KODAI MATH. SEM. REP.
23 (1971), 311-334

THE LAW OF THE ITERATED LOGARITHM FOR STATIONARY
PROCESSES SATISFYING MIXING CONDITIONS

By Hirosui OopalrRA AND KEN-ICHI YOSHIHARA

0. Summary.

The law of the iterated logarithm for various stochastic sequences has long
been studied by many authors. Recently, Iosifescu proved in [5] that the law
holds for stationary sequences satisfying the uniformly strong mixing condition
and Reznik showed in [8] that the one is also valid for stationary processes satis-
fying the strong mixing condition. But, the conditions used in [5] and [8] are
slightly stringent. The purpose of this paper is to weaken those conditions, that
is, to prove the law under as similar as possible requirements to the conditions
in [3].

1. Definitions and notations.

Let {x, —oo<j<co} be processes which are strictly stationary and satisfy one
of the following conditions:

1
I —|P(AN B)—P(A)P(B)| = ¢p(n)—0 (n— co)
(I AE‘%,itfg’m;M P(4) ¢

or

(1) sup [P(AN B)—P(A)P(B)|=a(n)—0 (n— o0),

acH®  BeHT,
where Gt denotes the g-algebra generated by events of the type
{(xilr R xik)eE}y aéll<'<ik§b

and E is a k-dimensional Borel set. In line with [4], we shall call Condition (I)
the uniformly strong mixing (u.s.m.) condition and (II) the strong mixing (s.m.)
codition.

In what follows, we assume that all processes {r;} are strictly stationary,
Ez,=0 and Exj}<co. We shall agree to denote by the letter K, a quantity bounded
in absolute value.
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2. A sufficient condition for the validity of the law of the iterated logarithm.
In this and next sections, we write

Sp=xy4 42, oh=var (Sn)
and put

o*=Exi+23, Exox,
=1
if the series converges. We shall use ¢ only when ¢% is positive.

TueoreM 1. Let the strictly stationary process {x;} satisfy the s.m. condition.
Suppose that 3, a(n)y<co and
(1) ai=no’1+01)) (#*>0).
Then, the process {x;} obeys the law of the iterated logarithm, if the following
requirements are fulfilled for some p>0 and for all sufficiently large »n:

) - 1
(i) _sup |P(Sa<20+/ n)—@(z)|=O<W>
where

(D(Z) = 712——”81 e V2 dt

.. 1
(ii) B max IS5 éb%(n))—O(W>
where b>1 is an arbitravy number and
(2) A(n)=(20%n log log n)'2.

Proof. We will use the method of the proof in [7]. The assertion will be
proved if we show that for any ¢>0

(3) P18, > +e)A(m) 1.0.)=0
and
(4) PS> —e)x(n) 1.0)=1.

Firstly, we shall prove (3). For an arbitrarily chosen positive number z, there
exists a non-decreasing sequence of positive integers such that

(5) my—De® =1 + 1) <nyo?

for k=ko+1, ky+2, .-, where k, is a positive integer. So, for all sufficiently
large &
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1
(6) nk’\“-;z—(l'l“r)k
and
(7) nk—nk_1=nk(1 n;: )Nnk].:-’r .
From (ii)

P(lrslﬁx [S51> A +7)U(m)) = K(log )~ 4+ < K[k log (L+17)]~¢+70
sjang
for any #(>0), 1 (0<y1<p) and for all £ sufficiently large. Thus
(8) 20 P(max [S;] >+ 7)) < oo.
i 1sjsng

We note here that for all sufficiently large %

A(ng)
o) <A/1+2¢.

For a fixed number y(0<yr<e), choose a positive constant ¢ such that

14
Jigz ot

Then, from the Borel-Cantelli lemma and (8), we have

P(ISal>1A+e)x() 1LO)=P( max |S;]>1+)X(#-1) 1.0.)

N1 SNENg

=P(max [S,| > +&)X(ne-1) 1.0.)
1=nsng

14 .
§P<1g7lé)"(klsnl>\/1_|_—2{_ L(ng-1) 1.0.>

=P(max |Sp| > +7)%n) i.0)=0.
1=nsng

Thus, (3) holds.

Now, we turn to a proof of (4). For a sufficiently large number A>0 and
sufficiently small 6>0, let

Ej={1Sau|=(1—-0) 1A, i<j; |So|>A-0)XAN} (=12, ).

