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1 Introduction

One of the main goals of string phenomenology is to build a realistic string model that

describes and explains the origin of the particles of the Standard Model (SM) and their

interactions, as well as of the standard cosmology encoded in the ΛCDM model. In this

sense, the compactification of the heterotic string on six-dimensional orbifolds [1, 2] can

be seen as a promising string scenario. It has led to very large sets of semi-realistic string

models, which, among other features, reproduce the particle content of the SM [3, 4] or of

its supersymmetric extensions [5–12].

Having large sets of semi-realistic orbifold models, the next step is to improve the phe-

nomenological constraints on these models. This can be achieved by a detailed study of the

low-energy effective field theory in these constructions. First of all, this requires the identi-

fication and understanding of all symmetries that govern the interactions of closed strings
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on orbifolds. These symmetries include gauge symmetries, discrete R-symmetries [13–15],

target-space modular symmetries [16–19] and Abelian discrete symmetries that arise from

the so-called space group selection rule [20, 21]. The latter ones are the main focus of

this work: the space group selection rule sets the geometric conditions under which closed

strings can split and join while propagating on the surface of an orbifold. These geometric

conditions depend on the geometrical orbifold under consideration, which is specified by

the space group S. Then, for a given space group S one can rephrase the space group

selection rule as an effective discrete symmetry which we denote by DS in the following.

The phenomenological relevance of DS has been emphasized by showing that they

are essential ingredients of the non-Abelian flavor symmetries realized in the effective field

theory of orbifold compactifications [12, 22, 23]. Therefore, we call the Abelian symmetry

DS the space group (SG) flavor symmetry. Unfortunately, the nature of the SG flavor

symmetry DS has not been fully understood. Furthermore, the computation of DS has

only been restricted to the interactions of massless strings, even though massive strings may

also play a crucial role for the phenomenology in orbifold compactifications, for example

for CP violation due to the presence of heavy string modes [24].

In this work, we aim at completing the study of the SG flavor symmetries arising from

the space group selection rule for closed strings on orbifolds. After an introduction to space

groups, orbifolds and the space group selection rule in section 2, we formalize in section 3

the computation of the SG flavor symmetry DS by imposing two physical conditions only:

DS must be as symmetry with well-defined discrete charges for closed string states and

discrete charges must be conserved. This fixes the SG flavor symmetry uniquely via the

so-called Abelianization of the space group S. After exemplifying the computation, we

present in section 4 the SG flavor symmetries DS for all space groups S of six-dimensional

orbifold geometries with Abelian point groups and N = 1 supersymmetry as classified

in refs. [25, 26]. As a consistency check, we verify that all discrete anomalies of the SG

flavor symmetry DS are universal and, hence, can be canceled by a discrete version of the

universal Green-Schwarz mechanism [27].

Interestingly, we identify new SG flavor symmetries that act differently on massless and

massive strings. In other words, the full string spectrum is subject to a larger symmetry

group compared to the massless spectrum. In order to highlight possible phenomenological

consequences of this, we present in section 3.6.2 a detailed example for a specific Z2 × Z2

orbifold. There, the SG flavor symmetry contains a Z4 factor that acts as a Z2 symmetry

if restricted to massless strings only. As we show, such a symmetry can be used to define a

Z2 dark matter parity, where certain massive strings can only be produced and annihilated

in pairs.

2 Space groups and orbifolds

In this section we give a detailed review on space groups and their resulting orbifold ge-

ometries. We highlight an unconventional approach to use a so-called presentation of a

space group, i.e. a way to define a space group by abstract generators and a set of relations

among them without explicitly writing out neither a basis of lattice vectors nor the rotation
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matrices. In addition, we briefly discuss closed strings on orbifolds with a focus on those

properties that are relevant for the space group selection rule of interacting strings.

