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1 Introduction

In this technical report, we generalize the betweenness definition in Bounded Budget Betweenness Centrality
Game (called B3C game) introduced in [1] to only count shortest paths with a length limit `. We denote
this game `-B3C game. We prove that the hardness results in [1] about nonuniform game still hold in this
generalized version. In Section 2, we provide the detailed definition of the `-B3C game. In Section 3, we
prove that there exists an instance of `-B3C game such that it does not have any maximal Nash equilibrium.
In Section 4, we prove that it is NP-hard to decide whether an instance of `-B3C game has a maximal or
strict Nash equilibrium.

2 Problem Definition

The definition of Bounded Budget Betweenness Centrality game can be found in [1]. The `-B3C game is a
natural extension of B3C game. For any natural number ` ≥ 2, an `-B3C game with parameters (n, b, c, w) is
a network formation game defined as follows. We consider a set of n players V = {1, 2, . . . , n}, which are
also nodes in a network. Function b : V → N specifies the budget b(i) for each node i ∈ V (N is the set of
natural numbers). Function c : V ×V → N specifies the cost c(i, j) for the node i to establish a link to node
j, for i, j ∈ V . Function w : V × V → N specifies the weight w(i, j) from node i to node j for i, j ∈ V ,
which can be interpreted as the amount of traffic i sends to j, or the importance of the communication from
i to j.4

The strategy space of player i in an `-B3C game is Si = {si ⊆ V \ {i} |
∑

j∈si
c(i, j) ≤ b(i)}, i.e.,

all possible subsets of outgoing links of node i within i’s budget. A strategy profile s = (s1, s2, . . . , sn) ∈
S1 × S2 × . . . × Sn is referred to as a configuration in this paper. The graph induced by configuration s is
denoted as Gs = (V,E), where E = {(i, j) | i ∈ V, j ∈ si}. For convenience, we will also refer Gs as a
configuration.

The utility of a node i in configuration s is defined by the `-betweenness centrality of i in the graph Gs

as follows:

btwi(Gs, `) =
∑

u6=v 6=i∈V, m(u,v,`)>0

w(u, v)
mi(u, v, `)
m(u, v, `)

, (1)

4 We may also define a distance function specifying distances between every pair of nodes, but it is not needed throughout our
paper.



2 Xiaohui Bei, Wei Chen, and Jialin Zhang

where m(u, v, `) is the number of shortest paths from u to v in Gs with length at most `, and mi(u, v, `) is
the number of shortest paths from u to v that passes i in Gs with length at most `. We can see from the formal
definition that `-betweenness centrality extends the definition of betweenness centrality by only considering
shortest paths with length at most ` in computing node betweenness. For convenience, we sometimes use
btwi(Gs) instead of btwi(Gs, `) if the parameter ` is clear.

In a configuration s, if no node can increase its own utility by changing its own strategy unilaterally,
we say that s is a (pure) Nash equilibrium, and we also say that s is stable. Moreover, if in configuration
s any strategy change of any node strictly decreases the utility of the node, we say that s is a strict Nash
equilibrium.

The following Lemmata show the basic property of the game and motivate our definition of maximal
Nash equilibrium. Betweenness centrality is monotonic in terms of adding edges to a node, as stated below.

Lemma 1. Adding an outgoing edge to a node i does not decrease i’s betweenness. That is, for any graph
G = (V,E) with i ∈ V and (i, j) 6∈ E for some j ∈ V . Let G′ = (V,E ∪ {(i, j)}). Then btwi(G, `) ≤
btwi(G′, `).

Given an `-B3C game with parameters (n, b, c, w), a maximal strategy of a node v is a strategy with
which v cannot add any outgoing edges without exceeding its budget. We say that a graph (configuration)
is maximal if all nodes use maximal strategies in the configuration. By the monotonicity of betweenness
centrality, it makes sense to study maximal graphs where no node can add more edges within its budget
limit. Moreover, some trivial non-maximal graphs are trivial Nash equilibria, e.g. empty graphs with no
edges. However, when nodes add more edges into such a graph allowed by their budgets, other nodes may
have chance of improving their utilities by changing their strategies. Therefore, for the rest of the paper, we
focus on Nash equilibria in maximal graphs. In particular, we say that a configuration is a maximal Nash
equilibrium if it is a maximal graph and it is a Nash equilibrium.

