249. Note on the Representation of Semi-Groups of Non-Linear Operators

By Shinnosuke Ôharu

Waseda University
(Comm. by Kinjirô Kunugi, m.J.A., Dec. 12, 1966)

1. Let X be a Banach space and let $\{T(\xi)\}_{\varepsilon \geq 0}$ be a family of non-linear operators from X into itself satisfying the following conditions:
(1) $T(0)=I, T(\xi) T(\eta)=T(\xi+\eta) \quad \xi, \eta \geqq 0$,
(2) $\|T(\xi) x-T(\xi) y\| \leqq\|x-y\| \quad \xi>0, x, y \in X$,
(3) There exists a dense subset D in X such that for each $x \in D$, the right derivative

$$
D_{\xi}^{+} T(\xi) x=\lim _{h \rightarrow 0+} h^{-1}(T(\xi+h) x-T(\xi) x)
$$

exists and it is continuous for $\xi \geqq 0$. Then we shall call this family $\{T(\xi)\}_{\epsilon \geq 0}$ a non-linear contraction semi-group.

Definition. We define the infinitesimal generator A of a non-linear contraction semi-group $\{T(\xi)\}_{\}} \geq 0$ by

$$
A x=\lim _{h \rightarrow 0+} A_{h} x
$$

whenever the limit exists, where $A_{h}=h^{-1}(T(h)-I)$. We denote the domain of A by $D(A)$.

Lately J. W. Neuberger [1] gave the following result: If $\{T(\xi)\}_{\in \geq 0}$ is a non-linear contraction semi-group,*) then for each $x \in X$ and each $\xi \geqq 0$

$$
\lim _{n \rightarrow \infty} \limsup _{\delta \rightarrow 0+}\left\|\left(I-(\xi / n) A_{\delta}\right)^{-n} x-T(\xi) x\right\|=0 .
$$

It is well known that if $\{T(\xi)\}_{\in \geq 0}$ is a linear contraction semigroup of class (C_{0}), then for each $x \in X$ and each $\xi \geqq 0$

$$
\lim _{n \rightarrow \infty}(I-(\xi / n) A)^{-n} x=T(\xi) x
$$

(see [2]). In this paper we shall give the representation of this type for non-linear contraction semi-groups.

The main results are the follwing
Theorem. Let $\{T(\xi)\}_{\xi \geq 0}$ be a non-linear contraction semi-group and let A be the infinitesimal generator such that $\overline{\Re\left(I-\xi_{0} A\right)}=X$ for some $\xi_{0}>0$. Then for each $\xi>0$ there exists an inverse operator $(I-\xi A)^{-1}$ and its unique extension $L(\xi)$ onto X, which is a contraction operator, and $T(\xi)$ is represented by

[^0]$$
\lim _{n \rightarrow \infty} L(\xi / n)^{n} x=T(\xi) x \quad \xi \geqq 0, x \in X,
$$
where for each fixed $x \in X$ the convergence is uniform for any compact set in $[0, \infty)$ and for each fixed $\xi \geqq 0$ it is the continuous convergence on X. Moreover, there exists a unique mapping \widetilde{A}, which is not necessarily one-valued, defined on a region $\widetilde{D} \supset D(A)$ such that
(1) the mapping $\widetilde{D} \ni x \rightarrow x-\xi \widetilde{A} x$ is the topological inverse mapping of $L(\xi)$,
(2) $\widetilde{A} x \ni A x$ for each $x \in D(A)$,
(3) for any $x \in \widetilde{D}$ there exists a sequence $\left\{x_{n}\right\} \subset D(A)$ such that $\lim x_{n}=x$ and $\lim _{n \rightarrow \infty} A x_{n} \in \widetilde{A} x$.

Corollary 1. If \widetilde{A} is one-valued, then in the above Theorem $L(\xi)=(I-\xi \tilde{A})^{-1}$ and \tilde{A} is the closure of A in the sense that the graph $G(\widetilde{A})$ of \widetilde{A} is the closure of the graph $G(A)$ in $X \times X$.