2.1 The space group

A general element g of a D-dimensional space group S can be written as

g = (ρ, λ) ∈ S . (2.1)

We will mostly consider the case D = 6 in order to compactify the heterotic string from

ten to four dimensions. By definition, the space group element g acts on the D extra-

dimensional coordinates y ∈ RD as

y
g7→ (ρ, λ) y = ρ y + λ , (2.2)

where the so-called twist ρ ∈ O(D) is a D×D rotation matrix (if det(ρ) = 1) or reflection

matrix (if det(ρ) = −1) and the vector λ ∈ RD yields a translation. Consequently, two

space group elements g1 = (ρ1, λ1) and g2 = (ρ2, λ2) multiply as

(ρ1, λ1) (ρ2, λ2) = (ρ1 ρ2, ρ1 λ2 + λ1) . (2.3)

It follows that (1, 0) = 1S is the identity element of S and the inverse element of (ρ, λ) is

given by

(ρ, λ)−1 = (ρ−1,−ρ−1 λ) . (2.4)

Now we can define a D-dimensional space group S by specifying finitely many gener-

ators: first, one chooses a D-dimensional torus lattice ΛD, which is generated by D linear

independent translations Ti, i.e.

Ti = (1, ei) for i = 1, . . . , D , (2.5)

where the basis vectors ei are given by the columns of a vielbein e. In addition, there are

generators of the form

(ρ, λ) ∈ S with ρ 6= 1 . (2.6)

As a remark, if λ 6∈ ΛD in eq. (2.6) such generators are referred to as roto-translations. On

the other hand, if λ ∈ ΛD one can choose a pure rotation as an alternative generator to

eq. (2.6), i.e.

(ρ, 0) ∈ S . (2.7)

As we will be dealing with space groups with at most two rotational generators, we will

label them by gθ, gω ∈ S, where

gθ = (θ, λθ) and gω = (ω, λω) . (2.8)

The space group S must close under multiplication. For example,

(ρ, λ) (1, ei) (ρ, λ)−1 = (1, ρ ei)
!
∈ S (2.9)
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and, consequently, ρ ei must be from the D-dimensional lattice ΛD. In other words, the

twist ρ of any space group element has to be an automorphism of the lattice ΛD. Thus,

one can always find a matrix ρ̂ from GL(D,Z) such that

ρ e = e ρ̂ . (2.10)

ρ̂ = e−1 ρ e is called the twist in the lattice basis. Since ρ ∈ O(D), we find the condition

ρ̂TG ρ̂ = G , (2.11)

on the D-dimensional torus metric G = eT e.

The twists ρ form a finite group P , called the point group. Its elements act crystallo-

graphically: they map the lattice ΛD to itself. As P is finite, each element ρ ∈ P has to

have finite order, i.e. there exists a smallest integer Nρ ∈ N such that

ρNρ = 1 . (2.12)

A point group can be both, Abelian or non-Abelian. If P is Abelian, it is isomorphic to the

cyclic group (or to the direct product of several cyclic groups). In the following we restrict

ourselves to Abelian point groups which preserve N = 1 supersymmetry, being either ZM

or ZM ×ZN .

2.2 Presentation of the space group

The commutator of two space group elements g, h ∈ S is defined as

[g, h] = g−1h−1g h . (2.13)

Then, since we restrict ourselves to Abelian point groups, the commutator of any pair of

elements g, h ∈ S is always a pure translation λ(g,h) ∈ ΛD, i.e.

[g, h] = (1, λ(g,h)) . (2.14)

Following ref. [29], we can specify a space group S uniquely by a presentation that

involves all relations between all generators. For example, in the case of a ZM × ZN

point group we have the following generators of S: the rotations (or roto-translations)

gθ = (θ, λθ) and gω = (ω, λω), and the translations Ti = (1, ei), i = 1, . . . , D. Then, all

relations are given by

gMθ = (T1)
a(θ,1) . . . (TD)a(θ,D) , (2.15a)

gNω = (T1)
a(ω,1) . . . (TD)a(ω,D) , (2.15b)

[gθ, gω] = (T1)
a1 . . . (TD)aD , (2.15c)

[Ti, Tj ] = 1S , (2.15d)

[gθ, Ti] = (T1)
b(i,1) . . . (TD)b(i,D) , (2.15e)

[gω, Ti] = (T1)
c(i,1) . . . (TD)c(i,D) , (2.15f)
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where M and N denote the order of θ and ω, respectively, and a(θ,i), a(ω,i), ai, b(i,j), c(i,j) ∈ Z

for i, j = 1, . . . , D. A few remarks are in order: the right-hand sides of eqs. (2.15a), (2.15b)

and (2.15c) are non-trivial only in the case where gθ = (θ, λθ) or gω = (ω, λω) are roto-

translations, i.e. λθ 6∈ ΛD or λω 6∈ ΛD. Furthermore, two translations Ti = (1, ei) and

Tj = (1, ej) necessarily commute, see eq. (2.15d). Finally, the action of a twist (e.g.

