Note on the classification theorems of g-natural metrics on the tangent bundle of a Riemannian manifold (M, g)

Mohamed Tahar Kadaoui Abbassi

Abstract

In [7], it is proved that all g-natural metrics on tangent bundles of m-dimensional Riemannian manifolds depend on arbitrary smooth functions on positive real numbers, whose number depends on m and on the assumption that the base manifold is oriented, or non-oriented, respectively. The result was originally stated in [8] for the oriented case, but the smoothness was assumed and not explicitly proved. In this note, we shall prove that, both in the oriented and non-oriented cases, the functions generating the g-natural metrics are, in fact, smooth on the set of all nonnegative real numbers.

Keywords: Riemannian manifold, tangent bundle, natural operation, g-natural metric, curvatures
Classification: Primary 53C07; Secondary 53A55

If (M, g) is an m-dimensional Riemannian manifold, then we use the terminology of " g-natural metrics" (cf. [2]) on the tangent bundle $T M$ to describe metrics on $T M$ which come from g by a first order natural operator ([8] and [7]). We have studied these metrics in [1], [2] and [3]. The well-known example of such metrics is the Sasaki metric g^{s} [11]. All natural metrics are characterized by the following result:
Theorem 1 ([8]). There is a bijective correspondence between natural (possibly degenerated) metrics G on the tangent bundles of (oriented) Riemannian manifolds and the triples of first order natural F-metrics $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$, where ζ_{1} and ζ_{3} are symmetric. The correspondence is given by

$$
G=\zeta_{1}^{s}+\zeta_{2}^{h}+\zeta_{3}^{v}
$$

where ζ^{s}, ζ^{h} and ζ^{v} denote the Sasaki lift, the horizontal lift and the vertical lift of ζ, respectively.

For the definitions of F-metrics and their lifts, we refer to [8] (see also [7] for more details on the concept of naturality).

It is proved, furthermore, in [7] that all first order natural F-metrics on (oriented) Riemannian manifolds form a family parameterized by some arbitrary smooth function on positive real numbers, where the number of functions depends on the dimensions of manifolds (the result was originally stated in [8] for the oriented case, but the smoothness was assumed and not explicitly proved). Precisely, with the notations of [7], we have

Theorem $2([7]) .1$) All first order natural F-metrics ζ on non-oriented Riemannian manifolds of dimension $m>1$ form a family parametrized by two arbitrary smooth functions $\alpha, \beta:(0, \infty) \rightarrow \mathbb{R}$ in the following way: For every Riemannian manifold (M, g) and tangent vectors $u, X, Y \in M_{x}$

$$
\begin{equation*}
\zeta_{(M, g)}(u)(X, Y)=\alpha(g(u, u)) g(X, Y)+\beta(g(u, u)) g(u, X) g(u, Y) \tag{1}
\end{equation*}
$$

If $m=1$, then the same assertion holds, but we can always choose $\beta=0$.
In particular, all first order natural F-metrics are symmetric.
2) On oriented Riemannian manifolds, we have the same results for dimensions $m=1$ and $m>3$, but for $m=2$ and $m=3$, there exist other arbitrary smooth functions φ, γ and $\delta:(0, \infty) \rightarrow \mathbb{R}$ such that:
If $m=3$, then

$$
\begin{align*}
\zeta_{(M, g)}(u)(X, Y)= & \alpha(g(u, u)) g(X, Y)+\beta(g(u, u)) g(u, X) g(u, Y) \tag{2}\\
& \varphi(g(u, u)) g(u, X \times Y)
\end{align*}
$$

where \times means the vector cross-product.
If $m=2$, then

$$
\begin{align*}
\zeta_{(M, g)}(u)(X, Y)= & \alpha(g(u, u)) g(X, Y)+\beta(g(u, u)) g(u, X) g(u, Y) \tag{3}\\
& \gamma(g(u, u))\left(g\left(J^{g}(u), X\right) g(u, Y)+g(u, X) g\left(j^{g}(u), Y\right)\right) \\
& \delta(g(u, u))\left(g\left(J^{g}(u), X\right) g(u, Y)-g(u, X) g\left(j^{g}(u), Y\right)\right),
\end{align*}
$$

where J^{g} is the canonical almost complex structure on (M, g).
Actually, the arbitrary parameterizing functions are smooth on all the set of nonnegative real numbers:
Theorem 3. All basic functions from Theorem 2 can be prolonged, in fact, to smooth functions on the set \mathbb{R}^{+}of all nonnegative real numbers.
Proof: Note that we will use the technique from [7] throughout the whole proof.

