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Darwin (1953) introduced a simple heuristic that relates the Lagrangian fluid drift
induced by a solid body propagating in irrotational flow to its virtual- or added-mass.
The force required to accelerate the solid body must also overcome this added-mass.
An extension of Darwin’s (1953) method to the case of vortices propagating in a
real fluid is described here. Experiments are conducted to demonstrate the existence
of an added-mass effect during uni-directional vortex motion, which is analogous to
the effect of solid bodies in potential flow. The definition of the vortex added-mass
coefficient is modified from the solid body case to account for entrainment of ambient
fluid by the vortex. This modified coefficient for propagating vortices is shown to be
equal in magnitude to the classical coefficient for a solid body of equivalent boundary
geometry. An implication of these results is that the vortex added-mass concept can
be used as a surrogate for the velocity potential, in order to facilitate calculations
of the pressure contribution to forces required to set fluid into unsteady vortical
motion. Application of these results to unsteady wake analyses and fluid–structure
interactions such as vortex-induced vibrations is suggested.

1. Introduction
Darwin (1953) demonstrated that the virtual- or added-mass associated with a solid

body propagating in an unbounded ideal fluid is manifested in the induced Lagrangian
drift of flow around the body. The relationship between induced Lagrangian drift and
added-mass can be quantified by considering the unidirectional motion of a body of
volume VB at speed U (where the direction of motion, taken in the following to be
along the x-axis, coincides with the diagonal term of the added-mass tensor under
consideration). As the body, starting upstream at x → −∞, passes through an infinite
plane of Lagrangian particles at x = 0, a net downstream drift of the particles is
induced (see figure 1 below). When the body has moved far downstream, i.e. x → ∞,
the volume VD between the distorted Lagrangian plane and its original position is
equal to the added-mass (per unit fluid density) of the body. More formally,

cxx =
VD

VB

=
1

VBU

∫
S

φn1 ds, (1.1)

where cxx is the added-mass coefficient, φ is the velocity potential at the surface S

of the body, and n1 is the x-component of the unit normal vector directed into the
body (Benjamin 1986). A proof of the relationship in (1.1) requires care in the order
of integration and the manner in which the spatial limits are taken to infinity (cf.
Lighthill 1956; Benjamin 1986; Yih 1997). However, recent work by Eames, Belcher &



106 J. O. Dabiri

Hunt (1994), Eames & Duursma (1997), Eames & Flór (1998), Bush & Eames (1998)
and Eames (2003) has demonstrated that these subtleties are less relevant in the
practical implementation of Darwin’s (1953) concept.

A recent experimental study of geophysical dipole vortices suggested that the
propagation of coherent vortical structures may also induce Lagrangian drift in the
surrounding fluid, in a manner characteristic of the solid body added-mass effect
(Eames & Flór 1998). However, measurements of the added-mass coefficient (1.1)
from dye visualizations of the vortices were observed to deviate from the value for a
solid body of equivalent boundary geometry in potential flow. The discrepancy was
primarily attributed to entrainment of ambient fluid by the vortex.

Turner (1964) used an analytical model of an expanding spherical vortex in irrota-
tional flow to demonstrate that, in the case of a vortex, the process of ambient
fluid entrainment makes it impossible to define a finite volume of fluid exhibiting
drift behaviour similar to that of a solid body. Instead, Lagrangian particles near
the centreline of the body become entrained and therefore propagate downstream
indefinitely at a velocity proportional to the volume growth rate of the vortex. This
leads to a continual (i.e. not localized in time) increase in the drift volume VD

associated with the vortex, from which equation (1.1) would suggest a non-physical,
infinite added-mass coefficient.

Since the vortex growth rate in the analytical model of Turner (1964) has to be
specified a priori, that model cannot be used to directly infer the effect of ambient
fluid entrainment on the vortex dynamics, or to suggest how the induced Lagrangian
drift of fluid surrounding the vortex can be quantified in terms of an added-mass
coefficient. Therefore, although hinted by these previous studies, the concept of a
vortex added-mass effect and an associated added-mass coefficient has until now
remained an unresolved proposition.