θ ∈ P ) on the lattice (e.g. θ̂ = e−1θ e, see eq. (2.10)) is uniquely specified by eqs. (2.15e)

and (2.15f). In detail, comparing

[gθ, Ti] = (1, (1− θ−1)ei) , (2.16)

with eq. (2.15e) we obtain
(
θ̂−1
)
ij

= δij − b(j,i).
Now, in order to write down a presentation of S, we rewrite each relation (2.15) such

that one has the identity element 1S on the right-hand side. For example, we modify

eq. (2.15a) to

gMθ (T1)
−a(θ,1) . . . (TD)−a(θ,D) = 1S . (2.17)

Then, we suppress the identity element 1S and do the same for all relations (2.15). Con-

sequently, a presentation of the space group S reads

S = 〈gθ, gω, T1, . . . , TD | gMθ (T1)
−a(θ,1) . . . (TD)−a(θ,D) , . . . , all relations〉 . (2.18)

One can use the presentation of a space group S to uniquely specify S without writing out

the torus vielbein e and the twist matrices explicitly. Indeed, the relations (2.18) contain

all information about the space group S. This fact is used in section 3 where we discuss

the effective symmetries arising from the space group selection rule.

2.3 Geometrical orbifolds and closed strings

Having defined the space group S, a D-dimensional orbifold is defined geometrically as a

quotient space O = RD/S using the equivalence relation

y1 ∼ y2 ⇔ ∃ g ∈ S such that y1 = g y2 , (2.19)

for y1, y2 ∈ RD. In words, two points y1 and y2 from RD are identified on the orbifold O

if there exists a space group element g ∈ S that maps y2 to y1.

A closed string on an orbifold is characterized by the so-called constructing element

g = (ρ, λ) ∈ S that specifies the boundary condition for the string to close up to the action

of g. For example, considering the worldsheet boson X(τ, σ) with worldsheet time and

space coordinates τ and σ ∈ [0, 1], respectively, we impose the boundary condition

X(τ, σ + 1)
!

= g X(τ, σ) = ρX(τ, σ) + λ . (2.20)

If ρ 6= 1 the boundary condition eq. (2.20) describes a so-called twisted string that is

localized at the fixed point of g. On the other hand, if ρ = 1 the boundary condition

eq. (2.20) describes a so-called untwisted string, which in general can be massless only if

the winding vanishes, λ = 0.
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Since hX(τ, σ) and X(τ, σ) are identified on the orbifold for all h ∈ S, see eq. (2.19),

the boundary condition eq. (2.20) with constructing element g ∈ S and the corresponding

one with constructing element h g h−1 ∈ S describe the same string on the orbifold. Hence,

a closed string with constructing element g ∈ S is associated to the conjugacy class

[g] = {h g h−1 | for all h ∈ S} . (2.21)

The resulting closed string state is denoted by |[g]〉.
Conventionally, one (ambiguously) labels an orbifold by the abstract finite group that

is isomorphic to its point group P , for example Z6 (and sometimes additional labels to

distinguish between different representations of the same abstract finite group, for example

Z6-I or Z6-II). In terms of the modern nomenclature (see e.g. [25, 26]), this corresponds to

the so-called Q-class. For a given Q-class, there can be several inequivalent torus lattices

ΛD, called Z-classes. Furthermore, for a given Z-class there can be several inequivalent

roto-translations, called affine classes. Then, Z- and affine classes are consecutively enu-

merated. For example, the space group Z2 × Z2–2–5 from table 1 belongs to the Q-class

Z2 ×Z2, therein to the second Z-class and, finally, therein to the fifth affine class.