The following lemma states the relationship between maximal Nash equilibria and strict Nash equilibria,
a direct consequence of the monotonicity of betweenness centrality.

Lemma 2. Given an `-B3C game with parameters (n, b, c, w), any strict Nash equilibrium in the game is a
maximal Nash equilibrium.

Based on the above lemma, our results may refer to strict Nash equilibria when it is approriate and makes
the result stronger.

3 Nonexistence of Maximal Nash Equilibrium

In this section, we show that maximal Nash equilibria may not exist in some version of `-B3C games where
edge costs are not uniform.

First for the cases of ` ≥ 3, the follow lemma shows that the `-B3C game based on the gadget presented
in [1] (Figure 1) has no maximal Nash equilibria for all ` ≥ 3.

Lemma 3. For any ` ≥ 3, the `-B3C game based on the gadget in Figure 1 of [1] does not have any maximal
Nash equilibrium. This implies that for any n ≥ 6, there is an instance of `-B3C game with n players that
does not have any maximal Nash equilibrium, and in the game only the edge costs are nonuniform.

Proof. Theorem 1 in [1] already shows that the B3C game (without path length constraint) based on the
gadget in Figure 1 of [1] does not have any maximal Nash equilibrium. It is easy to verify that, in the proof
of Theorem 1 in [1], in any configuration where a node v uses a best response, all shortest paths passing
through v have length at most 3. Therefore, we have in any configuration, a best response of a node v in
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Fig. 1. Main structure of the gadget that has no maximal Nash equilibrium for `-B3C games with ` ≥ 3. Solid arrows represent
fixed edges, while dotted arrows and dashed arrows represent conflicting choices of flexible edges from a node.

the original B3C game without path length constraint must also be a best response of v in the `-B3C game
with ` ≥ 3 with the same betweenness value. Together with the fact that the `-betweenness value is no
greater than the betweenness value without path length constraint, we know that the `-B3C game based on
the gadget in in Figure 1 of [1] does not have a Nash equilibrium. �

However, the gadget in Figure 1 of [1] does not work for the case of ` = 2. We now construct a separate
gadget for ` = 2 in Figure 1. The outgoing edges for nodes A, B,C, D and the two edges from X and Y
point to each other are fixed as shown in the gadget. Node X can establish at most one edge to a node in
{A, D}, while node Y can establish at most one edge to a node in {B, C}.

We classify nodes and edges as follows. Nodes X and Y are flexible nodes since they can choose
to connect one node in {A, D} and {B, C} respectively. Nodes A, B,C, D are rectangle nodes. Edges
(X, A), (X, D), (Y,B), (Y,C) are flexible edges (in the figure dotted arrows and dashed arrows represent
conflicting choices of flexible edges, e.g. (X, A) and (X, D) cannot be selected at the same time). Other
edges shown in the figure are fixed edges. The remaining pairs with no edge connected (e.g. (X,B), (X,C),
etc.) are referred to as forbidden edges.

We use the parameters (n, b, c, w) of a 2-B3C game to realize the gadget. In particular, (a) n = 6; (b)
b(i) = 1 for all i ∈ V ; (c) c(i, j) = 0 if (i, j) is a fixed edge, c(i, j) = 1 if (i, j) is a flexible edge,
c(i, j) = M > 1 if (i, j) is a forbidden edge; and (d) w(i, j) = 1 for all i, j ∈ V .

With the above construction, we can show the following theorem.

Lemma 4. The 2-B3C game based on the gadget in Figure 1 does not have any maximal Nash equilibrium.
This implies that for any n ≥ 6, there is an instance of `-B3C game with n players that does not have any
maximal Nash equilibrium, and in the game only the edge costs are nonuniform.

Proof. Note that in a maximal graph all fixed edges are included, and nodes X and Y each selects one edge
to connect to one node in {A, D} and {B, C} respectively. We now show that this maximal graph is not
stable, by discussing the following cases separately.

(1) Node X connects to A and node Y connects to B. In this case, the only path that can contribute be-
tweenness to node Y is X → Y → B. But there is another shortest path X → A → B. So we have
btwY (G, 2) = 1/2. However, if Y changes its strategy to connect to node C, it can gain betweenness 1
from the unique shortest path X → Y → C. So Y is not at its best response position.