Corollary 2. If $\mathfrak{R}\left(I-\xi_{0} A\right)=X$ for some $\xi_{0}>0$, then $\widetilde{A}=A$ in the above Corollary 1.
2. We shall prove the theorems mentioned above by the following successive lemmas:

Lemma 1. $D(A) \supset D, D(A) \supset T(\xi)[D]$ for each $\xi \geqq 0$. And the left derivative also exists, and is equal to the right one and

$$
\frac{d}{d \xi} T(\xi) x=A T(\xi) x
$$

on $(0, \infty)$ for each $x \in D$.
Proof. The first relations of inclusion follow immediately from the condition (3). It follows from

$$
\|T(\xi \pm h) x-T(\xi) x\| \leqq\|T(h) x-x\|
$$

and the denseness of D that for any $x \in X, T(\xi) x$ is strongly continuous on [0, ∞). Therefore by the same argument as in the linear case we get the above conclusions (see [3]; p. 239).
Q.E.D.

Under the conditions (1)-(3) and by virtue of Lemma 1, we can apply the Neuberger's results and get the following

Lemma 2. For each $\xi>0$ and $\delta>0,\left(I-\xi A_{\delta}\right)^{-1}$ exists on X and is a contraction operator in the sense that

$$
\left\|\left(I-\xi A_{\delta}\right)^{-1} x-\left(I-\xi A_{\delta}\right)^{-1} y\right\| \leqq\|x-y\| \quad x, y \in X
$$

Lemma 3. For each $\xi>0,(I-\xi A)^{-1}$ exists on $\mathfrak{R}(I-\xi A)$ and contraction operator there. And if $\mathfrak{R}(I-\xi A)$ is dense in X, then the family $\left\{\left(I-\xi A_{\delta}\right)^{-1}\right\}_{\delta>0}$ of contraction operators converges to some contraction operator $L(\xi)$ defined on X onto some region $\widetilde{D}_{\xi} \supset D(A)$. This $L(\xi)$ is a unique extension of $(I-\xi A)^{-1}$.

Proof. Let $\tau(x, y)$ be defined by $\lim _{a \rightarrow 0+} a^{-1}\{\|x+a y\|-\|x\|\}$. This always exists for each $x, y \in X$ and has the following properties [4]:
(i) $|\tau(x, y)| \leqq\|y\|$,
(ii) $\tau(x, y+z) \leqq \tau(x, y)+\tau(x, z)$,
(iii) $\quad \tau(x, \lambda x+c y)=\Re_{e}(\lambda)\|x\|+c \tau(x, y) \quad(c \geqq 0)$.

Using these properties, for any $u, v \in D(A)$ and $\delta>0$ we have

$$
\begin{aligned}
& \tau\left(u-v, A_{\delta} u-A_{\delta} v\right)=\tau\left(u-v, \frac{T(\delta) u-T(\delta) v}{\delta}-\frac{u-v}{\delta}\right) \\
& \quad \leqq \tau\left(u-v, \delta^{-1}(T(\delta) u-T(\delta) v)-\delta^{-1}\|u-v\|\right. \\
& \leqq \delta^{-1}\{\|T(\delta) u-T(\delta) v\|-\|u-v\|\} \leqq 0 .
\end{aligned}
$$

From the continuity of $\tau(u-v, \cdot)$ we have $\tau(u-v, A u-A v) \leqq 0$ for each $u, v \in D(A)$. Thus we have again from (i), (ii), and (iii) the following estimate for any $u, v \in D(A)$:

$$
\begin{aligned}
& \|(I-\xi A) u-(I-\xi A) v\| \geqq \tau(u-v,(u-v)-\xi(A u-A v)) \\
& \quad \geqq\|u-v\|-\xi \tau(u-v, A u-A v) \geqq\|u-v\|,
\end{aligned}
$$

which implies the first assertion. For any $x \in \mathfrak{R}(I-\xi A)$ we have, from Lemma 2,

$$
\begin{aligned}
& \left\|\left(I-\xi A_{\delta}\right)^{-1} x-(I-\xi A)^{-1} x\right\| \\
\leqq & \left\|(I-\xi A)(I-\xi A)^{-1} x-\left(I-\xi A_{\delta}\right)(I-\xi A)^{-1} x\right\| \\
= & \xi\left\|A_{\delta}(I-\xi A)^{-1} x-A(I-\xi A)^{-1} x\right\| \rightarrow 0 \text { as } \delta \rightarrow 0 .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\lim _{\delta \rightarrow 0_{+}}\left(I-\xi A_{\delta}\right)^{-1} x=(I-\xi A)^{-1} x \tag{*}
\end{equation*}
$$