2.4 The space group selection rule

Let us denote a coupling among L closed string states |[ga]〉, a = 1, . . . , L, moving on an

orbifold by

|[g1]〉 |[g2]〉 · · · |[gL]〉 , (2.22)

where the closed string states are characterized by the conjugacy classes [ga] of their con-

structing elements ga ∈ S.

In the underlying CFT of string theory, the amplitude of such couplings of string

states is given by the L-point correlation functions [20, 21] 〈V (1)V (2) · · ·V (L)〉 among their

corresponding vertex operators V (a), which contain all quantum numbers of the strings,

including their boundary conditions given by ga. These correlation functions are non-zero

only if certain conditions on the quantum numbers encoded in the vertex operators are

fulfilled. These constraints are known as string selection rules.

In particular, the so-called space group selection rule indicates under which circum-

stances the boundary conditions of certain closed strings are compatible, so that they can

combine together and still render a closed string. As an example, consider two closed

strings with constructing elements g1 and g2. When these incoming strings merge, they

yield an outgoing string with constructing element g3 = g1 g2. In terms of three incoming

strings this condition reads
L∏
a=1

ga = 1S , (2.23)

for L = 3. This is schematically represented in figure 1.

As a closed string is not represented by a single constructing element ga but by the

full conjugacy class [ga], it suffices to choose one element of each of the conjugacy classes
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g1X

Y

X

g3Z = g1X

Z = Y

X = g2Y
g2Y

Figure 1. Two incoming strings combine to yield an outgoing string. The equalities are require-

ments for the coupling to occur. Combining these conditions leads to the space group selection rule

on the corresponding constructing elements, g3Y = g1g2Y .

of the constructing elements to satisfy the space group selection rule. That is, for L-point

couplings one can choose elements ha ∈ S, such that

L∏
a=1

ha ga h
−1
a = 1S (2.24)

in order to obtain a non-vanishing coupling among the states |[ga]〉. As a remark, if

eq. (2.24) is satisfied, then the order of string states in eq. (2.22) does not matter.

Depending on the complexity of the space group S under consideration, the space group

selection rule is difficult to apply as one has to check eq. (2.24) for all possible choices ha ∈ S
for a = 1, . . . , L. Hence, we want to identify the effective SG flavor symmetry DS that

incorporates the space group selection rule without this ambiguity. Such a symmetry has

to fulfill certain conditions that we now discuss.

3 Consequences of the space group selection rule

In this section, we derive the SG flavor symmetry DS that emerges from the geometric

restrictions on the interactions of closed strings while moving on the surface of an orbifold.

3.1 Conditions on the effective symmetry

We look for a mapping, denoted by s, from the space group S to a discrete group DS , i.e.

s : S → DS , with the following two properties

(i) s is a class function:

s(h g h−1) = s(g) for all h, g ∈ S . (3.1)

(ii) s is a representation of the space group S:

s(g1) s(g2) = s(g1 g2) , (3.2)
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Let us briefly discuss some immediate implications of these conditions. A necessary

condition for the space group selection rule (2.24) to be satisfied is given by

s(g1) · · · s(gL) = s(1S) , (3.3)

which follows from eq. (2.24) by applying s on both sides and using our conditions (i)

and (ii). Thus, we arrive at a much simpler version of the space group selection rule,

where the ambiguity of choosing the elements ha ∈ S for a = 1, . . . , L has been eliminated.

Moreover, from a physical point of view, condition (ii) can be understood as a discrete

charge conservation, where s(ga) corresponds to the discrete charge of a string state |[ga]〉
with constructing element ga, i.e.

|[ga]〉 7→ s(ga) |[ga]〉 , (3.4)

for a = 1, . . . , L. Condition (i) ensures that the discrete charge corresponding to s(ga) is

uniquely defined as a string state |[ga]〉 with constructing element ga ∈ S is characterized

by the conjugacy class [ga], see section 2.3.

Using the conditions (i) and (ii) of eqs. (3.1) and (3.2), it turns out that s(g) (and

consequently the SG flavor symmetry DS) is fully specified for all space groups S. In

the remainder of this paper we will compute our main result: the space group flavor

symmetries DS for all six-dimensional orbifold geometries with Abelian point groups and

N = 1 supersymmetry, as classified in refs. [25, 26].