Let y be a positive number such that for some ¢'>0, 2/ A +y-+¢’<5. From the
s.m. condition (II)

P({|Sal =1 —0)X(AY), i<7}N{[Sar—Sad-111a9/n] >A—)A(AT)})
= P(|S4i| =1 —0)X(As), i <7) P(|Sa1—Sar-10a9| > A=) UAD) —a([A77)).
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While, from (i)

K
PASWI >0 = o iog Tog )

holds for any b>1 and for all » sufficiently large. So, noting that A/—(A4s!
+[A7%])> AJ/2 for all sufficiently large A, we have

0;=P(|Sw—Sas-1spatin| > (1 —1)U(AY))

7
(10) ;P(|SALAJ-1_M1/ZJ| >21—p) x([%]))
= P(}S 4 as-1-garrn| > 21 — ) X(AT— A1 — [A777])) = 71%

and, moreover, from Chebyshev’s inequality

11) P(|Sas-11padry—Sat-| 2 M AN S KA

So, using the method of the proof of Theorem 1.1 in [8], we have
P(|S4i| >(1—08)%(A%) for some i, 1=i=k)—1 (k—0),

which implies (4). Hence, the proof is completed.

Remark 1. For the process {z;}, satisfying the s.m. condition, the require-
ment (ii) is fulfilled if (i) holds and there exists a function r=#(x#) such that

r(n)— oo and

(12) max <%P(Ix1] ootz Z X (n), %a(f)> =O(@}W>

for any ¢ (0<e<(b—1)/b) where b>1 is an arbitrarily fixed number.
Proof. We use the method in [6]. For any b>1, let
E,={|S:| <ox(n), i<7; [S;120X()}  (G=1, -, m)

and k=[n/r]. It follows from the s.m. condition that for any «>0
P(max |S;|= bx(n))zP(]U E]>
1gj<n =1

= P(|S,| =51l — ) 2(m))+ 22 P( f) [Er i U{lSn—Sirss] = ebx(n)}]>
1=0 J=1

> PEN{S.—S] =)

I=Ck—1)r+1
< P((S| =b(1— o) (1)) + ’;‘;':P«JQIE,T“) n { 1Sa—Scirorr| z%x(n)D
13)
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k=2

+ 2 P( LTJ [Eir+jU \]S(i+2)r"‘ irt 5] éix(n)}]>
=0 \y=1 2

+ 2 PEN{Sa—S|zx#)})
=(k—-1r+1

14

r

k-2 &
= P(S,I 26—+ 5 P( Eus,) P18 Seorl 2-500)

Fha)E+DP (o] o+l 2 5700).

Since for any i (0=i=k—-1)

2
On—(i+2r

P(lsn_s(iﬂ)r! = EX(n))=P(ISn—(i+2)r| = sx<n))§m“"0,

so for sufficiently large »

1
(14) P(|Ss~Scrar|Z EX(%))éE-

Thus, from (12), (13) and (14)

P(mazx |S;| 2bX(n))
15550

1 1
= P(|Su] = b(L~e)1(n)) + 5 P(max 15312510 +0( oz 5577 )
Hence, from (i) we have

1
PG 512 100 =0( )

where p, is a positive constant.

ReMARK 2. For the process {x;}, satisfying the u.s.m. condition (I), the re-
quirement (ii) is satisfied if (i) holds and there exists a function r=#(#) such that
r(n)— oo and

" 1
(15) 7P([x1|+---+lxrl;ex(n))=0(@n—)lrp>

for any ¢(0<e<(b—1)/b) where b>1 is an arbitrarily fixed number.

3. The law of the iterated logarithm for the process {x;} satisfying one of
the conditions (I) or (II).

TueoreM 1. 1 in [8] may be generalized in two ways:

(a) One way is to weaken the requirement E|z,|?t?<co retaining the condi-
tion 3, {p(n)}*/2< oo, (Therem 2);

(b) The other is to weaken the requirement Y {p(n)}/?<oco retaining the
condition Elxy|?*?<oo, (Theorem 3).
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THEOREM 2. Let the process {x;} satisfying the u.s.m. condition have the fol-
lowing properties :

1°. For all sufficiently lavrge N
(16) ‘ S xzdP=0<;>
|z]>N (log N)®
2°. Zl {p(N} 2 < oo
=
Then the law of the itevated logarithm is applicable to the process {x;}.
Proof. We remark first that from 2°

ah=n0%(1+0(1))

(cf. 13] and [4]).
Let
z (lz|=N),
fzv(x)={
0 (Jz[>N)
and fy=x—fn(x). Furthermore, let 7(n)=[#"? and N=[#"¢l. Then forany
>0
P(|zy|+ -+ || Z222(n))
=P(|Fa(a)+ -+ Fale) | 2 (n))
+ P(| fw(z)|+ - +| ()| = 2n))