This paper describes an experimental investigation of vortex rings propagating
unidirectionally, which is used to quantitatively relate the induced Lagrangian drift
of fluid surrounding vortices with a well-defined vortex added-mass coefficient. Sec-
tion 2 describes the experimental apparatus, measurement techniques, and method
of analysis. Section 3 presents a comparison between the dynamics of the measured
vortex flow and the potential flow behaviour examined by Darwin (1953) and others.
A modified definition of the added-mass coefficient is presented in this section,
which is sufficiently general to apply to solid bodies and fluid vortices with possibly
time-dependent boundaries. The limitations of these results as well as their potential
application to unsteady wake analyses and fluid–structure interactions such as vortex-
induced vibrations is discussed in § 4.

2. Experimental and analytical methods
The induced Lagrangian drift and added-mass behaviour of vortex rings was in-

vestigated experimentally. A piston–cylinder apparatus submerged in a 60 cm height ×
40 cm width × 110 cm length water tank created vortex rings with stroke length-to-
diamater ratio (L/D) equal to 2.0 (cf. Dabiri & Gharib 2004). The boundary layer
of starting flow emerging from the cylinder (inner radius =1.27 cm) during a piston
pulse rolled into a single vortex ring, which subsequently propagated downstream in
the water tank under its self-induced velocity. The Reynolds number of the vortex
ring flow was 1400 based on the cylinder exit diameter and piston velocity (nominally
impulsive piston motion with 5.5 cm s−1 peak velocity), and 2000 based on the vortex
ring circulation and kinematic viscosity of the water at room temperature.
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Flow generated by the piston–cylinder apparatus was measured in a meridian
symmetry plane using digital particle image velocimetry (DPIV, cf. Adrian 1991;
Willert & Gharib 1991). A 30 Hz, 1024 × 1024 pixel CCD camera imaged the Mie
scattering of an incident 532 nm Nd:YAG laser sheet from 13-micron neutrally
buoyant particles seeded in the flow. The measurement window extended 15.7 cylinder
radii in the streamwise direction downstream from the cylinder exit and 4.9 cylinder
radii in the transverse direction from the axis of symmetry. The camera pixel resolution
corresponds to a physical test section resolution of approximately 0.019 × 0.019 cm.
Image pairs representing an 18 ms separation between laser pulses were interrogated
with a window size of 32 × 32 pixels and 50 % overlap. Cross-correlation and velocity
field calculations were accomplished using an in-house code on an Intel 2-GHz
processor. Velocity measurements possess an uncertainty of 1 % to 2 %.

To determine the induced Lagrangian drift of flow surrounding the vortex ring as
it propagated through the measurement window, the trajectories of approximately
2100 virtual particles in the flow downstream from the vortex generator were tracked
quantitatively. The particles were initialized on 64 lines (representing planes in the
axisymmetric flow) downstream of the vortex generator exit and oriented normal
to the streamwise direction. The lines were spaced in 0.3 cm increments axially and
extended to the radial extent of the measurement window.

Particle positions were updated according to the measured time-dependent Eulerian
velocity field from DPIV and the known time interval between velocity field measure-
ments (67 ms, i.e. twice the duration of each camera frame). When particles were
advected to locations in the measurement field that did not coincide with a node of the
DPIV velocity field, the particle velocity was determined from a cubic interpolation
of the measured velocity field. The volume of fluid between the initial location of
each plane and its final distorted position (i.e. after passage of the vortex ring) was
calculated by assuming an axisymmetric geometry in accordance with the known flow
configuration. Volume measurements possess a maximum uncertainty of 8 %.

For comparison with the vortex measurements, a similar particle advection tech-
nique was used to reproduce the Lagrangian trajectories induced by the passage of a
solid sphere in irrotational flow. This flow has an exact solution given by

vr = dr/dt = −(1 − a3/r3) cos θ, (2.1)

vθ = r dθ/dt = (1 + a3/2r3) sin θ, (2.2)

where r is the radial coordinate, θ is the angular coordinate measured from the
direction of oncoming flow (in the reference frame of the propagating sphere), and a

is the sphere radius (Turner 1964).
Particles in the potential flow were advected according to the local velocity, and

the drift volume was measured using the aforementioned axisymmetry assumption.
The following section compares the kinematics and dynamics of the measured vortex
flow and the computed potential flow.

