Note on the factorization of a square matrix into two hermitian or symmetric matrices

Citation for published version (APA):
Bosch, A. J. (1984). Note on the factorization of a square matrix into two hermitian or symmetric matrices. (Memorandum COSOR; Vol. 8412). Technische Hogeschool Eindhoven.

Document status and date:

Published: 01/01/1984

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25 fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computing Science

COSOR-Memorandum 84-12

Note on the factorization of a square matrix into two Hermitian or symmetric matrices

by
A.J. Bosch

Einchoven, the Netherlands

OR SYMMETRIC MATRICES

by

A.J. Bosch

1. Introduction

Although the results already have been published (partially) by Frobenius in 1910 (see [5]), these are still not very known to mathematicians.

I even could not find them in modern textbooks on matrix theory or linear algebra. These results and their proofs (see [1], [2], [3]) are not very accessible for non-mathematicians. But they need the results. Applications can be found in system theory and in problems in mechanics concerning systems of differential equations. The aim of this paper is to give elementary proofs as well as a clear summary of the conditions. The basis of all proofs is the Jordan normal form. As we will see: every square matrix (real or complex) is a product of two symmetric (real resp. complex) matrices. However, not every complex square matrix is a product of two hermitian matrices.

2. Notations

A is a complex or real matrix of order $n \times n$;
Λ is a diagonal matrix of eigenvalues; A^{T} is the transpose of A;
$A^{*}=\bar{A}^{T}$ the conjugate transpose of A;
H denotes an hermitian matrix: $\mathrm{H}^{*}=\mathrm{H}$; U a unitary matrix: $\mathrm{UU}^{*}=\mathrm{I}$;
S a real symmetric matrix: $S^{T}=\bar{S}^{T}=S$; C a complex symmetric matrix $C^{T}=C$;
$A \simeq D$ means: A is similar to the matrix D or $A=B D B^{-1}$;
$H>0$ means H is positive definite: for all vectors $x \neq 0: x^{*} H x>0$.
3. Preliminaries (for Theorems 1 and 3 see [4])

Theorem 1: Let H_{1} be an hermitian matrix. Then there exists a unitary matrix U such that $H_{1}=U \Lambda U^{*}$ with Λ real.
Moreover, is $H_{1}>0$ then all eigenvalues λ_{i} are positive.

Theorem 2: Let $H_{1}>0$. Then there exists an $H>0$ such that $H_{1}=H^{2}$. Proof: $H_{1}=U \Lambda U^{*}=\left(U \Lambda^{\frac{1}{2}} U^{*}\right)\left(U \Lambda^{\frac{1}{2}} U^{*}\right)=: H^{2}$ and $H>0$.

Theorem 3: (Jordan normal form). Let A be an arbitrary $n \times n-m a t r i x$. Then $A=$ B J B $^{-1}$ where

Definition: A Jordan matrix J is called balanced when $J_{k}(\lambda)$ is a Jordanblock in $J, J_{k}(\bar{\lambda})$ is also in J. This means that each complex λ and $\bar{\lambda}$ have the same "Jordanstructure", and $J \simeq \bar{J}$, or equivalently $\mathrm{A} \simeq \overline{\mathrm{A}}$.

4. Lemmas on factorization

Lemma 1: Every complex $n \times n$-matrix A is a product of two complex symmetric matrices: $A=C_{1} C_{2}$, where C_{1} or C_{2} is nonsingular.

Proof:

$$
J=\left(\begin{array}{cccc}
\mathrm{S}_{\mathbf{k}_{1}}{ }^{\mathbf{c}_{\mathbf{k}_{1}}} & & & \\
& & \ddots & \\
& & \ddots & \\
& & \ddots & \\
& & & \mathbf{s}_{\mathbf{k}_{\mathbf{r}}} \mathbf{c}_{\mathbf{k}_{\mathbf{r}}}
\end{array}\right)=: \widetilde{\mathrm{S}} \widetilde{\mathrm{C}}
$$

$$
A=B \tilde{S} \tilde{C}_{B}^{-1}=\left(B \tilde{S}_{B}^{T}\right)\left(B^{-T} \tilde{C}_{B}^{-1}\right)=: C_{1} C_{2} \text { with } C_{1} \text { nonsingular. }
$$