1) Using the same arguments as in [7], we have to discuss all $O(m)$-equivariant $\operatorname{maps} \zeta: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m *} \otimes \mathbb{R}^{m *}$. Denote by $g^{0}=\sum_{i} d x^{i} \otimes d x^{i}$ the canonical Euclidean metric, and by $\left|\mid\right.$ the induced norm. Each vector $v \in \mathbb{R}^{m}$ can be transformed in $\left.|v| \frac{\partial}{\partial x^{1}}\right|_{0}$ by an element of $O(m)$. Hence ζ is determined by its values on the one-dimensional subspace spanned by $\left.\frac{\partial}{\partial x^{1}}\right|_{0}$. Moreover, we can also change the orientation of the first axis by an element of $O(m)$, i.e., we have to define ζ only on $\left\{\left.t \frac{\partial}{\partial x^{1}}\right|_{0}, t \geq 0\right\}$.

Let us define a smooth map $\xi: \mathbb{R} \rightarrow \mathbb{R}^{m *} \otimes \mathbb{R}^{m *}$ by $\xi(t)=\zeta\left(\left.t \frac{\partial}{\partial x^{1}}\right|_{0}\right) \in$ $\mathbb{R}^{m *} \otimes \mathbb{R}^{m *}$, for all $t \in \mathbb{R}$, and consider the group K_{m} of all linear orthogonal
transformations keeping $\left.\frac{\partial}{\partial x^{1}}\right|_{0}$ fixed. So for $t \in \mathbb{R}^{+}$(or generally \mathbb{R}), the tensor $\xi(t)$ is K_{m}-invariant. On the other hand, every such smooth ξ on \mathbb{R}^{+}determines a natural F-metric.

So let us assume $s_{i j} d x^{i} \otimes d x^{j}$ is K_{m}-invariant. Since we can change the orientation of any coordinate axis, except the first one, by elements of K_{m}, then $s_{i j}=0$ for $i \neq j$. Further we can exchange any couple of coordinate axes different from the first one by elements of K_{m}, and so $s_{i i}=s_{j j}$, for all $i \neq 1$ and $j \neq 1$. Hence all K_{m}-invariant tensors are of the form

$$
\begin{equation*}
\bar{\nu} d x^{1} \otimes d x^{1}+\bar{\mu} g^{0} \tag{4}
\end{equation*}
$$

the reals $\bar{\mu}$ and $\bar{\nu}$ being independent, if $m>1$. In dimension 1 , all K_{1}-invariant tensors are of the form $\bar{\mu} g^{0}=\bar{\mu} d x^{1} \otimes d x^{1}$.

Thus, our mapping ξ is defined by

$$
\begin{equation*}
\xi(t)=\bar{\nu}(t) d x^{1} \otimes d x^{1}+\bar{\mu}(t) g^{0} \tag{5}
\end{equation*}
$$

for all $t \in \mathbb{R}$, where $\bar{\mu}$ and $\bar{\nu}$ are arbitrary smooth functions on \mathbb{R} (and they reduce to one function if $m=1$).

For $t=0$, since ζ is $O(m)$-invariant, then the tensor $\xi(0)$ is $O(m)$-invariant and so it is a multiple of g^{0} (cf. [6, I; p. 277]). It follows, by virtue of (5) that $\bar{\nu}(0)=0$. On the other hand, if we consider the linear orthogonal transformation A_{m} which changes the orientation of the first coordinate axis, then the equivariance of ζ by A_{m} implies that for every $t \in \mathbb{R}, \bar{\mu}(-t)=\bar{\mu}(t)$ and $\bar{\nu}(-t)=\bar{\nu}(t)$, i.e., $\bar{\mu}$ and $\bar{\nu}$ are even.