As a remark, if a coupling is not invariant under DS then the space group selection rule

is also not fulfilled. However, eq. (3.3) is a necessary condition but not sufficient: there are

cases, where a coupling is invariant under DS , i.e. eq. (3.3) is satisfied, but the space group

selection rule (2.24) is not satisfied for any choice ha ∈ S. This happens for example for the

Z6–II–1–1 orbifold, where the charges under DS do not depend on n1 and n2, i.e. on the

localization of a twisted string in the first two-torus (often called the G2 torus), see table 1.

However, the space group selection rule applied to the first two-torus still constrains the

allowed interactions [28]. Consequently, in such a case the SG flavor symmetry DS is not

equivalent to the space group selection rule. It remains unknown whether one can modify

our assumptions eqs. (3.1) and (3.2) such that the resulting discrete symmetry is fully

equivalent to the space group selection rule.

3.2 Consequences of the conditions

Since s is a representation of the space group S we easily see that

s(1S) s(1S) = s(1S 1S) = s(1S) ⇒ s(1S) = 1DS , (3.5)

where 1DS is the identity element of DS . Another consequence of s being a representation

of S reads

1DS = s(1S) = s(g−1 g) = s(g−1) s(g) ⇒ s(g−1) = s(g)−1 , (3.6)

for all g ∈ S. In addition, eq. (3.1) yields

s(h g) = s(g h) ⇔ [s(h), s(g)] = 0 , (3.7)
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for all h, g ∈ S. Thus, the SG flavor symmetry DS must be Abelian and the representation

s is in general not faithful. Furthermore, eqs. (3.6) and (3.7) yield the important condition

s([g, h]) = 1DS , (3.8)

where the commutator is defined as [g, h] = g−1h−1g h, see section 2.2. Consequently, the

representation s of the space group S is equivalent to the Abelianization of the space group

S,

DS
∼= S/[S, S] , (3.9)

see e.g. ref. [29].1

Indeed, it turns out that DS is a finite Abelian group for all space groups S under

consideration (i.e. in all cases the Abelian group DS does not contain any factors of Z).

Hence, we can represent s(g) for all g ∈ S by a complex phase,

s(g) = exp (iα(g)) , (3.10)

and set 1DS = 1 in the following. In addition, DS is a direct product of ZMi factors of

various orders Mi.

In order to obtain the discrete transformation s(g) for a string state |[g]〉 with con-

structing element g ∈ S explicitly, we first express g as a product of the generators of S,

see section 2.1. In detail, in the case of a ZM ×ZN point group the generators of S read

Ti = (1, ei) , gθ = (θ, λθ) and gω = (ω, λω) , (3.11)

such that we can decompose any space group element g ∈ S as

g = (T1)
n1 . . . (TD)nD (gθ)

k (gω)` , (3.12)

where k = 0, . . . ,M − 1, ` = 0, . . . , N − 1 and ni ∈ Z for i = 1, . . . , D. Then, using the

representation property eq. (3.2), we obtain

s(g) = (s(T1))
n1 . . . (s(TD))nD (s(gθ))

k (s(gω))` . (3.13)

Thus, we can easily compute the discrete transformation s(g) of a string state |[g]〉 once

we know the discrete transformations of the generators of the space group

s(Ti) , s(gθ) and s(gω) . (3.14)

Hence, we have reduced our problem to the task of identifying these building-blocks of the

general discrete transformation s(g).

1The Abelianization of space groups was also used in ref. [30] to constrain the gauge embeddings via

shifts and Wilson lines, and in relation to Gauged Linear Sigma Models (see also [31]).
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3.3 Space group selection rule and the Abelianization of the space group

As noted before, our conditions eqs. (3.1) and (3.2) that define the transformation s(g) of

a closed string state |[g]〉 with constructing element g ∈ S correspond to the Abelianization

of the space group S. In this section we show that the Abelianization of S can be computed

using the so-called presentation of the space group S. To do so, each generator g of S is

replaced by s(g) and each relation in the presentation of S is replaced by s(relation) using

that s([g, h]) = 1, i.e.