Corollary 1^{*}) $: A \simeq A^{T}$.
Proof: $A=C_{1} C_{2}$, suppose C_{1} nonsingular

$$
C_{1}^{-1} A C_{1}=C_{2} C_{1}=A^{T}, \text { hence } A \simeq A^{T}
$$

[^0]Lemma 2: A complex matrix A of order $n \times n$ is a product of two hermitian matrices: $A=H_{1} H_{2}$, where H_{1} or H_{2} is nonsingular, iff $A \simeq \bar{A}$.

Proof:
i: $\quad A=H_{1} H_{2} ; A^{*}=H_{2} H_{1}=H_{1}^{-1}\left(\mathrm{H}_{1} \mathrm{H}_{2}\right) \mathrm{H}_{1}=H_{1}^{-1} A H_{1}$.
Hence $A^{*} \simeq A$. With Corollary $1: A^{*} \simeq\left(A^{*}\right)^{T}=\bar{A}$, so $A \simeq \bar{A}$.
ii: $A \simeq \bar{A}$ or $A=B J B^{-1}$ with J balanced: for each $J_{k}(\lambda)$ in J there is a $J_{k}(\bar{\lambda})$ in J. By permutation of the columns of B, it is always possible that $J_{k}(\bar{\lambda})$ comes directly after $J_{k}(\lambda)$ for each complex λ.
$\mathbf{J}=\left(\begin{array}{lllll}\mathbf{J}_{\mathbf{k}_{\mathbf{1}}}(\lambda) & & & & \\ & & \mathbf{J}_{\mathbf{k}_{\mathbf{1}}}(\bar{\lambda}) & & \\ & & & & \\ & & \ddots & \\ & & & \ddots & \\ & & & \ddots & \\ & & & & \ddots\end{array}\right) ;$

Hence $J=\tilde{S} \tilde{H}$ and $A=\tilde{B S} \tilde{H}_{B}^{-1}=\left(\tilde{B S}_{B}{ }^{*}\right)\left(B^{*-1} \tilde{H}_{B}^{-1}\right)=: H_{1} H_{2}$ where H_{1} is nonsingular.

Corollary 2: The characteristic polynomial of $\mathrm{H}_{1} \mathrm{H}_{2}$, $\operatorname{det}\left(\mathrm{H}_{1} \mathrm{H}_{2}-\lambda I\right)$, has only real coefficients, and specially $\operatorname{tr}\left(\mathrm{H}_{1} \mathrm{H}_{2}\right)$ and $\operatorname{det}\left(\mathrm{H}_{1} \mathrm{H}_{2}\right)$ are real.

Example:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
i & 0 \\
0 & i
\end{array}\right) \neq H_{1} H_{2} \quad \text { because } \operatorname{tr} A=2 i \text { is not real. } \\
& A=\left(\begin{array}{ll}
i & i \\
1-i
\end{array}\right) \neq H_{1} H_{2} \quad \text { because } \operatorname{det} A=1-i \text { is not real. } \\
& A=\binom{i-i}{0-i}=H_{1} H_{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{0-i}{i-0} .
\end{aligned}
$$

Lemma 3: Every complex matrix A with real eigenvalues, is a product of two hermitian matrices: $A=H_{1} H_{2}$, where H_{1} or H_{2} is nonsingular.

Proof: This follows directly from Lemma 2. Λ is real, so J is real and $\mathbf{J} \simeq \overline{\mathbf{J}}$. The condition for Lemma 2 is fulfilled

Lemma 4: Every real $n \times n$-matrix A is a product of two real matrices: $A=S_{1} S_{2}$ where S_{1} or S_{2} is nonsingular.
Proof 1: $A=B_{B^{-1}}$. A is real, $A=\bar{A}$. The condition of Lemma 2 holds. By permutation of the columns of B, it is always possible that

$$
J=\left(\begin{array}{lllll}
J_{\mathbf{k}_{1}}(\lambda) & & & & \\
& J_{\mathbf{k}_{2}}(\lambda) & & & \\
& & \ddots & & \\
& & & J_{\mathbf{k}_{1}}(\bar{\lambda}) & \\
& & & & \\
& & & J_{\mathbf{k}_{\mathbf{2}}}(\bar{\lambda}) & \\
& & & & \\
& & & & \\
& & & &
\end{array}\right) \text { in the middle of } \mathrm{J} .
$$

