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1o Let X be a Banach space and let {T()}_0 be a family of
non-linear operators from X into itself satisfying the following
conditions:

1 T(0) =/, T() T(7) T(+7) , ] >- 0,
( 2 ) II T()x- T()y II <= I] x-y [I >0, x, y e X,
(3) There exists a dense subset D in X such that for each

x e D, the right derivative
DT()x- lira h-(T(+ h)x- T()x)

h--*O/

exists and it is continuous for >__0. Then we shall call this family
{T()}0 a non-linear contraction semi-group.

Definition. We define the infinitesimal generator A of a
non-linear contraction semi-group {T()}_0 by

Ax lim Ax
whenever the limit exists, where Aa- h-( T(h)- I). We denote the
domain of A by D(A).

Lately J. W. Neuberger _1 gave the following result: If
{T()}_0 is a non-linear contraction semi-group, *) then for each x e X
and each 0

lim limsup [[ (I-(/n)A)-x T()x I[-0.

It is well known that if (T()}0 is a linear contraetion semi-
group of class (Co), then for each x X and each >__0

lim(I-(/n)A)-’x= T()x
(see [2). In this paper we shall give the representation of this
type for non-linear contraction semi-groups.

The main results are the follwing
Theorem. Let {T()}_ be a non-linear contraction semi-group

and let A be the infinitesimal generator such that (I-oA)=X
for some oO. Then for each 0 there exists an inverse operator
(I-A)- and its unique extension L() onto X, which is a contrac-
tion operator, and T() is represented by

*) In his paper the following condition is assumed:
(3) There is a dense subset D of X such that if x is in D, then the derivative

Tr()x is continuous with domain [0, ).
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lim L(/n)x- T()x >= O, x e X,
where for each fixed x e X the convergence is uniform for any com-
pact set in 0, c) and for each fixed >__0 it is the continuous
convergence on X. Moreover, there exists a unique mapping A,
which is not necessarily one-valued, defined on a region DD(A)
such that

1 ) the mapping D x--x-Ax is the topological inverse mapp-
ing of L(),

(2) Ax Ax for each x e D(A),
( 3 for any x D there exists a sequence {x}D(A) such that

lim x,-x and lim Ax, e Ax.
Corollary 1. If A is one-valued, then in the above Theorem

L()-(I-A)- and A is the closure of A in the sense that the
graph G(A) of A is the closure of the graph G(A) in X X.

Corollary 2. If 9(I-oA)-X for some o0, then -A in
the above Corollary 1.

2. We shall prove the theorems mentioned above by the following
successive lemmas:

Lemma 1. D(A)D,D(A)T()[D for each >=0. And the
left derivative also exists, and is equal to the right one and

d T()x-AT()x
d

on (0, ) for each x e D.
ProoL The first relations of inclusion follow immediately from

the condition (3). It follows from

II T(+h)x- T()x I1<11T(h)x-x tl (x e D)
and the denseness of D that for any x e X, T()x is strongly con-
tinuous on [0, oo). Therefore by the same argument as in the linear
case we get the above conclusions (see r_3; p. 239). Q.E.D.

Under the conditions (1)-(3) and by virtue of Lemma 1, we can
apply the Neuberger’s results and get the following

Lemma 2. For each 0 and 0, (I-A)- exists on X and
is a contraction operator in the sense that

I](I-A)-x-(I-A)-yll<=ll x-y II x, y e X.
Lemma :. For each O,(I-A)- exists on (I-A) and

contraction operator there. And if 9(I-A) is dense in X, then
A -the family {(I- ) }>0 of contraction operators converges to some

contraction operator L() defined on X onto some region DD(A).
This L() is a unique extension of (I-A)-.

Proof. Let v(x, y) be defined by lim a-{ll x+ay II- 1[ x I[}. This
aO+

always exists for each x, y e X and has the following properties [4.
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(i)
(ii) v(x, y+ z)_<_ v(x, y) + v(x, z),
(iii) r(x, x+cy)-(,)ll x II+cr(x, y) (c>__0).

Using these properties, for any u, v e D(A) and >0 we have

r(u- v, Au-Av) r(u- v, T()u - T(()v )u v

<= r(u v, (-(T()u- T()v) -ll u v[I

From the continuity of v(u- v, .) we have v(u- v, Au-Av) <= 0 for
each u, reD(A). Thus we have again from (i), (ii), and (iii) the
following estimate for any u, v D(A)"

ll(I-A)u-(I-A)v [[ >=z’(u-v, (u-v)-(Au-Av))
>__]] u-v ]l-(u-v, Au-Av)ll u-v

which implies the first assertion. For any x e (I-A)we have,
from Lemma 2,

II (I-A)-x-(I-A)-x II
<= II (I-A)(I-A)-x-(I-A)(I-A)-x []-- llA(I-A)-x-A(I-A)-x I[-0 as -0.

Thus we have
lira (I-A)-x-(I-A)-x (*)

for any x e (I-A). On the other hand, each (I-A)- is a con-
traction operater defined on X from Lemma 2, and so, combining
with (*) and the denseness of (I-$A), it follows that the family
{(I-A)-}>0 converges to some contraction operator L()defined on
X and that this L() is the unique extension of (I-A)-. Q.E.D.

Lemma 4. If (I-oA)-X for some o>0, then (I-A)-X
for any 0. And if (I-oA)-X for some o>0, then (I-A)
=X for any >0.