for any $x \in \mathfrak{R}(I-\xi A)$. ${ }^{\delta \rightarrow 0+}$ On the other hand, each $\left(I-\xi A_{\delta}\right)^{-1}$ is a contraction operater defined on X from Lemma 2, and so, combining with (*) and the denseness of $\mathfrak{R}(I-\xi A)$, it follows that the family $\left\{\left(I-\xi A_{\delta}\right)^{-1}\right\}_{\delta>0}$ converges to some contraction operator $L(\xi)$ defined on X and that this $L(\xi)$ is the unique extension of $(I-\xi A)^{-1}$. Q.E.D.

Lemma 4. If $\overline{\Re\left(I-\xi_{0} A\right)}=X$ for some $\xi_{0}>0$, then $\overline{\mathfrak{R}(I-\xi A)}=X$ for any $\xi>0$. And if $\mathfrak{R}\left(I-\xi_{0} A\right)=X$ for some $\xi_{0}>0$, then $\mathfrak{R}(I-\xi A)$ $=X$ for any $\xi>0$.

Proof. Since $\overline{\Re\left(I-\xi_{0} A\right)}=X$, from Lemma 3 there exists a unique extension $L\left(\xi_{0}\right)$ of $\left(I-\xi_{0} A\right)^{-1}$, which is also a contraction. Changing $I-\xi A$ to the form

$$
I-\xi A=\frac{\xi}{\xi_{0}}\left[I-\left(1-\frac{\xi_{0}}{\xi}\right) L\left(\xi_{0}\right)\right]\left(I-\xi_{0} A\right)
$$

for any $x \in X$, we put $K y=x+\left(1-\left(\xi_{0} / \xi\right)\right) L\left(\xi_{0}\right) y$ for each $y \in X$. Then K becomes a contraction mapping for ξ with $\left(\xi_{0} / 2\right)<\xi$, since $\left|\left|K y-K y^{\prime}\right|\right| \leqq\left|1-\left(\xi_{0} / \xi\right)\right| \cdot\left\|y-y^{\prime}\right\|$. Thus there exists a unique fixed point z of $K ; K z=z$, and so we have

$$
x=z-\left(1-\left(\xi_{0} / \xi\right)\right) L\left(\xi_{0}\right) z=\left[1-\left(1-\left(\xi_{0} / \xi\right)\right) L\left(\xi_{0}\right)\right] z .
$$

Since $\overline{\mathfrak{R}\left(I-\xi_{0} A\right)}=X$, there exists a sequence $\left\{x_{n}\right\} \subset \mathfrak{R}\left(I-\xi_{0} A\right)$ such that $\lim x_{n}=z$. Putting $y_{n}=\left(I-\xi_{0} A\right)^{-1} x_{n}$, we have

$$
\frac{\xi}{\xi_{0}}\left[I-\left(1-\frac{\xi_{0}}{\xi}\right) L\left(\xi_{0}\right)\right] x_{n}=\frac{\xi}{\xi_{0}}\left[I-\left(1-\frac{\xi_{0}}{\xi}\right) L\left(\xi_{0}\right)\right]\left(I-\xi_{0} A\right) y_{n}=(I-\xi A) y_{n}
$$

where the left hand side tends to $\left(\xi / \xi_{0}\right) x$ as $n \rightarrow \infty$. Therefore it follows that $\overline{\Re(I-\xi A)}=X$ for all $\xi>\left(\xi_{0} / 2\right)$. Thus in particular $\overline{\Re\left(I-\left(2 \xi_{0} / 3\right) A\right)}$ $=X$. Again change the $I-\xi A$ to the form

$$
I-\xi A=\left(3 \xi / 2 \xi_{0}\right)\left[I-\left(1-\left(2 \xi_{0} / 3 \xi\right)\right) L\left(2 \xi_{0} / 3\right)\right]\left(I-\left(2 \xi_{0} / 3\right) A\right) .
$$