From $A B=B J$ we see that
$A b_{i}=\lambda_{i} b_{i}+\delta_{i} b_{i-1} \quad\left(\delta_{i}=0\right.$ or 1$)$ and
$A \bar{b}_{i}=\bar{\lambda}_{i} \bar{b}_{i}+\bar{\delta}_{i} \bar{b}_{i-1}$.
This means that, if b_{i} is a column of B, \bar{b}_{i} also.
Then $B=\left(b_{1} \ldots b_{p} b_{p+1} \ldots b_{q} \bar{b}_{1} \ldots \bar{b}_{p}\right) ;$ The $b_{i}, i=p+1, \ldots, q$ are real columns corresponding with the real eigenvalues of B (this set can be empty as well as the set $\left\{b_{1}, \ldots, b_{p}\right\}$).
As in the proof of Lemma $1, J=\widetilde{\mathbf{S}} \tilde{\mathrm{C}}$.
$A=B \tilde{S}^{C_{B}}{ }^{-1}=\left(\mathcal{B S B}^{T}\right)\left(B^{-T} \widetilde{C}_{B}^{-1}\right)=: S_{1} S_{2}$ where S_{1} is nonsingular. Indeed:

$$
\begin{aligned}
& S_{1}:=\tilde{B S}_{B}^{T}=\left(b_{1} \ldots b_{p} b_{p+1} \ldots b_{q} \bar{b}_{1} \ldots \bar{b}_{p}\right)\left(\bar{b}_{p} \ldots \bar{b}_{1} b_{q} \ldots b_{p+1} b_{p} \ldots b_{1}\right)^{T}= \\
& p \\
& \sum_{1} b_{i} \bar{b}_{p+1-i}^{T}+\sum_{p+1}^{q} b_{i} b_{p+q+1-i}^{T}+\sum_{1} \bar{b}_{i} b_{p+1-i}^{T} \text { is real. } \\
& S_{2}=S_{1}^{-1} A \text { is, a product of two real matrices, also real. }
\end{aligned}
$$

Proof 2: (suggested by Dr. Laffey, Dublin).
With Lemma 1: $A=C_{1} C_{2}$, suppose $C_{1}=S_{0}+i S_{3}$ nonsingular $\left(S_{0}, S_{3}\right.$ real symmetric) $A C_{1}=C_{1} C_{2} C_{1}=C_{1} A^{T} ; A\left(S_{0}+i S_{3}\right)=\left(S_{0}+i S_{3}\right) A^{T}$;
$A S_{0}=S_{0} A^{T}$ and $A S_{3}=S_{3} A^{T}$.
So, for all real numbers $r: A\left(S_{0}+r S_{3}\right)=\left(S_{0}+r S_{3}\right) A^{T}$.
If $S_{3}=0$, then $C_{1}=S_{0}$ real and $A=S_{1} S_{2}$. So suppose $S_{3} \neq 0$.
Define $f(z):=\operatorname{det}\left(S_{0}+z S_{3}\right) ; \operatorname{det}\left(S_{0}+i S_{3}\right)=\operatorname{det} C_{1} \neq 0$.
Hence $f(z)$ is not the zero-polynomial, or $\exists r \in R$ with $f(r) \neq 0$
or $\operatorname{det}\left(S_{0}+r S_{3}\right) \neq 0, S_{0}+r S_{3}=: S_{1}$ nonsingular.
$A S_{1}=S_{1} A^{T} ; A=S_{1} A^{T} S_{1}^{-1}=: S_{1} S_{2}$ with $S_{2}=: A^{T} S_{1}^{-1} ; S_{2}^{T}=S_{1}^{-1} A=A^{T} S_{1}^{-1}=S_{2}$.