Proof. Since (I-oA)-X, from Lemma 3 there exists a unique
extension L(0) of (I-oA)-, which is also a contraction. Changing
I-A to the form

I-A-oEI-(1-)L(o)](I-oA);
for any x e X, we put Ky- x+ (1- (o/))L(o)y for each y e X. Then
K becomes a contraction mapping for with (0/2), since
II Ky- Ky’ <--I 1- (o/) [" II Y- Y’ II. Thus there exists a unique fixed
point z of K; Kz-z, and so we have

x z- (1 (o/))L(o)Z E1 (1 (o/))L(o)Z.
Since R(I- 0A)- X, there exists a sequence {x} R(I- 0A) such
that lim x- z. Putting y- (I- oA)-x, we have

I o L(o)(I-oII-(1-)L()]x" ol-(1---) J
oA)y.-(I-
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where the left hand side tends to (/o)X as n--c. Therefore it follows
that !R(I- A) X for all > (0/2). Thus in particular !(I- (20/3)A)
-X. Again change the I-A to the form

I--A- (3/20)[I- (1 (2o/3))L(2o/3)(I- (20/3)A).
For any x e X, putting Ky x+ (1 (2o/3))L(2o/3)y for each y e X,
K becomes a contraction mapping for with (0/3)<. In the similar
way as in the abovementioned we have (I-$A)-X for >(0/3).
Inductively we can prove (I-(o/k)A)-X (k-3, 4, 5,...) and thus
we have (I-A)-X for >0. The last assertion is now evident.

Q.E.D.
By virtue of this Lemma 4, we assume in the following Lemmas

that (I-oA)-X for some 0>0, which insures the existence of
the limit operator L() for each >0 (by Lemma 3).

Lemma 5. The relation

L() y+ ’-L(’)y L(’)y

holds for any y e X and ,’0. And L()[X-L(’)[X for any, ’0. In particular, D of Lemma 3 is independent of 0.
Proof. For any >0, , ’>0 and y e X, we have

and thus

L

Passing to the limit as 30, we have the required relation for each
y e X. From this it follows that L(’)XL()X for any
and thus we have L(’)X-L()X. The last assertion is now
evident. Q.E.D.

By virtue of this Lemma, we denote the set L()X-D,
independent of > 0, by D.

Lemma 6. For any ’ 0 we have the relation of inclusion"
I (x- L()-x) 1 (x- L(’)-x) X, x , where L()- is the topo-

logical inverse mapping of L().
Proof. It suffices to prove that for any x e, , ’>0

-(x L()-x) ’-(x L(?)-x).

From Lemma 5, L()-L() y+-’
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L( )-L - ’()y +. ,-L(’)y for each y e X. Therefore we have

L(’)y-y e (’/)L(’)y-(’/)L()-L(’)y for each y e X. And for any
u e L(’)-x we have - L-(x-L()-x) ( )u- L()-L(’)u)

((/) () (’/)L()-L(’)u).
From this and the abovementioned it follows that the above right

-Lhand side contains the element (() u), which implies the
required relation of inclusion. Q.E.D.

Lemma 7. The not necessacily one valued mapping A is

defined on D by
Ax -(x L()-x)cX x e D,

which has the properties (1)-(3) mentioned in the main theorem.
Proof. Such an operator is well defined by Lemma 6. For

each x e D we have
x x-L(4)-x X and so, x 4x L(4)-xc X.

But since L(4)[x-Ax]-L()[L(4)-x]-x, the mapping xx-Ax
is the topological inverse mapping of L(), which implies (1). Since
L(4) is the unique extension of (I-A)- by Lemma 3, L()(I-A)x

x for each x e D(A) and thus L(4)-x- x- 4Ax (I- 4A)x, from
which Ax Ax. Thus (2) is proved. Finally we shall prove (3).
For any x e D there exists x’ e X such that x-L(1)x’. Since (I-A)
is dense in X, there exists a sequence {x,}cD(A) such that
(I-A)x.x’ as n. Thus x,- L(1)(I- A)x,L(1)x’- x and so,
Ax, x (I-A)x,x x’ e x L(1)-x Ax. Q.E.D.

Lemma 8. For each 0, {L(/n)} converges continuously to
T() on X and for each x e X, {L(4/n)"x} converges to T()x uniformly
in for any compact subset in [0, ).

Proof. Since T’(4)x-AT(4)x for each x eD from Lemma 1,
we have the following estimate:

1 L(/n)’x T()x ]
] L(/n)x- T(/n)x [

] L(/n)-+T((i-1)/n)x-L(/n)-T(i/n)x

E L(/n)T((i-1)/n)x- L(/n)(I-(/n)n)T(i/n)x [
i=1

(/n) AT((i-1)/n)x-AT(i/n)x ]

(/n) (/n)-(T(i/n)) T((i-1)/n)x-AT(i/n)x ]

_(/n) .: (/n)- -1, l T’(a)x- T’(i/n)x

max max T’(a)x- T’(i/n)x .
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The above right hand tends to 0 as n-, since T’(a)x is uniformly
continuous on [0, . Thus lim L(/n)x T()x for each x e D. On
the other hand, L(/n) is a contraction operator for each n. And
so, {L(/n)} converges continuously to T($) on X [5. Moreover the
uniform convergence in for any compact subset of [0, c) is
evident from the abovementioned estimate. Q.E.D.

Finally the author expresses his sincere thanks to Professor I.
Miyadera for many useful advices.
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