=P(|f w(@)| + -+ | Falzr)| = ()

e (Zi7nteal)

2 (n)}z lElf—N(xo)P_l_ZZ Elf-N(xo)| . lf—N(-Z'])l‘

lIA

lIA

/\

- {76(71)}2 {

2 L 7 2 \11/2
:-————{x(n) E]fN(xo)l {1+21’ 2E|fN(x0)| +4]§1{¢(])} }

E| F(@0)|*+27 (E| f 5(@0)| )+ 4(E] F (o) |?) Z {e(9} "2}

/\

7 1
= K g vy
and so

” 1
7P(lel+---+lxrléZRX(n))=0<W)-



Thus, (15) holds.

LAW OF THE ITERATED LOGARITHM

317

Next, we shall prove that (i) in Theorem 1 is satisfied. Define
and

® I

Vo B )= B

Syt =

3 (Fnte)—Efntar)
For a small a(0<a<1/2), put

1/24a —_— 1/2-a o #
P=[n, gony=[n"], k—[——p ]
and set
k-1 k
g i: (fN(xz(p+q)+j)_EfN(xz(p+q)+]))) Ty = g;)ct
where
¢ =]Z=q:l 0\}” (fN(xz(mq)+p+j)“EfN(v'Uz<p+q)+p+j)) (i=0: 1; ety k—l),
Ck—j—k(p+q)+1 . \/— —=(fn(xs)—Efn(zs)).
Then
Es"2=UT[EdN(xo)—EfN(xo»z
an +2 Z (1—}7> E(f n(x0)— Ef x(z)X f v () — Ef w(2;)) }
2 172 1
= LB v 142 T i | =0( o)
and
k—1 2
ET{*=E ci)
i=0
< - .

g

=

Zn

Q

- k-
| -vmaon S md+ B2 3 1

k-1
{kEca+4kEcz- T elilo+ )1+ L
18)

AT BT G (i) + O+ 2 T «/Eck]
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é%{koﬂa%ﬁ‘ikﬂé % lplio+0

+H4kowpig < g {pp+a} 2) }
=0(n-")
for some 7,>0. Since
|EeitSn’ o/ FrgitTn’|
<|EettSa’ v FgitSn’| 4 | EgitSn’ — FeitTn’|

= Fe|#$" —1| 4 E|i*Tn” —1|

=|t|-E|SYI+t-E| T =1tV EIST P+ VE|TY?),
so, from (17) and (18)

EgitSn’ e VT EgttTn’

(log n)57/4
1= S

(19) —(log n)5/4 t
<S(10gn)5l4 \/ 172 \/E T 2 d O( 1 )
- _(logn)m{ EISn + I n l } t= (log %)5/4 *
Furthermore, let 5o, 71, -+, 751 be independent random variables distributed in the

same way as the corresponding
1 2 .
o Z (fN($i<p+q)+j)_EfN(1‘i(p+q)+j)) (7=0,1, -, k=1).
g '\/ n 1
J=
From Condition (1)

Zkpl@)=k-0(g™)=0n"%)

k-1
EettTn’ _ 1—[ Eetti
7=0

for some y;>>0 and for all » sufficiently large. On the other hand

Ee¢ttn' — n Ee| =t (EI T4 |2+ kE7)

for all sufficiently small |#]. So

(log n)s/4
Iz = S
—(log n)5/4

n=-1/4
S_n—-lm

F oitTn’ _EeitZ’;;(l)'ij |
t J

EoitTn’ ___Eei:}:f;(l)vj
¢

EeitTn’ . Eeilz‘;c;éﬂj
t

fIA

Sn—1/4s|t|§(logn)5’4

(20)
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n-1/a
= LB Ti kB (ld-+001779| @
2 —n—1n n-1/45t| SClog n)s /e |E]
1
—0< (log n)> )
Next, let

s on

=V _ .. i=0,1, .-, k=1
75 VR ;. (U )

Then, by the analogous argument, we have

(log n)s/¢
@1) 3=S

Eeitz;c;(l)ﬂj_Eeitz‘I;;ll)’?j’ [ =0 1
¢ B ((log n)"’“)

—(log n)5/4

for all sufficiently large ».
Finally, by applying Esseen’s lemma to the sum 3%z}, we obtain

Eeit}"_.;c;év 7 —g—t?2
¢

KE,7]6|2+5

0.127+6k5/2

m 1+ae—t2/4 éKk"’/zm 1+ae—t2/4

=

for all # such that
=Y TERHEE

24E|n;|2 =

(cf. Lemma 1. 9 in |3]). So

S(log nYh (Lt TiIans p-t3r2
4 = ———

(22) dt=0(k~%).