Now, given $v=\left.t \frac{\partial}{\partial x^{1}}\right|_{0}, t>0$, we can write

$$
\begin{aligned}
\zeta_{\left(\mathbb{R}^{m}, g^{0}\right)}(v)(X, Y) & =\xi(|v|)(X, Y) \\
& =\bar{\mu}(|v|) g^{0}(X, Y)+\bar{\nu}(|v|)|v|^{-2} g^{0}(v, X) g^{0}(v, Y)
\end{aligned}
$$

To complete the proof, we need the following lemma.
Lemma $4([4])$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth function.
(a) If f is even, then there exists a smooth function $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that $f(t)=f(0)+t^{2} . g\left(t^{2}\right)$ for any t.
(b) If f is odd, then there exists a smooth function $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that $f(t)=t \cdot\left(f^{\prime}(0)+t^{2} . g\left(t^{2}\right)\right)$ for any t.

Let us define the functions $\mu(t)$ and $\nu(t)$ by $\nu(t)=t^{-1} \bar{\nu}(\sqrt{t})$ and $\mu(t)=\bar{\mu}(\sqrt{t})$, for all $t>0$. The functions μ and ν being clearly smooth on the set of positive real numbers, it remains to prove that they prolong to smooth functions on \mathbb{R}^{+}. For this, applying (a) of Lemma 4 to $\bar{\mu}$ and $\bar{\nu}$, there exist two smooth functions $\alpha, \beta: \mathbb{R}^{+} \rightarrow \mathbb{R}$, such that $\bar{\mu}(t)=\bar{\mu}(0)+t^{2} \alpha\left(t^{2}\right)$ and $\bar{\nu}(t)=\bar{\nu}(0)+t^{2} \beta\left(t^{2}\right)=t^{2} \beta\left(t^{2}\right)$
(since $\bar{\nu}(0)=0$), for all $t \in \mathbb{R}^{+}$. We deduce that $\mu(t)=\bar{\mu}(\sqrt{t})=\bar{\mu}(0)+t \alpha(t)$ and $\nu(t)=t^{-1} \bar{\nu}(\sqrt{t})=\beta(t)$, for all $t>0$. In other words, μ and ν coincide on \mathbb{R}_{*}^{+} with two smooth functions on \mathbb{R}^{+}, and the formula (1) of Theorem 2 is extended to \mathbb{R}^{+}. Obviously, every such operator is natural and 1) of the Theorem is proved.
2) For the oriented situation, when $m>3$ and $m=1$, the same proof remains valid if we replace K_{m} by $K_{m}^{+}:=K_{m} \cap S O(m)$ and A_{m} by the element B_{m} of $S O(m)$ which changes the orientations of the first and the second axes.

It remains to extend the formulas (2) and (3) from Theorem 2 to \mathbb{R}^{+}. We can use a similar procedure as before.

For $m=3$, let us assume $s_{i j} d x^{i} \otimes d x^{j}$ is K_{3}^{+}-invariant. If we change the orientation of any coordinate axis, different from the first one, by an element of K_{3}^{+}, then we must change the orientation of the other. It follows that $s_{12}=$ $s_{21}=s_{13}=s_{31}=0$. Further the element of K_{3}^{+}which exchanges the couple of second and third coordinate axes must change the orientation of one of them, and so $s_{22}=s_{33}$ and $s_{23}=-s_{32}$. Hence all K_{3}^{+}-invariant tensors are of the form

$$
\begin{equation*}
\bar{\nu} d x^{1} \otimes d x^{1}+\bar{\mu} g^{0}+\bar{\kappa}\left(d x^{2} \otimes d x^{3}-d x^{3} \otimes d x^{2}\right) \tag{6}
\end{equation*}
$$