(2) Node X connects to D and node Y connects to B. Here the only path that can contribute betweenness
to node X is Y → X → D. But there is another shortest path Y → B → D from Y to D. Thus
btwX(G, 2) = 1/2. Now if X changes its strategy to connect to node A, it can gain betweenness 1 from
the unique shortest path Y → X → A. So X is not at its best response position.
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(3) Node X connects to A and node Y connects to C. This case is equivalent to case (2), thus is not stable.
(4) Node X connects to D and node Y connects to C. This case is equivalent to case (1), which is also not

stable.

In summary, each of X and Y uses the strategy such that its outgoing neighbor points to the outgoing
neighbor of the other node, making an endless dynamic in the game.

Therefore, we know that none of the maximal graphs is stable, so the gadget of Figure 1 does not have
any maximal Nash equilibrium.

For n > 6, we can use 6 nodes of them to build the above gadget and make all other nodes’ outgoing
edges forbidden edges. It is easy to see that there is still no maximal Nash equilibrium in this graph, thus the
theorem holds. �

An important remark is that for the gadget in Figure 1, when ` ≥ 4, all maximal graphs become maximal
Nash equilibria for the `-B3C game. Therefore, we need both Lemma 3 and Lemma 4 to show the following
theorem.

Theorem 1. For any ` ≥ 2 and n ≥ 6, there is an instance of `-B3C game with n players that does not have
any maximal Nash equilibrium.

4 Hardness Result

In this section we show that determining the existence of maximal Nash equilibria given an `-B3C game is
NP-hard. In fact, we can combine the definition of strict Nash equilibria to obtain a stronger result.

We define a problem TWOEXTREME as follows. The input of the problem is (n, b, c, w) as the parameter
of an `-B3C game. The output of the problem is Yes or No, such that (a) if the game has a strict Nash
equilibrium, the output is Yes; (b) if the game has no maximal Nash equilibrium, the output is No; and
(c) for other cases, the output could be either Yes or No. It is easy to see that both deciding the existence
of maximal Nash equilibria and deciding the existence of strict Nash equilibria is a stronger problem than
TWOEXTREME, because their outputs are valid outputs for the TWOEXTREME problem by Lemma 2. The
following theorem shows that even the weaker problem TWOEXTREME is NP-hard.

Theorem 2. The problem of TWOEXTREME is NP-hard.

The immediate consequence of the above theorem is:

Corollary 1. Both deciding the existence of maximal Nash equilibria and deciding the existence of strict
Nash equilibria are NP-hard.

Proof. For the case ` ≥ 3, we can almost follow the proof in Theorem 2 of [1]. All of the shortest path used
in the proof have length at most 3 except in Lemma 9, the shortest path from A to Fj is 4. It is easy to prove
that in that case, if we only consider length 3 path, the proof still holds.

Henceforth we focus on the case ` = 2.
We reduce the problem from the 3-SAT problem. Each 3-SAT instance has k variables {x1, x2, . . . , xk}

and m clauses {C1, C2, . . . , Cm}. Each variable x has two literals x and x̄. Each clause has three literals
from three different variables. We use the following construction to obtain an instance of a 2-B3C game
with parameters (n, b, c, w) from the 3-SAT instance, which is illustrated by Figure 2.

The overall idea of the reduction is as follows. First, each clause Cj is mapped to the gadget similar to the
gadget in Figure 1 while each literal xi and x̄i are mapped to the gadget containing nodes Li, L̄i, Pi, Qi. We
call nodes Li’s and L̄i’s literal nodes. Nodes Li and L̄i can either point to node Qi or all of the nodes Xj . We
make sure that those literal nodes pointing to nodes Xj’s correspond to an assignment. Next, if the 3-SAT



Note on the Hardness of Bounded Budget Betweenness Centrality Game with Path Length Constraints 5

Fig. 2. The structure of the instance of a 2-B3C game corresponding to an instance of a 3-SAT problem. Solid arrows represent
fixed edges, while dotted arrows and dashed arrows represent conflicting choices of flexible edges from a node.

instance has a satisfying assignment, we show that for each clause Cj , there exist shortest paths from some
literal nodes to Aj with significant weights. We show that these paths make the gadget for clause Cj stable.
Thus all gadgets are stable and the configuration is a maximal Nash equilibrium. We further argue that it
is a strict Nash equilibrium by examining all other alternatives of all nodes and showing that they strictly
decrease nodes’ betweenness. Finally, if the 3-SAT instance has no satisfying assignment, there must exist
at least one clause Cj such that there is no path from the literal nodes to Aj with nonzero weights. When this
is the case, the gadget corresponding to Cj will not be stable and thus the game has no Nash equilibrium.