3. Results
Figure 1 plots three frames from the computed flow corresponding to the passage of

a sphere through a plane of Lagrangian particles in an ideal fluid. The particles exhibit
looping paths referred to as elasticas by Milne-Thomson (1968). These trajectories
result in a net downstream displacement of the particles and a distortion of the initial
plane to a horn shape as previously observed by Darwin (1953), Lighthill (1956),
Eames et al. (1994) and others. As mentioned previously, the volume of fluid between
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Figure 1. Passage of a solid sphere (black) through a plane of Lagrangian particles (red) in
potential flow. Particle trajectories are computed from the exact solution in (2.1) and (2.2).
(a) Ut/a =0, (b) 3.6, (c) 7.2.

the distorted plane and its initial position has been shown by Darwin (1953) to equal
the added-mass (per unit fluid density) of the solid sphere. This will be confirmed
shortly. First let us compare these flow kinematics with those of the unidirectionally
propagating vortex ring.

Figure 2 plots two frames from the measured flow corresponding to the passage of a
vortex ring through a plane of Lagrangian particles initially located four cylinder radii
downstream from the exit plane of the vortex generator. To visualize the location of the
vortex ring in the flow, the frame transformation method of Dabiri & Gharib (2004)
is implemented. The vortex ring boundary is indicated by the elliptical streamline
containing the front and rear stagnation points. Shadden, Dabiri & Marsden (2005)
recently confirmed the accuracy of the frame transformation method for determining
the boundary of fully-formed vortex rings propagating via self-induction. Consistent
with the results of the potential flow calculation of solid body motion, the Lagrangian
particles exhibit looping elastica trajectories, which distort the initial plane into a
horn shape. The particles pass along the vortex boundary in the same manner as the
particles around the solid body in potential flow.

Despite the observed qualitative agreement between the induced Lagrangian drift
behaviour of flow surrounding the solid body and the vortex, it is useful to further
quantify the dynamics of the drift volume to determine if Darwin’s (1953) method may
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Figure 2. Passage of a vortex ring (shown in streamlines) through a plane of virtual
Lagrangian particles (red) in the flow measured via DPIV. The vertical dashed line indicates
the position of Lagrangian particles at Ut/a =0. Particle trajectories are computed by
updating their positions according to the measured time-dependent Eulerian velocity field.
The parameters U and a in the dimensionless time are taken based on the average celerity of
the vortex ring (2.04 cm s−1) and the cylinder inner radius (1.27 cm), respectively. (a) Ut/a =4.9,
(b) 9.8.

be extended to include the propagation of vortices. Figure 3(a) plots the drift volume
versus time for the solid sphere in potential flow as well as the measured vortex flow.
The drift volume trends for several planes downstream of the vortex generator are
plotted to determine the effect of the temporally varying vortex boundary (i.e. its
growth due to fluid entrainment as it propagates downstream).
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Figure 3. Drift volume versus time for computed and measured flows. The black line plots
the drift volume of the computed potential flow around a propagating solid sphere. Coloured
lines represent the drift volume of planes initially located in 0.3 cm increments from 2.7 cm
(red) to 8.0 cm (blue) downstream of the vortex generator exit. The partial drift correction of
Eames et al. (1994) is applied to the data in (a) to arrive at the data in (b).

In each case, the drift volume temporarily decreases as the body passes through the
plane of Lagrangian particles. This effect reflects the looping elastica trajectory of the
particles, which briefly experience induced motion in the upstream direction before
continuing their downstream drift. As expected, the drift volume of the solid sphere in
potential flow asymptotes to one-half of the sphere volume as t → ∞. This behaviour
corresponds with the known added-mass coefficient for a sphere propagating along
the x-axis, i.e. cxx = 1/2.