—(log n)5/t t

Combining (19)-(22), we have from Esseen’s theorem

sup |F(Sa<zoa/7)—B(2)|

—w<Lz<0

K;
(log n)**

EettSn/ vie_ g—t3/2

7 dt+

(log n)s/t
x|

(23)

—(log )5 /4

K, 1
=KL+ L+ L+1)+ (log ;)5/4 :O< (log n)*’* )

Thus, from Theorem 1 and Remark 2, we have the theorem.

THEOREM 3. The process {x;}, satisfying the u.s.m. condition, obeys the law of
the iterated logarithm, if the following requivements arve fulfilled:

1°. Elzy|**<oco for some §>0;
2°. o(n)=0(1/n'*") for some ¢>1{(1+45).

Proof. Without loss of generality, we may assume that ¢=<1. Let
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_ A491+8)—@+d) _ (1451

2(2-+3) =%t

(29

We define fy(x) and fy(x) as before. For any positive integer j, put N,=j.
Then from the inequalities in [3]

|Exozj| <|Eo fu (2)—Ef n ()| + | Exo( f {2)—E F j(w))|
SANE|2o|(7) +2(E a0 *0Y @B | v ()
_EJ?Nj(xj)l(2+5)/(1+a))(1+a)/(2+a){¢(j)}(1+a)/(2+a)

§4NjE ]:co[go(]) +4N;5E | |23 {0(5)} (1+8)7(2+8)
1

(1+é) Q+38)/ (2+8)+P5 *

S4B w| sy HAE 3]

1+(5

Since e—p>0 and

149
249

_ 3l +9)—1)

2T

{(1+e) + a}

80

o 1 1
(25) ]Z:l | Eo;| = Z {4E|$0| “rramy TAE|ml*? OO0/ @D P }<°°'

7=1

Thus, the series
=FExt+2 ), Exx,
7=1

converges absolutely.
Next, we shall show that for some y>0

(26) % =no*1+0n)).
It follows from (25) that

o0 n—-1
1| <2 3 | By |+ 23 | Euvvar|
I=n n =1

1
=8 [E[‘”OIZ T oo +E1x0|2+6 Zn AT @i v ]

F=
8 n-—1 1 n—1 1
+;;[EI$0|]§1 7(5—_—,;+E|xo|“"j§1 m}

and so we have (26).
Now, we define p, ¢ and k& by the formulas

7
bt+q

p=lwl, =l k=[] @0
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and set
GtDp+g X
Ei: Z Lyy Z=0) 1; ttty k'—l;
j=ip++1
G+ (p+D) . n
Ni= Z X g, Z=0, 1, sy k—*]_, Ne=— Z Xy
J=CG+Dp+rg+1 J=k(p+@3+1

Then, it follows from (26) that for some >0

D@:a)

no?

—1{=Cn7

and

. 1 E—1 k-1 . g] ‘ .
‘Eexp (th o s]>—JgoE exp (zto ¢z> <dkp(q)=Cn

where &, &, -, £&f_, are independent random variables distributed in the same way
as the corresponding &. Thus, the method of the proof of Lemma 1 in [8] can
be completely carried over to this case, and we obtain the theorem.

Two theorems below are concerned with the processes satisfying the s.m.
condition.

THEOREM 4. The process {x;}, satisfying the s.m. condition, obeys the law of
the itevated logarithm if the following requivements are fulfilled:

1. |a;\<c with probability one;
2. am)=0(/n**") for some ¢>0.

Proof. Define p, q, £ and 7 by

pmy=[n*"*log*nl,  qm)y=r(n)=[n""log =], k("):[pzq]'

Then, for any 5>0
ZP (|| -+l 2 B21) =0
and for some y;>0

%a(r)éKlnl/Z(log n)? =0(n-").

1
So, (12) holds. Thus, from Remark 1 to Theorem 1, it is enough to prove Condi-
tion (i) in Theorem 1. Put &, -, &x_1, &b ==y Ebo1y oy ***y Jiy Smy S’ as the same ones
in the proof of Theorem 3.
Since from Condition (II)
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L Soter - Era &
E(exp zt*—W ) ,H E<exp it == >:

=0

),

so from Esseen’s lemma

27 dt=0(n"")

S(log"n)alﬂ E uzf;(l’fj/ V;&‘v,__EeitE;c;éej/a/;L—v
e
?