gθ = (θ, λθ) 7−→ s(gθ) , (3.15a)

gω = (ω, λω) 7−→ s(gω) , (3.15b)

Ti = (1, ei) 7−→ s(Ti) , i = 1, . . . , D , (3.15c)

and from the presentation

S = 〈gθ, gω, T1, . . . , TD | gMθ (T1)
−a(θ,1) . . . (TD)−a(θ,D) , . . . , all relations〉 , (3.16)

see section 2.2, we obtain via the map S 7→ DS the presentation of DS as

DS = 〈s(gθ), s(gω), s(T1), . . . , s(TD) |
s(gθ)

M (s(T1))
−a(θ,1) . . . (s(TD))−a(θ,D) , . . . , s(all relations)〉 . (3.17)

In most cases, some generators s(g) in the presentation of DS are no longer independent

compared to their preimages g ∈ S. Thus, one has to solve the relations in DS such that

only the independent generators remain.

Furthermore, for all space groups under consideration all remaining relations in DS

can be solved explicitly such that one can identify the SG flavor symmetry DS as the direct

product of cyclic groups, i.e.

DS
∼= ZM1 ×ZM2 × . . . . (3.18)

In the following we present two approaches to how this computation can be performed in

detail.

3.4 Direct computation

Among the relations in the presentation of DS in eq. (3.17) there are two sets of relations

that are of special interest: eqs. (2.15e) and (2.15f) (or equivalently eq. (2.9)) are related to

the charges of translations s(Ti), while eqs. (2.15a) and (2.15b) are related to the charges

of rotations s(gθ) and s(gω). Using these relations one can easily compute the orders of

s(gθ), s(gω) and s(Ti), as we do next.

The charges of translations s(Ti). We embed eq. (2.9) into DS and obtain2

s(1, ei) = s(1, ρ ei) , (3.19)

2For a space group element g = (ρ, λ) ∈ S we write s(g) = s(ρ, λ) instead of s(g) = s((ρ, λ)).
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for all ρ ∈ P . In other words, two vectors ei and ρ ei that are rotated to each other by a

point group element ρ give rise to the same element of DS .

Now, we assume that there is a point group element ρ ∈ P and a smallest integer Mi

such that

ei + ρ ei + . . .+ ρMi−1 ei = 0 . (3.20)

We can translate this equation into space group elements of pure translations and apply s.

This yields

s(1, ei) s(1, ρ ei) . . . s(1, ρ
Mi−1 ei)︸ ︷︷ ︸

Mi factors

= 1 . (3.21)

Then, using eq. (3.19) we get

s(1, ei)
Mi = 1 . (3.22)

Consequently, s(Ti) = s(1, ei) generates a finite Abelian group of order Mi, being ZMi ,

and we can express s(Ti) as a complex phase

s(Ti) = exp

(
2πi

Mi
βi

)
, (3.23)

for βi ∈ Z.

The charges of rotations s(gθ) and s(gω). For example, consider the generator θ ∈ P
of order M in the case without roto-translations, i.e. gθ = (θ, 0). Then, we obtain the

following identities

s(θ, 0)M = s(θM , 0) = s(1S) = 1 . (3.24)

Consequently, s(gθ) = s(θ, 0) generates a finite Abelian group of order M , being ZM , and

we can express s(gθ) as a complex phase

s(gθ) = exp

(
2πi

M
αθ

)
, (3.25)

for αθ ∈ Z. Analogously, using ωN = 1 we find

s(gω) = exp

(
2πi

N
αω

)
, (3.26)

for αω ∈ Z.

Combination of translations and rotations. As we have seen in eq. (3.13) the rep-

resentation s(g) of a general space group element eq. (3.12) is given by

s(g) = (s(T1))
n1 . . . (s(TD))nD (s(gθ))

k (s(gω))` , (3.27)

where one might be tempted to simply replace the previous results for the representations

of the translations, s(Ti), and roto-translations, s(gθ), s(gω). However, in general, the

presentation of DS eq. (3.17) establishes non-trivial relations among different elements,

that can alter the result.
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In fact, only in the simplest case without roto-translations and without non-trivial re-

lations between translations and twists, this näıve expectation holds. In this case, a general

space group element simplifies to g = (θk ω`, ni ei) ∈ S and its representation is given by

s : (θk ω`, ni ei) → exp

(
2πi

(
k

M
αθ +

`

N
αω +

D∑
i=1

ni
Mi

βj

))
, (3.28)

where k, ` and ni for i = 1, . . . , D are discrete charges. They are conserved in an allowed

coupling, i.e.