All of the solid arrows in the graph are called fixed edges. They are
{(Pi, Li), (Pi, L̄i), (Xj , Yj), (Yj , Xj), (Aj , Bj), (Bj , Dj), (Dj , Cj), (Cj , Aj), (Xj , Pi), (Dj , Yj) | ∀1 ≤
i ≤ k, 1 ≤ j ≤ m}. All of the dashed arrows and dotted arrows represent conflicting choices of flexible
edges starting from one node (e.g. edge (L1, Q1) cannot be selected together with any edge (L1, Xj)). They
are {(Li, Qi), (L̄i, Qi), (Li, Xj), (L̄i, Xj), (Xj , Aj), (Xj , Dj), (Yj , Bj), (Yj , Cj) | ∀1 ≤ i ≤ k, 1 ≤ j ≤
m}.

We set the parameters (n, b, c, w) of the `-B3C game as follows. First, n = 4k + 6m. The budgets of all
nodes are 0 except b(Li) = b(L̄i) = m and b(Xj) = b(Yj) = 1. The costs of all fixed edges are 0. The costs
of all flexible edges are 1 except c(Li, Qi) = c(L̄i, Qi) = m. The costs of all other edges (which is forbidden
edges) are larger than m. Finally, the weight function has to be carefully set as follows to make the reduction
work. For all 1 ≤ i ≤ k, 1 ≤ j ≤ m, w(Xj , Li) = w(Xj , L̄i) = w(Yj , Pi) = w(Li, Yj) = w(L̄i, Yj) = 1,;
for all 1 ≤ i ≤ k, 1 ≤ j ≤ m, w(Pi, Qi) = ma, w(Pi, Xj) = w(Pi, Yj) = a for some constant a;
for all 1 ≤ j ≤ m, w(Xj , Bj) = w(Xj , Cj) = w(Yj , Aj) = w(Yj , Dj) = w(Cj , Bj) = w(Bj , Cj) =
w(Aj , Dj) = w(Dj , Aj) = w(Bj , Yj) = w(Dj , Xj) = 1; for all i ∈ {1, . . . , k} and all j ∈ {1, . . . ,m}, if
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literal xi (or x̄i) is in clause Cj , then w(Li, Aj) = b (or w(L̄i, Aj) = b), for some constant b > 1. For all
other pairs (u, v) not included above, w(u, v) = 0.

We consider maximal graphs of the game in which all nodes exhaust their budget. Then, for all nodes
Li and L̄i, they point to Qi or the nodes Xj for all 1 ≤ j ≤ m in G. We call the second case pointing to the
clause nodes. We say that a maximal graph G of the game is an assignment graph if for all 1 ≤ i ≤ k, there
is exactly one node from {Li, L̄i} pointing to Qi in G. Thus, the other node points to the clause nodes.

Lemma 5. If a maximal graph G of the game is stable, G must be an assignment graph.

Proof. Suppose, for a contradiction, that G is not an assignment graph. Then for some i ∈ {1, . . . , k},
both Li and L̄i connect to Qi or to Xj . Suppose they both connect to Qi. The only shortest paths that pass
through Li and L̄i and have nonzero weights are 〈Pi, Li, Qi〉 and 〈Pi, L̄i, Qi〉. Since w(Pi, Qi) = ma, we
have btwLi(G) = btwL̄i

(G) = ma/2. In this case, Li can change its strategy to connect to the clause nodes
instead of Qi to obtain G′. In G′, Li is on the only shortest path from Pi to Xj , and thus btwLi(G

′) =
m× a > btwLi(G). Therefore, G is not stable, contradicting to the assumption of the lemma.

Now suppose that both Li and L̄i connect to the clause nodes. They split the shortest paths from Pi to
Xj , which contributes ma/2 to the betweenness of Li and L̄i each. By the same reason, Li can change its
strategy to connect to Qi instead of Xj to obtain betweenness value ma. Therefore, G is not stable, again
contradicting to the assumption of the lemma. Hence, G must be an assignment graph. �

Lemma 6. If the 3-SAT instance does not have a satisfying assignment, then for any maximal assignment
graph G, there always exists a j ∈ {1, . . . ,m} such that for all i ∈ {1, . . . , k} and all literals v ∈ {Li, L̄i},
edge (v, Xj) being in G implies w(v, Aj) = 0.