—~(log n)3/2

for some 7,>0.
Secondly, from the proof of Lemma 18. 5.2 in {4]

E( é‘l x]>4=0(n2 J"gl jad j)) — 00+,

So, if we choose a positive number ¢ such that 0<§<2 and 6(1+¢)>2, then from

Esseen’s lemma

Eeitzfgéfj'/ VEEER — p-t2/2
t

dat

S(Iog n)3/2

(28) —(log n)8/2
é K'IEIEOIZ+5 - K]{Eég}(2+5)/4 . Kl(ps—i)(2+5)/4

— —&/4
W = g R

Finally,

k-1
}E Z&) REG| <2 T | B2

/\

] M’e

IExz$f<p+q)+l]

[I/\
I MT

A

Kikp Z a((F=1)(p+ )+ Kekp Z alg+0)
=

kgL

=K,
=" (ptay -+

and

k 2 k-1 ; k-1
E( X m) =(k—1DEx+2k )] <1—];>Evom+E>ﬁc+2 ZIEWV}E
=0 =1 =

n=k(p+
Z |E2icprg+iLhcproy i
i=1

k-2 q k-1 g
§(k—1)E7]3+2kZ Z [Exp+zxj<p+q>+l|+0p+q+ Z:l Zi

kq
Btar +K‘*z>l+‘ e

Hence, we have

i Me

=koi+Ks——

kEE;

On

ES/Z

_1~<Kv{

+2vESJPES)® 2ES”2+ES"2} O<—1—>
(log n)**
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On the other hand,

{ ) nlExow,I+ZZ IExole}
(30) "

= 1{ Z]a(])-i-Ke zam] )

a®

Combining (29) and (30) and using Esseen’s lemma, we have

dt:o( (logln)s’z )

Thus, from (27), (28) and (31), Condition (i) in Theorem 1 follows, and the proof
is completed.

Eeu):;“;},e,'/ Vo __ Eeitzf;éej’/ VEEE?

@31 7

S(log n)8/a

—(log n)3/2

THEOREM 5. The process {x;}, satisfying s.m. condition, obeys the law of the
iterated logarithm if the following vequivements ave fulfilled for some 6 and & such
that 08’ <5:

1°, Elx;|**?<co;
2°. 37T {a(m)"’ @ < co.
n=1

Proof. Define fx(z) and fy(x) as before. Let

N= n1/2<1+5')(log n)~
and
#(m)=[n? 20+ (log n)"].

Then, for any >0

ZP((ail+ -+ o = B0 = TP Farw)] -+ | )| 2 b2

n
FR(mYr (Z Fvl) = s e

liA

EifN<xo>12+22E|fN<xo>| |fN<x]>|}

A

e | B @l -2 3 {17 x4 8E a7 ety ||

K,

N2E-9 = (E| Fa(mo)|2ro)v e+ ))

2 L f &+ 24+4)2 1.
= DA ()} {“N,;—E'flv(.l‘ol +ma N2(1+5) (E[fN(xO)I )2+

=0n"")

holds for some y>0 and

o= Oy — <__._1 >
ra(r)-yO(; t =0 Gz )"
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Hence, Remark 1 to Theorem 1 it suffices to show

=0z )

p( Ya< \/‘n‘az) —0(2)

sup
—o0 Lzl o0

Define p, ¢ and & by

pm)=[n"**], qm)=[n*] and k(%)=[ p-t q]

where « is a small positive number. Let N’ =#?"190+ if 0<§=2 and N/ =p! 16U+
if 6>2. Put

Sa= 0\1/7 Ji (fwlzs)—Efw(zs), Si= L

=1 g

— 3. Pz~ EFwlop),
=1

?
§i= Zl(fo(x(i~1)(p+q)+j)_EfN'(-T(i—1) (p+q)+j)) (i=1; 2: ) k),
7=

1 k
;. L " Qs __ v
Tn“"‘ ‘\/”()‘ Ecl, Tﬂ Sn Tn-
Then, it is easily proved that for some y>0
s b 1 = 244 K, 7 248Y2/ (2457 -7
E|SY] é? j—vﬁElfN'(xo)l +W(E|fzv'(xo)| ) =0(n"),
(32)

E|TY1P=0(m") and |ET{—1]=0")
Now, let f.(¢) be the characteristic function of S,/+/ns. Then

| fa(t)—e 2| S| fult)— Ee"Sn'| 4 | EgtéSn’' — Ee#Tw |

-+

k
+ e_;2/2__ H Ee“Cj/WcECo?