For any $x \in X$, putting $K_{1} y=x+\left(1-\left(2 \xi_{0} / 3 \xi\right)\right) L\left(2 \xi_{0} / 3\right) y$ for each $y \in X$, K_{1} becomes a contraction mapping for ξ with $\left(\xi_{0} / 3\right)<\xi$. In the similar way as in the abovementioned we have $\overline{\Re(I-\xi A)}=X$ for $\xi>\left(\xi_{0} / 3\right)$. Inductively we can prove $\overline{\Re\left(I-\left(\xi_{0} / k\right) A\right)}=X(k=3,4,5, \cdots)$ and thus we have $\overline{\Re(I-\xi A)}=X$ for $\xi>0$. The last assertion is now evident. Q.E.D.

By virtue of this Lemma 4, we assume in the following Lemmas that $\overline{\Re\left(I-\xi_{0} A\right)}=X$ for some $\xi_{0}>0$, which insures the existence of the limit operator $L(\xi)$ for each $\xi>0$ (by Lemma 3).

Lemma 5. The relation

$$
L(\xi)\left[\frac{\xi}{\xi^{\prime}} y+\frac{\xi^{\prime}-\xi}{\xi^{\prime}} L\left(\xi^{\prime}\right) y\right]=L\left(\xi^{\prime}\right) y
$$

holds for any $y \in X$ and $\xi, \xi^{\prime}>0$. And $L(\xi)[X]=L\left(\xi^{\prime}\right)[X]$ for any $\xi, \xi^{\prime}>0$. In particular, \widetilde{D}_{ξ} of Lemma 3 is independent of $\xi>0$.

Proof. For any $\delta>0, \xi, \xi^{\prime}>0$ and $y \in X$, we have

$$
\left(I-\xi^{\prime} A_{\delta}\right)^{-1} y=\left(I-\xi A_{\delta}\right)^{-1}\left[\frac{\xi^{\prime}-\xi}{\xi^{\prime}}\left(I-\xi^{\prime} A_{\delta}\right)^{-1} y+\frac{\xi}{\xi^{\prime}} y\right]
$$

and thus

$$
\begin{aligned}
& \left\|L\left(\xi^{\prime}\right) y-L(\xi)\left[\frac{\xi^{\prime}-\xi}{\xi^{\prime}} L\left(\xi^{\prime}\right) y+\frac{\xi}{\xi^{\prime}} y\right]\right\| \leqq\left\|L\left(\xi^{\prime}\right) y-\left(I-\xi^{\prime} A_{\delta}\right)^{-1} y\right\| \\
+ & \left\|\left(I-\xi A_{\delta}\right)^{-1}\left[\frac{\xi^{\prime}-\xi}{\xi^{\prime}}\left(I-\xi^{\prime} A_{\delta}\right)^{-1} y+\frac{\xi}{\xi^{\prime}} y\right]-\left(I-\xi A_{\delta}\right)^{-1}\left[\frac{\xi^{\prime}-\xi}{\xi^{\prime}} L\left(\xi^{\prime}\right) y+\frac{\xi}{\xi^{\prime}} y\right]\right\| \\
+ & \left\|\left(I-\xi A_{\delta}\right)^{-1}\left[\frac{\xi^{\prime}-\xi}{\xi^{\prime}} L\left(\xi^{\prime}\right) y+\frac{\xi}{\xi^{\prime}} y\right]-L(\xi)\left[\frac{\xi^{\prime}-\xi}{\xi^{\prime}} L\left(\xi^{\prime}\right) y+\frac{\xi}{\xi^{\prime}} y\right]\right\|
\end{aligned}
$$

Passing to the limit as $\delta \rightarrow 0$, we have the required relation for each $y \in X$. From this it follows that $L\left(\xi^{\prime}\right)[X] \subset L(\xi)[X]$ for any $\xi, \xi^{\prime}>0$ and thus we have $L\left(\xi^{\prime}\right)[X]=L(\xi)[X]$. The last assertion is now evident.
Q.E.D.

By virtue of this Lemma, we denote the set $L(\xi)[X]=\widetilde{D}_{\xi}$, independent of $\xi>0$, by \widetilde{D}.