The drift volume of each plane in the measured vortex flow does not asymptote to a
constant value as in the solid body case, but instead follows a linearly increasing trend
as the vortex propagates downstream. This result is consistent with the prediction of
the model flow computed by Turner (1964) for a temporally growing spherical vortex.
However, before further analysing the experimental data, we must recognize that
the initial and boundary conditions of Darwin’s (1953) heuristic do not match those
of the experiments. In particular, the vortices generated experimentally did not
approach the Lagrangian particle planes from infinitely far upstream, nor is the radial
extent of the particle planes infinite as required by Darwin (1953). This discrepancy
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is resolved by implementing the concept of partial drift (Eames et al. 1994), which, in
potential flows with no sources, accounts for the effects of a spatially finite Lagrangian
plane and body approach distance on the measured drift volume. The ratio bet-
ween the measured partial drift VDp and total drift VD required by Darwin (1953) is
given approximately by

VDp

VD

≈ −1

2
+

3

2
√

1 + (rL/d0)2
, (3.1)

where rL is the finite radius of the Lagrangian plane being tracked and d0 is the initial
distance of approach between the propagating body and the Lagrangian plane (Eames
et al. 1994). In the present measurements, the parameter d0 has a different value for
each plane downstream from the vortex generator exit plane. Hence, a different
partial drift correction is applied to each plane. When equation (3.1) is applied to the
measurements, the total drift of each plane becomes identical as the vortex moves
downstream (figure 3b). This result suggests that the partial drift correction (3.1) has
properly accounted for the finite initial approach distance between the vortex ring
and each Lagrangian plane downstream of the vortex generator.

Notwithstanding this refinement of the data, the linearly increasing trend in the
drift volume of the vortex flow persists. To account for this effect in a calculation of
the vortex added-mass coefficient, let us first consider the definition of Darwin (1953):

cxx =
VD

VB

. (3.2)

Both the drift volume and the body volume are time-dependent for the vortex
flow, and are also both augmented by the net entrainment of ambient fluid by the
vortex (the entrainment and detrainment processes act simultaneously, cf. Maxworthy
1972). The effect of entrainment on the added-mass coefficient can be made explicit
by rewriting (3.2) as

cxx =
VD(t) − VE(t)

VB0 + VE(t)
, (3.3)

where VB0 is the initial body volume and VE is the net volume of fluid entrained by the
vortex. This latter term is subtracted from the numerator of (3.3) in accordance with
the fact that Darwin’s (1953) drift volume accounts for fluid external to the body
that drifts in its direction of propagation. Although entrained fluid automatically
contributes to the measured drift volume (i.e. since particles in the Lagrangian plane
are entrained and carried downstream by the vorrtex; cf. Turner 1964), entrained
fluid is a part of the body (ipso facto) and is therefore not a component of the
external drifting fluid considered by Darwin (1953). To be sure, entrained fluid is
the source of the time dependence of the body volume VB(t), as indicated by the
denominator of (3.3). The absence of this contribution to the denominator would
cause the added-mass coefficient to become undefined as t → ∞, as observed by
Turner (1964). Substituting for the entrained fluid volume in (3.3) using the fact that
VE(t) = VB(t) − VB0, a modified vortex added-mass coefficient can be defined:

cxx =
VD(t)

VB(t)
+

VB0

VB(t)
− 1. (3.4)

For a body of constant volume such as the solid sphere computed above, VB(t) = VB0

for all time t , leading to the cancellation of the second two terms and the recovery
of Darwin’s (1953) classical added-mass coefficient (3.2). When the body volume
VB(t) increases monotonically, as in the vortex flow measured here, the second term
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vanishes. In this case, the third term compensates the monotonic increase in drift
volume VD(t) that occurs due to fluid entrainment. For the vortices generated here,
VB(t) � 1.54t . Dabiri & Gharib (2004) show that this measured growth rate is
consistent with previous estimates of vortex ring entrainment (e.g. Liess & Didden
1976; Baird, Wairegi & Loo 1977). Combining this result with the measured trend in
total drift volume in figure 3(b) (VD(t) � 2.65t), the vortex added-mass coefficient as
t → ∞ is

cxx =
2.65

1.54
− 1 = 0.72. (3.5)