=1

k
FEe¥Tn’ — n FEettti/ vEELo?
=1

(33)
k
= EISYIFIHE|TY |+ ]Ee“T"’— 1 Eet*¢s ve5to
=1

+ .

k
et __ l‘[ Eettj/ VEEL?
=1

From Esseen’s lemma

4 —t2/2 £ G804/ VR EeE | < E|G|** 2+3,—t2/4
34) e —]UlEe {5/ VEEL :KkZ/"(ECS)(ZH)/Z |22+
holds for all # such that

o E]C |2+5
t=vn / U e EC%)SMW :

Since
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D
EG=K/(N")'p? aja(j)éKl(N/)dpz i:lj—z/a'
= =
=K(N'Yp? max (1, p=2%)
and

EG=pe*1+0(1))
for all sufficiently large #, so

E[C0|2+6 - (Ecdo)(2+5)/4
kF/z(ECé)(2+P)/2 = kP/Z(ECg)(2+P)/2

=0(n"")

holds for all sufficiently large » where p=min (2, §) and y is a positive number.
Consequently, from (34)

k
e t¥2— [] Eeites! Veie
=1

éKn—TIt|2+se—t2/4

(35)

holds for all sufficiently large » and for all # such that |f{=+/%. From Con-
dition (II)
(36)

*
EettTa’ n Fgttii) JeE? éka(q):n“‘"—“-o({nl/z—"}‘(“"')/”').

=1

Using (31)-(36), we have

[P(as+ -+ xa <20V 1) —0(2)|

(log n)3 fn(t)_e—ﬂ/z c
= dt
- S-—(log n)3 ¢ ‘ + (log n)3
(logn)3 (log n)?
3" ég Kn‘7|t|1+"dt+S {E[SY|+E|TY|} dt
—(log n)3 —(log n)3
ka(q) o
C S dt+8 =
* 2( osltlgn-1rt n-1g|t S ognys ] (log n)®
_ 1
—O( (log n)* )

Hence, from Theorem 1, we have the theorem.

4. Functions of processes.

Let {x,, j=0, £1, +2, ---} be strictly stationary and satisfy one of the require-
ments (I) or (II). Let f be a measurable mapping from the space of doubly
infinitely sequences (---, a_1, ao, a1, +--) Of real numbers into the real line. Define
random variables
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(39) Fo=SCy ey ®gy Zy415 +7)

where x, occupies the Oth place in the argument of f. It is obvious that {f;} is a
strictly stationary process. We shall prove theorems establishing the law of the
iterated logarithm for the process {f;} (see [3] and [4]).

Let
(40 Si=fitt+fo
and
(41) o =Efi+2 3, Efofs

if the series converges. In what follows, we use ¢® only when ¢% is positive.
The following theorem is a generalization of Theorem 1. 2 in [8].

THEOREM 6. Let the stationary process {x;} satisfy the u.s.m. condition and let
the process {f;} be oblained by the method indicated above. Further, let the follow-
ing requirements be fulfilled:

1. Ef=0 and E|f]|*?<o0 for some §6>0;

1 1
2. @(%):O(F> fO?’ Some €>-1_|_—5 3
3. E{f—E{f| M} =¢R)=0n"2"%)  for some &>0.
Then, the processs {f;} obeys the law of the iterated logarithm.
Proof. The series in (41) converges under the conditions of Theorem 6. (cf.
3. In fact, as in {8] (cf. [3] and {4]), let
&0 =F\f;| M+
and
np=Fi—

Then the stationary process {£{} satisfies Condition (I) with the function ¢.()=1
for n=2s, p{(n)=¢(n—2s) for n>2s. Since

EeP o =E{ E{f )| MR = EE f51 0 | R =E [ f [P <o

the stationary process {£%} satisfies all the conditions of Theorem 3. Furthermore,
as before,

|Efof s = | BG4y e+ §40)|

< | BEGE 15|+ 2UE 6 B g D+ B )

p)+4E| 473D 24 ( 3 )QHXIH)/(HDH‘;
J Jd2
0 3
J

o 3 1+
(42) §4E1§5W|(]—.)

+2UE| ssff/31>|2}”{¢<[—]?;—]> }1/2+ ¢<[%])
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(33 D)

(1401
T 2210

where

>0.