Lemma 6. For any $\xi, \xi^{\prime}>0$ we have the relation of inclusion: $\frac{1}{\xi}\left(x-L(\xi)^{-1} x\right)=\frac{1}{\xi^{\prime}}\left(x-L\left(\xi^{\prime}\right)^{-1} x\right) \subset X, x \in \widetilde{D}$, where $L(\xi)^{-1}$ is the topological inverse mapping of $L(\xi)$.

Proof. It suffices to prove that for any $x \in \widetilde{D}, \xi, \xi^{\prime}>0$

$$
\xi^{-1}\left(x-L(\xi)^{-1} x\right) \supseteqq \xi^{\prime-1}\left(x-L\left(\xi^{\prime}\right)^{-1} x\right) .
$$

From Lemma $5, L(\xi)^{-1} L(\xi)\left[\frac{\xi}{\xi^{\prime}} y+\frac{\xi^{\prime}-\xi}{\xi^{\prime}} L\left(\xi^{\prime}\right) y\right]=L(\xi)^{-1} L\left(\xi^{\prime}\right) y$. Thus
$L(\xi)^{-1} L\left(\xi^{\prime}\right) y \ni \frac{\xi}{\xi^{\prime}} y+\frac{\xi^{\prime}-\xi}{\xi^{\prime}} L\left(\xi^{\prime}\right) y$ for each $y \in X$. Therefore we have $L\left(\xi^{\prime}\right) y-y \in\left(\xi^{\prime} / \xi\right) L\left(\xi^{\prime}\right) y-\left(\xi^{\prime} / \xi\right) L(\xi)^{-1} L\left(\xi^{\prime}\right) y$ for each $y \in X$. And for any $u \in L\left(\xi^{\prime}\right)^{-1} x$ we have

$$
\begin{aligned}
\xi^{-1}\left(x-L(\xi)^{-1} x\right) & =\xi^{-1}\left(L\left(\xi^{\prime}\right) u-L(\xi)^{-1} L\left(\xi^{\prime}\right) u\right) \\
& =\xi^{\prime-1}\left(\left(\xi^{\prime} \xi \xi\right) L\left(\xi^{\prime}\right) u-\left(\xi^{\prime} / \xi\right) L(\xi)^{-1} L\left(\xi^{\prime}\right) u\right) .
\end{aligned}
$$

From this and the abovementioned it follows that the above right hand side contains the element $\xi^{\prime-1}\left(L\left(\xi^{\prime}\right) u-u\right)$, which implies the required relation of inclusion.
Q.E.D.

Lemma 7. The not necessarily one valued mapping \widetilde{A} is defined on \widetilde{D} by

$$
\widetilde{A} x=\xi^{-1}\left(x-L(\xi)^{-1} x\right) \subset X \quad x \in \widetilde{D},
$$

which has the properties (1)-(3) mentioned in the main theorem.
Proof. Such an operator \widetilde{A} is well defined by Lemma 6. For each $x \in \widetilde{D}$ we have

$$
\xi \tilde{A} x=x-L(\underset{\sim}{\xi})^{-1} x \subset X \text { and so, } x-\xi \widetilde{A} x=L(\xi)^{-1} x \subset X .
$$

But since $L(\xi)[x-\xi \widetilde{A} x]=L(\xi)\left[L(\xi)^{-1} x\right]=x$, the mapping $x \rightarrow x-\xi \widetilde{A} x$ is the topological inverse mapping of $L(\xi)$, which implies (1). Since $L(\xi)$ is the unique extension of $(I-\xi A)^{-1}$ by Lemma $3, L(\xi)(I-\xi A) x$ $=x$ for each $x \in D(A)$ and thus $L(\xi)^{-1} x=x-\xi \widetilde{A} x \ni(I-\xi A) x$, from which $\widetilde{A} x \ni A x$. Thus (2) is proved. Finally we shall prove (3). For any $x \in \widetilde{D}$ there exists $x^{\prime} \in X$ such that $x=L(1) x^{\prime}$. Since $\mathfrak{R}(I-A)$ is dense in X, there exists a sequence $\left\{x_{n}\right\} \subset D(A)$ such that $(I-A) x_{n} \rightarrow x^{\prime}$ as $n \rightarrow \infty$. Thus $x_{n}=L(1)(I-A) x_{n} \rightarrow L(1) x^{\prime}=x$ and so, $A x_{n}=x_{n}-(I-A) x_{n} \rightarrow x-x^{\prime} \in x-L(1)^{-1} x=\widetilde{A} x$. Q.E.D.