Proof. Suppose that the 3-SAT instance does not have a satisfying assignment and G is a maximal assign-
ment graph. The edges pointing to the clause nodes in G correspond to a truth assignment to variables in
the 3-SAT instance: If the node Li points to the clause nodes in G, assign variable xi to be true; otherwise,
assign variable xi to be false. Since the 3-SAT instance is not satisfiable, for the above assignment, there ex-
ists a clause Cj that is evaluated to false. For any variable xi not in Cj we have w(Li, Aj) = w(L̄i, Aj) = 0
by our definition of the weight function. So we only consider a variable xi appearing in Cj . If the node Li

points to the clause nodes in G, we assign xi to true, and since Cj is evaluated to false, we know that literal
x̄i is in Cj . Then by our definition, w(L̄i, Aj) = b but w(Li, Aj) = 0. The case when L̄i points to the clause
nodes in G has a symmetric argument. Therefore, the lemma holds. �

Lemma 7. For a maximal assignment graph G, if there exists a j ∈ {1, . . . ,m} such that for all i ∈
{1, . . . , k} and all literals v ∈ {Li, L̄i}, node v pointing to the clause nodes in G implies w(v, Aj) = 0,
then G is not a Nash equilibrium.

Proof. Consider such a graph G with j ∈ {1, . . . ,m} satisfying the condition given in the lemma. Consider
the shortest paths that pass through Xj and Yj . Since all literal nodes that connect to the clause nodes have
zero weights to Aj , the only shortest paths passing through Xj and Yj that have nonzero weights are paths
from Xj to Bj , Cj , from Yj to Aj , Dj , from Li, L̄i to Yj and from Dj to Xj . The betweenness of pairs from
Li, L̄i to Yj and from Dj to Xj are only affected by whether Xj points to Yj and vice verse. Since these
two edges are cost 0, they are always connected in a stable graph. For other pairs, it essentially reduces the
gadget corresponding to Cj to the gadget in Figure 1. The only difference is that here we have an additional
edge (Dj , Yj) compare to Figure 1. But the addtional edge does not have any infection to the betweenness
value of node Xj and node Yj . It only helps to make the graph a strict Nash equilibrium when needed. We
will explain this later in Lemma 10. Therefore, by an argument similar to the one in the proof of Theorem 1,
no matter how Xj and Yj currently connect to nodes in {Aj , Bj , Cj , Dj}, one of them will always want to
change its strategy to increase its utility. Therefore, G is not a Nash equilibrium. �
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Lemma 8. If the 3-SAT instance does not have a satisfying assignment, then the constructed 2-B3C game
instance does not have maximal Nash equilibrium.

Proof. Suppose, for a contradiction, that the 2-B3C game instance has a maximal Nash equilibrium. Then
there exists a maximal graph G that is stable. By Lemma 5, G must be an assignment graph. Since the 3-SAT
instance does not have a satisfying assignment, by Lemmata 6 and 7, G is not stable, a contradiction. �

Lemma 9. If the 3-SAT instance has a satisfying assignment, then there exists a maximal assignment graph
G of the game in which for all j ∈ {1, . . . ,m}, there exists i ∈ {1, . . . , k} and literal v ∈ {Li, L̄i} such
that the node v points to the clause nodes in G and w(v, Aj) = b.

Proof. Suppose that the 3-SAT instance has a satisfying assignment f . construct a maximal assignment
graph G such that for all i ∈ {1, . . . , k}, if variable xi is assigned to true in the assignment f , then Li

connects to the clause nodes; otherwise, L̄i connects to the clause nodes. For all j ∈ {1, . . . ,m}, since
clause Cj is evaluated to true under assignment f , there exists variable xi whose corresponding literal in Cj
is evaluated to true. If literal xi is in Cj , xi is assigned to true. By the above construction of G, Li points
to the clause nodes in G, and by the definition of the weight function, w(Li, Aj) = b. The same argument
applies to the case when literal x̄i is in Cj . Therefore, the lemma holds. �

Lemma 10. Given a maximal assignment graph G in which for all j ∈ {1, . . . ,m}, there exists i ∈
{1, . . . , k} and literal v ∈ {Li, L̄i} such that the node v points to the clause nodes in G and w(v, Aj) = b,
we construct a graph G′ such that G′ is the same as G except that for all j ∈ {1, . . . ,m}, Xj connects to
Aj and Yj are connected to Cj in G′. The maximal graph G′ must be a strict Nash equilibrium.