It follows from (42) that the series in (41) converges.
Moreover, from (42) we easily obtain that
oh=n0"(1+0(1)).
Next, we shall prove that

(43) P(lrgas)iISjlz6aX(n))§2P(|Sn[Eax(”))'l'o( (lo; n)? >

holds for all sufficiently large ». Let
r(n)=n®20.(log n)~*

and

g(N)=F—ag;(N)  (=0,1,2, -+)

fi (f5il=N),
gi(N)=

0 Uf5I>N);

where N=n'®+d_ Then

ZP( A4+ fr 2520
= 2| PG+ -+ 1)) 25 10)

+P<|gl<N>|+---+|gr(N>1z§>c(n»

(44) 4
n _ -
S i E(g: (N + -+ |32
n  4r -
§7wE!go(N)|2(l+27)
= (20 =0gr ),

Now, as in [1], define
Ui=E{Si—ar| MJ
and
Vi=E{Su~Sisen| Msh

Here, we adopt the conventions that S;.,,=0 if i<2r and S,—S;;2,=0 if {+2r>n.
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If we put

) w)= 3 o
then p(r)=0("") for some >0, and
E|Se—E{Se| M ={p(n),
(46) E|U;=Si|* =2ES%,+-2{u(n)}?,
EVi—(Su—Sp) P =2B55+2{p(n}
for all 2 and /. Thus
P(|S;— Uil = ax(n))
= P(Si—2r—E{Si-2| MY ZaX () —bo v 1)
47)
+P(fil 4| for| 2oV 1)

Hu(n)}® r —3/2(2+8)) — ________1
= (@X(n)—bo~/1) +;~O(n ( ))—0< n(log n)* )

and similarly

P(|Vi—(Sn—S)| = ax(n))

Hun)P r. —8/2(248)) — _._.____._1
= (ax(n)—bm/i)ﬁn O ))’O< n(logn)3>'

(48)

Because of uniform integrability of Si/n, (cf. the proof of Theorem 21. 1 in [1])
there exists a 2>1 such that

“9) PUSiz20v )=

for all j, where ¢>0 is arbitrarily small. Let

Ez={nslax | Uyl <Sax(m)=|Usl}.
<i
As Eie M and Vs is measurable HSsr so from (44), (48) and (49)

P("Q A zzaxmm)

=% P(0 Uares 01 Veasn |20 )25 PASl -+ o 2 )
= ZP([ 05 |01 sl = aaton) + 0r-v5:0)
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k

lIA

2 r
P < ) Em]) {P(| Visrorpl = aX(#)) ()} O(m=272@4+9)
1=

=0

]

k=2

J

fIA

P(JL;J1 E”+j> {P(|Sn-ciroyr| = 20 v/ —(G+2)r)+0(n")}+ O(x")

k3

0

where >0 is a positive number. Thus, for all # sufficiently large

50) P("gj A zZaxm)}) é%P(lmsjasX U, | 25ax(m))+0n~")
and so from (47), (48) and (50)

P(max |U;| = 5ai(n))
1Zign

n—

< P(iS, /= ax<n>>+P( U LE;N {ISa— U] z4ax<n>}])
1=1

<P(S.|Z axm)+ 3, P(ISa—Si— Vil = axn)
(81)
+P< ULE,U{IV; |= ZdX(n)}]> + El P(|S;i— Uil = ax(n))

dn{p(n)}?
=P(|S.= aX("))—I—W
1 _ dn{p(n}*
+ {EP(E;I;. U, | Z5ax(n))+O(n )} -+ U
Consequently, we have
(52) P( max (U, | Z5ax(n)) =2P(|Sa| = aX(#))+-0(n="1)

for some 7,(>0). Combining (52) and (47), we obtain

1
P(max |31 2 6a100)= P | Uy | 25a20) + O(W)

§2P<|sn!%a%<">>+0(71@1n>7>'

Next, we shall prove that

— 1

By the same method of estimation of (42)

3\ Lte=a 7 3\ LU+ (248> +pd J 2
(53) |E775”v7§~”l§K1[<7> +<7> +[<¢<[§]>} ]

329
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Taking into account of (53), we have

1

a*n
= Lawsmwork 5[(2) (B

1 n
' _ ),
Sx av'n ,;7/’

EISy 1=

n—1
(nE1+2 S o=
=1

where

Putting N=n'?-?1t and r=n2"", where ¢, >0 is a sufficiently small number,
we obtain that

(59 E|SY[*=0n"")
for some y>0. Furthermore, with the same s, let

1

/— - [€)]
Sa= av'n lefa
and
B=EEP+2 L EEOE.
Jj=1

Then

d: _
(55) = _1| =0(~")

for some y>0. Thus, noting that
]Eeusn/wi_e—zzle = [L‘]{E|S;,’|2}1/2

4| EettSn’ — g=GR/2 @n/o1)| 1 | g= (22 Unfot) _ p—tE/2|

and using the method of the proof of Theorem 3, we have

— 1
(56) _SUD|P(Sa<e0 v/ n)—0(3)| =0((1_ogn—)3)'

Hence, we obtain
P(|Sn]| > 1A+60)x(2) i.0.)=0.
Now, we shall prove that

P(|Sp] > (1 —d0)X(n) i.0.)=1.