Lemma 8. For each $\xi \geqq 0,\left\{L(\xi / n)^{n}\right\}$ converges continuously to $T(\xi)$ on X and for each $x \in X,\left\{L(\xi / n)^{n} x\right\}$ converges to $T(\xi) x$ uniformly in ξ for any compact subset in $[0, \infty)$.

Proof. Since $T^{\prime}(\xi) x=A T(\xi) x$ for each $x \in D$ from Lemma 1 , we have the following estimate:

$$
\begin{aligned}
\left\|L(\xi / n)^{n} x-T(\xi) x\right\| \\
\quad=\left\|L(\xi / n)^{n} x-T(\xi / n)^{n} x\right\| \\
\quad \leqq \sum_{i=1}^{n}\left\|L(\xi / n)^{n-i+1} T(\xi(i-1) / n) x-L(\xi / n)^{n-i} T(\xi i / n) x\right\| \\
\quad \leqq \sum_{i=1}^{n}\|L(\xi / n) T(\xi(i-1) / n) x-L(\xi / n)(I-(\xi / n) A) T(\xi i / n) x\| \\
\quad \leqq \sum_{i=1}^{n}(\xi / n)\left\|A_{\frac{\xi}{n}} T(\xi(i-1) / n) x-A T(\xi i / n) x\right\| \\
\quad=\sum_{i=1}^{n}(\xi / n)\left\|(\xi / n)^{-1}(T(\xi i / n))-T(\xi(i-1) / n) x-A T(\xi i / n) x\right\| \\
\quad \leqq(\xi / n) \sum_{i=1}^{n}(\xi / n)^{-1} \frac{\int_{\frac{\xi i}{}}^{n}}{\frac{\xi(i-1)}{n}}\left\|T^{\prime}(\sigma) x-T^{\prime}(\xi i / n) x\right\| d \sigma \\
\quad \leqq \xi \max _{1 \leq i \leq n} \max _{\sigma \in\left[\frac{\xi(i-1)}{n}, \frac{\xi i}{n}\right]}^{\|} T^{\prime}(\sigma) x-T^{\prime}(\xi i / n) x \| .
\end{aligned}
$$

The above right hand tends to 0 as $n \rightarrow \infty$, since $T^{\prime}(\sigma) x$ is uniformly continuous on $[0, \xi]$. Thus $\lim _{n \rightarrow \infty} L(\xi / n)^{n} x=T(\xi) x$ for each $x \in D$. On the other hand, $L(\xi / n)^{n}$ is a contraction operator for each n. And so, $\left\{L(\xi / n)^{n}\right\}$ converges continuously to $T(\xi)$ on X [5]. Moreover the uniform convergence in ξ for any compact subset of $[0, \infty)$ is evident from the abovementioned estimate. Q.E.D.

Finally the author expresses his sincere thanks to Professor I. Miyadera for many useful advices.

References

[1] J. W. Neuberger: An exponential formula for one-parameter semi-groups of non-linear transformations. J. Math. Soc. Japan, 18(2), 154-157, (1966).
[2] E. Hille and R. S. Phillips: Functional analysis and semi-groups. American Math. Soc. (1957).
[3] K. Yosida: Functional Analysis. Berlin-Heidelberg-New York: Springer (1965).
[4] M. Hasegawa: On contraction semi-groups and (di)-operators. J. Math. Soc. Japan, 18(3), 303-330 (1966).
[5] W. Rinow: Die Innere Geometrie der Metrischen Räume. Berlin-GöttingenHeidelberg: Springer (1961).

[^0]: *) In his paper the following condition is assumed:
 (3) ${ }^{\prime}$ There is a dense subset D of X such that if x is in D, then the derivative $T^{\prime}(\xi) x$ is continuous with domain $[0, \infty)$.