This is precisely the added-mass coefficient of a solid body with equivalent boundary
geometry, where the aspect ratio of the measured vortex ring, AR ≈ 1.37, was
determined empirically using the frame transformation method of Dabiri & Gharib
(2004). Hence, these experiments and analysis show both a qualitative and quantitative
agreement between the added-mass behaviour of solid bodies in ideal flow and
unidirectionally propagating vortices. Regardless of whether or not the vortex added-
mass coefficient will always be identical to the value for an equivalent solid body
in potential flow (e.g. for all components of the added-mass tensor), the result that
deserves emphasis here is that there exists a well-defined vortex added-mass coefficient
despite the fact that the vortex drift volume increases monotonically.

4. Discussion
The existence of a well-defined vortex added-mass coefficient has been demonstrated

empirically. Fluid entrainment by the vortex is incorporated explicitly in the coefficient
and the drift volume behaviour is found to be consistent with previous investigations.
Although the existence of an added-mass effect associated with a fluid body is not
unexpected (indeed, the potential flow solution for the solid body computed here is
identical to the solution for the flow around Hill’s spherical vortex), the existence of
fluid entrainment by vortices has previously prevented the definition of a consistent,
physically relevant vortex added-mass coefficient.

The analytical methods described here depend heavily on the ability to define
boundaries for vortical motion in the fluid. The method of Dabiri & Gharib (2004)
was sufficient for the simple vortex ring flow studied here; however, it cannot be
extended to most flows of practical interest. Recent results by Haller (2005) and
Shadden et al. (2005) have the potential to achieve the objective definition of vortex
boundaries in more complex flows, facilitating application of the concepts introduced
here.

The fact that the partial drift concept was effective here despite its formal validity
for potential flows with no source suggests that it is also useful in practice for vortex
flows with low entrainment rates (i.e. on the order of a few percent per second), such
as the vortex rings studied here.

As derived by Saffman (1992, § 4.2), the impulse required to set a region of fluid
into unsteady vortical motion is given by

I =
1

2

∫
V

x × ω dV +

∫
S
φn ds, (4.1)

where ω is the fluid vorticity and n is the unit normal vector directed into the region
of compact vorticity. An important benefit of the vortex added-mass coefficient is
that it can be used as a surrogate for the velocity potential φ in the second term,
a parameter which is difficult to measure empirically. Since the first term is much
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easier to measure experimentally, it has often been used by itself for force estimates
in unsteady wake analyses and studies of fluid–structure interaction such as vortex-
induced vibrations. However, recent studies of unsteady vortex flows suggest that the
second term of equation (4.1) can be quite substantial (e.g. Krueger & Gharib 2003;
Dabiri 2005); therefore, the development of techniques to infer its contribution in
fluid flows is necessary in order to avoid underestimation of unsteady fluid forces.
The vortex added-mass concept introduced here provides one such technique.
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Eames, I. & Flór, J.-B. 1998 Fluid transport by dipolar vortices. Dyn. Atmos. Oceans 28, 93–105.

Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech 525, 1–26.

Krueger, P. S. & Gharib, M. 2003 The significance of vortex ring formation to the impulse and
thrust of a starting jet. Phys. Fluids 15, 1271–1281.

Liess, C. & Didden, N. 1976 Experimente zum Einfluss der Anfangsbedingungen auf die Instabilität
von Ringwirblen. Z. Angew. Math. Mech. 56, T206–T208.

Lighthill, M. J. 1956 Drift. J. Fluid Mech. 1, 31–53.

Maxworthy T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51, 15–32.

Milne-Thompson, M. 1968 Theoretical Hydrodynamics. Dover.

Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.

Shadden, S. C., Dabiri, J. O. & Marsden, J. E. 2005 Lagrangian analysis of entrained and detrained
fluid in vortex rings. Phys. Fluids (submitted).

Turner, J. S. 1964 The flow into an expanding spherical vortex. J. Fluid Mech. 18, 195–208.

Willert, C. E. & Gharib, M. 1991 Digital particle image velocimetry. Exps. Fluids 10, 181–193.

Yih, C.-S. 1997 Evolution of Darwinian drift. J. Fluid Mech. 347, 1–11.