L∑
a=1

k(a) = 0 mod M ,

L∑
a=1

`(a) = 0 mod N ,

L∑
a=1

n
(a)
i = 0 mod Mi , (3.29)

where k(a), `(a) and n
(a)
i define the a-th constructing element ga ∈ S in the coupling (2.22).

As a remark, those symmetries that constrain the twisted sectors k(a) (and `(a)) are con-

ventionally referred to as point group selection rule (PG).

In the more general case, αθ, αω, βi and βj , with i 6= j, turn out to be connected by

the relations in the presentation of DS . These relations as well as their implications shall

be discussed in our examples, in section 3.6.

3.5 Space group selection rule and remnant discrete symmetries from spon-

taneous symmetry breaking

As before, we begin with a space group S generated by D + 2 generators

Ti = (1, ei) , i = 1, . . . , D , gθ = (θ, λθ) and gω = (ω, λω) (3.30)

subject to K relations as listed in the presentation of S. Then, the SG flavor symmetry DS

obtained from the space group selection rule is a subgroup of U(1)D+2. It can be computed

as follows: each relation α = 1, . . . ,K of the presentation of S is mapped to a relation in

DS and can be written in the form

s(T1)
qα1 . . . s(TD)q

α
D s(gθ)

qαD+1 s(gω)q
α
D+2 = 1 , (3.31)

see eq. (2.15) in section 2.2 using s([g, h]) = 1. To each relation (3.31) one can associate

an auxiliary field φα(x) with integer U(1)D+2 charges given by the exponents in eq. (3.31),

i.e. the charges of φα(x) read

(qα1 , . . . , q
α
D, q

α
D+1, q

α
D+2) . (3.32)

These auxiliary fields have no physical interpretation but are only used to describe the

symmetry breaking associated to the relations (3.31). Then, under a general U(1)D+2

transformation the auxiliary field φα(x) picks up a phase, i.e.

φα(x) 7→ exp

i

D+2∑
j=1

ξj q
α
j

 φα(x) , (3.33)
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where ξj ∈ R, j = 1, . . . , D + 2, denote the U(1) transformation parameters. Now, we

turn on the vacuum expectation values (VEVs) of the auxiliary fields 〈φα〉 6= 0 for all

α = 1, . . . ,K. Consequently, the unbroken remnant symmetry is given by the solutions ξj of

exp

i

D+2∑
j=1

ξj q
α
j

 〈φα〉 = 〈φα〉 (3.34)

for all auxiliary fields α = 1, . . . ,K. Identifying

s(Ti) = exp (i ξi) , s(gθ) = exp (i ξD+1) and s(gω) = exp (i ξD+2) , (3.35)

we realize that this spontaneous U(1) symmetry breaking exactly corresponds to solving

the relations (3.31).

This method to compute the SG flavor symmetry as a remnant discrete symmetry via

spontaneous symmetry breaking of U(1)D+2 can be automatized easily using for example

the mathematica package “DiscreteBreaking” developed in ref. [32].

3.6 Examples

In this section we present three examples how to compute the SG flavor symmetries explic-

itly: first, we consider a Z3 toy example in D = 2 dimensions and then two Z2×Z2 examples

in D = 6 dimensions, one with roto-translations and the other with a freely-acting shift.

3.6.1 Z3 space group in D = 2 dimensions

We define the two-dimensional Z3 space group S by the generators

T1 = (1, e1) , T2 = (1, e2) and gθ = (θ, 0) , (3.36)

where the basis vectors e1 and e2 enclose an angle of 120◦ and have equal length. Further-

more, θ is a counter-clockwise rotation by 120◦ such that

θ e = e θ̂ where θ̂ =

(
0 −1

1 −1

)
. (3.37)

This space group can be defined alternatively by the following abstract presentation, based

on the three generators gθ, T1 and T2 subject to four relations, i.e.