We proceed as the proof of Theorem 1. 2 in [8]. Let A>0 be sufficiently large
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and ¢>0, §,>0 sufficiently small. We write

A(S)=E(E® 4 .. +-£9)?
and
X (n)=(20%(s) log log a2(s))'/?

where s=#n'2"" (¢, being the same defined above). Then, it follows from
(55) that

D) _
[t |=oe

for some y>0. Put s;=A¥?*" and for some positive numbers 8, <<

Ak
Er”zé"” >(L—d)X/(AY), i<k; |YEpw >(1_52)"'(Ak)}’
g=1
m At 1 .
c=A{|Ere | <on—doras]
i=1l)=1 2
and
At
( Z (’i)l>(1 32)X'(A?) for at least one i, 1<z<k)

k

= Z: P(E))

=1

Then, from Chebyshev’s inequality and (54)

(sl)

P(C)=1—P<] 1[

=L —eo(a)))

At 2
E (Z 77‘”’)
J=1

(00— aaran)

(58) =1-3

=1-K 3 () (1— A,
=1
Thus, from (58) we obtain that

Um=P(g[|sA¢|>(1—50)x(Ai)]>

zP(l(:Jl[lsAz-l>(1-51)x'<Ai)1)
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(59) _P@lH ]A_l

Sheg > -}
P(0]]2

14U+ PCO)=Upn— KA T(1— A1

\s

<L)

IV

3y
7

el —52)1’(Ai)] n c)

Next, let c;=A*2 and choose §>0 such that for some &'>0, 2/+/A-++e <ds

Then
A Ak
P([ 31 g6 | <(1—a) 24, i<k]n[ S egw ><1—53)x'<Ak)])
J=1 .7=Ak—1+0k+1

Ak

2 & ’> 1 —53)x’(Ak)> —o(ck— 28x).

9= A T Cp 1y

e00 | < (1o 1ra), i<k>P<

A
=p
=#(|5

Since from (56)

-1

for some §,>0 and o%4(s)=ne?(1+0(1)) for all sufficiently large #», so

AE

2 &

9=4K"14Cp 4y

—(1+e)(154)2

> (=) w(Ak)} = (10g e-4t-1-0,(50))

Du= K0

where 2,>0 and does not depend on k. Noting that from (42)

Ak—14Cp, 2
E< Z fj) <KC}¢

g=Ab—141

and from (53)

AR-14 0

AR=140y
E( Z 77(%)) <(Ak l_l_ck)‘E]%(sk)lz_l_z Z |Eﬁ(s")77 k)]}

scarrafengeo+i” 3 ((3) ()]

5=1 J 7 3
éKsAlc—l-kT

for some y (0<y<1), where N=A%?"%1, we obtain

Ak—~140y Ak—1
p(“E e F e

I

Ak=14 0y Ak—-140, Ak—
E( n fim 4 7/“"‘)+Zv“"">

1=4k+1 J=
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Ak—140}, 2 Ak-140y 2 Ak—1 2
ss[e(" 2 s ) vr(T S ) e () |
=1 =1

g=Ak-141

§K4Ak—1—kr

and so from Chebyshev’s inequality

ul
Hence, as in [8], we have Uy—1 as B—oo and consequently Uy—1 as k—oo.

The proofs of the following two theorems are carried out by the method of
that of Theorem 6. (cf. [3], [4] and [8])

k140 A1

Z Eswc) _— Z {:(Sk-l)
=1 i=1 !

ggxl(Ak)) é['{sA—l—k—T.

THEOREM 7. Let {x;} be a stationary process satisfying Condition (1), f a
random variable which is measurable with respect to M., and assume that the
process {f;} is obtained from f by the method stated above. Let {f;} have the fol-
lowing properties:

1. Ef,=0 and |f;1<C with probability 1;
2. a(m)=Cn=+, where §,>0;
3. E{f—E{f| 9|0 =0F"2"), where 5,>0.

Then the law of the itervated logarithm is applicable to the sequence {f;}.

THEOREM 8. Let the stationary process {x;} satisfy Condition (I1), let f be
measurable with respect to M=., and let the process {f;} be obtained from f in the
same way stated above. Moreover, suppose that

1. Ef=0 and for some 6>0, E|f|**?< oo,
2. E{f—E{fIHML}=0F>  (3:>0),
3. Y Ha(MNF/EH oo for some 0L <6

=1

Then the law of the iterated logarithm is applicable to the sequence {f;}.
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