the reals $\bar{\mu}, \bar{\nu}$ and $\bar{\kappa}$ being independent. Thus, our mapping ξ is defined by

$$
\begin{equation*}
\xi(t)=\bar{\nu}(t) d x^{1} \otimes d x^{1}+\bar{\mu}(t) g^{0}+\bar{\kappa}(t)\left(d x^{2} \otimes d x^{3}-d x^{3} \otimes d x^{2}\right) \tag{7}
\end{equation*}
$$

for all $t \in \mathbb{R}$, where $\bar{\mu}, \bar{\nu}$ and $\bar{\kappa}$ are arbitrary smooth functions on \mathbb{R}. By similar arguments as in 1) we have $\bar{\nu}(0)=\bar{\kappa}(0)=0$ and also, if we consider the equivariance of ζ by B_{3}, then we deduce that the functions $\bar{\nu}$ and $\bar{\nu}$ are even and that the function κ is odd.

As in 1$)$, let us define $\mu(t), \nu(t)$ and $\kappa(t)$ by $\mu(t)=\bar{\mu}(\sqrt{t}), \nu(t)=t^{-1} \bar{\nu}(\sqrt{t})$ and $\kappa(t)=t^{-1 / 2} \bar{\kappa}(\sqrt{t})$ for all $t>0$. The functions μ, ν and κ being clearly smooth on the set of positive real numbers, it remains to prove that they prolong to smooth functions on \mathbb{R}^{+}. But we can just apply (a) of Lemma 4 to $\bar{\mu}$ and $\bar{\nu}$ and (b) of Lemma 4 to $\bar{\kappa}$, and the result follows.

For $m=2$, we have $K_{2}^{+}:=K_{2} \cap S O(2)=\left\{I_{2},-I_{2}\right\}$, where I_{2} denotes the identity matrix in $G L(2)$. Since every tensor in $\mathbb{R}^{m *} \otimes \mathbb{R}^{m *}$ is K_{2}^{+}-invariant, all K_{2}^{+}-invariant tensors are of the form
(8) $\bar{\nu} d x^{1} \otimes d x^{1}+\bar{\mu} g^{0}+\bar{\lambda}\left(d x^{1} \otimes d x^{2}+d x^{2} \otimes d x^{1}\right)+\bar{\tau}\left(d x^{1} \otimes d x^{2}-d x^{2} \otimes d x^{1}\right)$,
the reals $\bar{\mu}, \bar{\nu}, \bar{\lambda}$ and $\bar{\tau}$ being independent. Thus, our mapping ξ is defined by

$$
\begin{align*}
\xi(t)= & \bar{\nu}(t) d x^{1} \otimes d x^{1}+\bar{\mu}(t) g^{0} \tag{9}\\
& +\bar{\tau}(t)\left(d x^{2} \otimes d x^{1}+d x^{1} \otimes d x^{2}\right) \\
& +\bar{\lambda}(t)\left(d x^{2} \otimes d x^{1}-d x^{1} \otimes d x^{2}\right)
\end{align*}
$$

for all $t \in \mathbb{R}$, where $\bar{\mu}, \bar{\nu}, \bar{\lambda}$ and $\bar{\tau}$ are arbitrary smooth functions on \mathbb{R}. By similar arguments as in 1) we have $\bar{\nu}(0)=\bar{\lambda}(0)=\bar{\tau}(0)=0$ and also all the functions $\bar{\mu}$, $\bar{\nu}, \bar{\lambda}$ and $\bar{\tau}$ are even (it suffices to take the equivariance of ζ by $-I_{2}$).

