9, to show Theorems 3 and 5, it suffices to show that the following

proposition holds.

Proposition 10. SOα(G) is escalating for α > 1 or α < 0, and SOα(G) is de-

escalating for 0 < α < 1.

Proof. In what follows, we suppose that x1 ≥ y1 ≥ 1 and x2 ≥ y2 ≥ 0. It suffices

to show that h(x, y) satisfies (2). Since the equality holds in (2) for either x1 = y1 or

x2 = y2, we may suppose that x1 > y1 and x2 > y2.

One can easily check that

h(x1, x2) + h(y1, y2)− h(y1, x2)− h(x1, y2)

=

∫ x1

y1

2tα(t2 + x22)
α−1dt−

∫ x1

y1

2tα(t2 + y22)α−1dt. (3)

Case 1. 0 < α < 1. Since 2tα(t2 +x22)
α−1 > 0 and 2tα(t2 + y22)α−1 > 0 for t ≥ y1 > 0,

we have

2tα(t2 + x22)
α−1 < 2tα(t2 + y22)α−1, (4)

as x2 > y2 > 0 and 0 < α < 1. Combining (4) with x1 > y1 > 0, we can conclude that

h(x1, x2) + h(y1, y2) < h(y1, x2) + h(x1, y2) by (3). Thus, SOα(G) is de-escalating for

0 < α < 1.

Case 2. α < 0 or α > 1. If α > 1, then 2tα(t2 + x22)
α−1 > 2tα(t2 + y22)α−1

for t ≥ y1 > 0 and x2 > y2. Combining this with x1 > y1 > 0, we can conclude

that h(x1, x2) + h(y1, y2) > h(y1, x2) + h(x1, y2) by (3), which implies that SOα(G) is

escalating for α > 1.
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Otherwise, α < 0. Since 2tα(t2 + x22)
α−1 < 0 and 2tα(t2 + y22)α−1 < 0, we have

2tα(t2 + x22)
α−1 > 2tα(t2 + y22)α−1 for t ≥ y1 > 0 and x2 > y2 > 0. Taking this

with x1 > y1 > 0 into consideration, we also deduce that SOα(G) is escalating for

α < 0.

3 Proof of Theorem 7

The following definition will play a crucial role in the proof of Theorem 7.

Definition 11. [14] A non-negative escalating function f(x, y) is called a good es-

calating function, if f(x, y) satisfies ∂f(x,y)
∂x

> 0, ∂2f(x,y)
∂x2

≥ 0, and

f(x1 + 1, x2) + f(x1 + 1, y2) + f(x1 + 1, y1 − 1) > f(x1, x2) + f(y1, y2) + f(x1, y1)

holds for any x1 ≥ y1 ≥ 2 and x2 ≥ y2 ≥ 1.

Lemma 12. [13] Let π and π′ be two c-cyclic degree sequences with π � π′ and

c ∈ {0, 1, 2}. Let G and G′ have maximum Mf (G) and Mf (G
′) in the class of Γ(π)

and Γ(π′), respectively. If f(x, y) is good escalating, then Mf (G) < Mf (G
′).

Proof of Theorem 7: By Lemma 12, to complete the proof of Theorem 7, it suffices

to show that h(x, y) is a good escalating function for α > 1. We already know that

h(x, y) is a non-negative escalating function for α > 1 by Proposition 10.

Since α > 1, we have

∂h(x, y)

∂x
= 2xα(x2 + y2)α−1 > 0 and

∂2h(x, y)

∂x2
= 2α(x2 + y2)α−2

[
(x2 + y2) + 2x2(α− 1)

]
>0.

Since h(x, y) is a strictly increasing function on x, we have h(x1 + 1, x2) > h(x1, x2)

and h(x1 + 1, y2) > h(y1, y2), as x1 ≥ y1.

Since
[
(x1 + 1)2 + (y1 − 1)2

]
−
[
x21 + y21

]
= 2(x1 − y1 + 1) > 0 for x1 ≥ y1, we have

h(x1 + 1, y1 − 1)− h(x1, y1) =
[
(x1 + 1)2 + (y1 − 1)2

]α − (x21 + y21
)α
> 0

for α > 1. Now, we can see that h(x, y) is a good escalating function for α > 1.
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