Lemma 5: A complex $n \times n$-matrix A is a product of two hermitian matrices: $A=H_{1} H_{2}$, where H_{1} or H_{2} is positive definite, iff A is similar to Λ real or $A \simeq \Lambda$ real.
Proof: i: Only if: suppose $H_{1}>0 . H_{1}=H^{2}$ (Theorem 2); $H_{1} H_{2}=H\left(H_{2} H\right) H^{-1}$. $\mathrm{HH}_{2} \mathrm{H}$ is hermitian, so $=\mathrm{U} \Lambda \mathrm{U}^{*}$ with Λ real (Theorem 1). $A=H\left(U \Lambda U^{*}\right) H^{-1}=(H U) \Lambda(H U)^{-1}=: B \wedge B^{-1}$ or $A \simeq \Lambda$ real.
ii: If $: A \simeq \Lambda$ real; $A=B \wedge B^{-1} ; A=\left(B^{*}\right)\left(B^{*-1} \Lambda B^{-1}\right)=: H_{1} H_{2}$ with $H_{1}>0$.

Remark: If H_{1} is semi-positive definite, then the "only if" part does not hold:

Example: $H_{1} H_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ is defective, hence not similar to a diagonal matrix.
a
Lemma 6: Every real $n \times n$-matrix A is a product of two real symmetric matrices: $A=S_{1} S_{2}$, where S_{1} or S_{2} is positive definite, iff A
is similar to a Λ real.

Proof: This follows directly from the proof in Lemma 5:
i: Replace each H by S and U by an orthogonal matrix G.
ii: A and Λ real, hence B is real. $S o H_{i}=S_{i}$ and $A=S_{1} S_{2}$.

Remark: If we weaken the iff-condition and cancel the word (in the 4th column) "real", then of course $A \neq H_{1} H_{2}$ (see Lemma 5), but $A=H_{1} N_{2}$ with $H_{1}>0$ and N_{2} such that $N_{2} H_{1} N_{2}^{*}=N_{2}^{*} H_{1} N_{2}$.

Summary

1 emma	A	Λ	iff condition	factorization
1	complex	complex	-	$A=C_{1} C_{2} \quad C_{1}$ or C_{2}
2	complex	complex	$\mathrm{A} \simeq \overline{\mathrm{A}}$	$\mathrm{A}=\mathrm{H}_{1} \mathrm{H}_{2} \quad \mathrm{H}_{1}$ or H_{2}
3	complex	real	-	$\mathrm{A}=\mathrm{H}_{1} \mathrm{H}_{2} \quad \mathrm{H}_{1}$ or $\mathrm{H}_{2} \quad \begin{aligned} & \text { non- } \\ & \text { singular }\end{aligned}$
4	real	complex	-	$A=S_{1} S_{2} \quad S_{1}$ or S_{2}
5	complex	complex	$A \simeq \Lambda$ real	$A=\mathrm{H}_{1} \mathrm{H}_{2} \quad \mathrm{H}_{1}$ or $\mathrm{H}_{2}>0$
6	real	complex	$\mathrm{A} \simeq \Lambda$ real	$\mathrm{A}=\mathrm{S}_{1} \mathrm{~S}_{2} \quad \mathrm{~S}_{1}$ or $\mathrm{S}_{2}>0$

References

[1] Carlson, D.H.: "On real eigenvalues of complex matrices".
Pacific Journal of Math. 15, 1965, p. 1119.
[2] Taussky, 0.: "The role of symmetric matrices in the study of general matrices".

Lin. Alg. and its Applic. 5, 1972, p. 147.
[3] Chi Song Wong: "Characterization of products of symmetric matrices". Lin. Alg. and its Applic. 42, (1982), p. 243.
[4] Ben Noble, J.W. Daniel: "Applied Linear Algebra", Prentice-Hall, 1977.
[5] Frobenius, G.: "Ueber die mit einer Matrix vertauschbaren Matrizen", Sitzungsber. Preuss. Akad. f. Wiss. (1910) p. 3.

[^0]: *) Thanks to Dr. Laffey, Dublin, for this corollary and as a consequence, the improvement in the proof of Lemma $2, i$.