Proof. We prove that in G′ any strategy change strictly decreases the changers betweenness, and thus G′

must be a strict Nash equilibrium.
We go through all nodes and check all possible strategy changes in the following list.

– For each node Qi, i ∈ {1, . . . , k}, it has only the empty strategy so there is no strategy change for Qi.
– For nodes other than Li, L̄i, Xj , Yj(1 ≤ i ≤ k, 1 ≤ j ≤ m), they only have fixed edge to choose, so we

only need to prove that for each fixed edge, there exists a pair with nonzero weight such that if the node
removes this fixed edge, the betweenness value will decrease. We call this pair pushes such fixed edge.
For node Pi, pair (Xj , Li) pushes edge (Pi, Li) while pair (Xj , L̄i) pushes edge (Pi, L̄i).
For node Aj , pair (Cj , Bj) pushes edge (Aj , Bj). For node Bj , pair (Aj , Dj) pushes edge (Bj , Dj). For
node Cj , pair (Dj , Aj) pushes edge (Cj , Aj). For node Dj , pair (Bj , Cj) pushes edge (Dj , Cj) while
pair (Bj , Yj) pushes edge (Dj , Yj).

– For each node Li, i ∈ {1, . . . , k}, its strategy change is either removing its flexible edge or changing
its flexible edge. If it removes its flexible edge, it loses the shortest path from Pi to Qi or Xj , and
since w(Pi, Qi) = a and w(Pi, Xj) = a/m, its betweenness strictly decreases. If it changes its flexible
edge, then both Li and L̄i connects to Qi or Xj . By the same argument as in the proof of Lemma 5,
its betweenness strictly decreases. For each node L̄i, i ∈ {1, . . . , k}, the argument is the same as the
argument for Li.

– For each node Xj , j ∈ {1, . . . ,m}, it can remove its fixed edge or remove its flexible edge or change
its flexible edge. For the fixed edge, pair (Yj , Pi) pushes edge (Xj , Pi) and pair (Li, Yj) or (L̄i, Yj))
pushes edge (Xj , Yj). Then, we only consider the betweenness value caused by the flexible edge. By
the assumption of the Lemma, there exists i ∈ {1, . . . , k} and literal node v ∈ {Li, L̄i} such that the
node v points to the clause nodes G and w(v, Aj) = b. Suppose that there are t such literal nodes v. By
the definition of w, we know that t ≤ 3. Since Xj splits the shortest paths from v to Aj and Yj to Aj

btwXj (G′, 2) = tb + 1/2 ≥ b + 1/2. If Xj removes its flexible edge (Xj , Aj), it will not connect to
any node and its betweenness will decrease to zero. If Xj changes its flexible edge to (Xj , Dj) to obtain
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a graph G′′, it does not connect nodes v and Aj but gain the full share on the shortest paths from Yj

to Dj . Then btwXj (G′′, 2) = 1 < b + 1/2 ≤ btwXj (G′, 2) since b > 1. So Xj’s betweenness strictly
decreases. Therefore, all strategy changes on Xj strictly decreases Xj’s betweenness.

– For each node Yj , j ∈ {1, . . . ,m}, it can remove its fixed edge or remove its flexible edge or change its
flexible edge. For the fixed edge, pair (Dj , Xj) pushes edge (Yj , Xj). For the flexible edge, by the same
argument in Theorem 1, all strategy changes on Yj strictly decreases Yj’s betweenness.

By the above argument exhausting all possible cases, we show that graph G′ is indeed a strict Nash equilib-
rium. �

Lemma 11. If the 3-SAT instance has a satisfying assignment, then the constructed 2-B3C game instance
has a strict Nash equilibrium.

Proof. This is immediate from Lemmata 9 and 10. �

The entire proof for the case ` = 2 of Theorem 2 is now complete with Lemmata 8 and 11. �
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