As in 1), let us define $\mu(t), \nu(t), \lambda(t)$ and $\tau(t)$ by $\mu(t)=\bar{\mu}(\sqrt{t}), \nu(t)=t^{-1} \bar{\nu}(\sqrt{t})$, $\lambda(t)=t^{-1} \bar{\lambda}(\sqrt{t})$ and $\tau(t)=t^{-1} \bar{\tau}(\sqrt{t})$ for all $t>0$. The functions μ, ν, λ and τ being clearly smooth on the set of positive real numbers, it remains to prove that they prolong to smooth functions on \mathbb{R}^{+}. But we can just apply (a) of Lemma 4 to the functions $\bar{\mu}, \bar{\nu}, \bar{\lambda}$ and $\bar{\tau}$ and the result follows.

Combining Theorems $1-3$, we obtain for the non-oriented case (an analogous result can be stated for the oriented case):

Corollary 5. Let (M, g) be a non-oriented Riemannian manifold and G be a g-natural metric on $T M$. Then there are smooth functions $\alpha_{i}, \beta_{i}: \mathbb{R}^{+} \rightarrow \mathbb{R}$, $i=1,2,3$, such that for every $u, X, Y \in M_{x}$, we have

$$
\left\{\begin{align*}
G_{(x, u)}\left(X^{h}, Y^{h}\right)= & \left(\alpha_{1}+\alpha_{3}\right)\left(r^{2}\right) g_{x}(X, Y) \tag{10}\\
& +\left(\beta_{1}+\beta_{3}\right)\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u) \\
G_{(x, u)}\left(X^{h}, Y^{v}\right)= & \alpha_{2}\left(r^{2}\right) g_{x}(X, Y)+\beta_{2}\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u) \\
G_{(x, u)}\left(X^{v}, Y^{h}\right)= & \alpha_{2}\left(r^{2}\right) g_{x}(X, Y)+\beta_{2}\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u) \\
G_{(x, u)}\left(X^{v}, Y^{v}\right)= & \alpha_{1}\left(r^{2}\right) g_{x}(X, Y)+\beta_{1}\left(r^{2}\right) g_{x}(X, u) g_{x}(Y, u)
\end{align*}\right.
$$

where $r^{2}=g_{x}(u, u)$.
For $m=1$, the same holds with $\beta_{i}=0, i=1,2,3$.
Acknowledgment. The author would like to thank Professor O. Kowalski for his valuable comments and suggestions on this paper.

References

[1] Abbassi K.M.T., Sarih M., On natural metrics on tangent bundles of Riemannian manifolds, to appear in Arch. Math. (Brno).
[2] Abbassi K.M.T., Sarih M., The Levi-Civita connection of Riemannian natural metrics on the tangent bundle of an oriented Riemannian manifold, preprint.
[3] Abbassi K.M.T., Sarih M., On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, to appear in Differential Geom. Appl. (2004).
[4] Calvo M. del C., Keilhauer G.G.R, Tensor fields of type $(0,2)$ on the tangent bundle of a Riemannian manifold, Geom. Dedicata 71 (2) (1998), 209-219.
[5] Dombrowski P., On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962), 73-82.
[6] Kobayashi S., Nomizu K., Foundations of Differential Geometry, Interscience Publishers, New York (I, 1963 and II, 1967).
[7] Kolář I., Michor P.W., Slovák J., Natural Operations in Differential Geometry, Springer, Berlin, 1993.
[8] Kowalski O., Sekizawa M., Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification, Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1-29.
[9] Krupka D., Janyška J., Lectures on Differential Invariants, University J.E. Purkyně, Brno, 1990.
[10] Nijenhuis A., Natural bundles and their general properties, in Differential Geometry in Honor of K. Yano, Kinokuniya, Tokyo, 1972, pp. 317-334.
[11] Sasaki S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohôku Math. J., I, 10 (1958), 338-354; II, 14 (1962), 146-155.
[12] Willmore T.J., An Introduction to Differential Geometry, Oxford Univ. Press, Oxford, 1959.
[13] Yano K., Ishihara S., Tangent and Cotangent Bundles: Differential Geometry, Marcel Dekker Inc., New York, 1973.

Département des Mathématiques, Faculté des sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdallah, B.P. 1796, Fès-Atlas, Fès, Morocco
E-mail: mtk_abbassi@Yahoo.fr