S = 〈gθ, T1, T2 | g3θ , [T1, T2] , [gθ, T1]T−2
1 T−1

2 , [gθ, T2]T1 T
−1
2 〉 , (3.38)

see section 2.2.

To compute the SG flavor symmetry DS we map the three generators of S to s(gθ),

s(T1) and s(T2). Then, the presentation of DS reads

DS = 〈s(gθ), s(T1), s(T2) | s(gθ)3, s([T1, T2])︸ ︷︷ ︸
=1

, s([gθ, T1])︸ ︷︷ ︸
=1

s(T1)
−2 s(T2)

−1,

s([gθ, T2])︸ ︷︷ ︸
=1

s(T1) s(T2)
−1〉 . (3.39)
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Next, we omit the trivial relation s([T1, T2]) = 1 and obtain

DS = 〈s(gθ), s(T1), s(T2) | s(gθ)3, s(T1)−2 s(T2)
−1, s(T1) s(T2)

−1〉 . (3.40)

In the final step, we observe that only two of the three generators of DS are independent.

For example, we can use the last relation s(T1) s(T2)
−1 = 1 in eq. (3.40) to replace s(T2)

by s(T1) using s(T2) = s(T1). Thus, we get

DS = 〈s(gθ), s(T1) | s(gθ)3, s(T1)3〉 ∼= Z3 ×Z3 , (3.41)

and a general string state |[g]〉 transforms as

|[g]〉 7−→ s(T1)
n1 s(T2)

n2 s(gθ)
k |[g]〉 = s(T1)

n1+n2 s(gθ)
k |[g]〉 (3.42)

= exp

(
2πi

3
α1 (n1 + n2)

)
exp

(
2πi

3
αθ k

)
|[g]〉 , (3.43)

for α1, αθ ∈ {0, 1, 2} using s(gθ)
3 = s(T1)

3 = 1. Then, a coupling |[g1]〉 . . . |[gL]〉 of string

states |[ga]〉 with constructing elements ga = (θk
(a)
, n

(a)
1 e1 + n

(a)
2 e2) is allowed by the SG

flavor symmetry DS
∼= Z3 ×Z3 if

L∑
a=1

k(a) = 0 mod 3 and

L∑
a=1

(
n
(a)
1 + n

(a)
2

)
= 0 mod 3 , (3.44)

where the first equation in eq. (3.44) is called point group selection rule (PG).

In summary, the space group selection rule of the two-dimensional Z3 space group

yields a Z3×Z3 SG flavor symmetry with discrete charges k and n1 +n2, respectively [20].

3.6.2 Space group with freely-acting shift: Z2 × Z2 − 5 − 1

Consider the so-called Blaszczyk-geometry Z2×Z2–5–1 [25, 26] (in ref. [33] it is labeled as

1–1, see also [34], and [35] for an MSSM-like orbifold model based on this geometry using

a different convention). The twists in the lattice basis (see eq. (2.10)) read

θ̂ =



0 1 −1 0 0 0

1 0 −1 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


and ω̂ =



0 −1 1 0 0 0

0 −1 0 0 0 0

1 −1 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


. (3.45)

The space group S is generated by six translations Ti = (1, ei) and two rotations

gθ = (θ, 0) and gω = (ω, 0) . (3.46)

By writing down the presentation of this space group S we identify the relations

s(T1) = s(T2) = s(T3) where s(T1)
2 s(T2) s(T3) = 1 , (3.47a)

s(T4)
2 = s(T5)

2 = s(T6)
2 = s(gθ)

2 = s(gω)2 = 1 , (3.47b)
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see eq. (2.15). Consequently, the most general representation s(g) is given by

s(g) = s(T1)
n1 s(T2)

n2 s(T3)
n3 s(T4)

n4 s(T5)
n5 s(T6)

n6 s(gθ)
k s(gω)` (3.48a)

= s(T1)
n1+n2+n3 s(T4)

n4 s(T5)
n5 s(T6)

n6 s(gθ)
k s(gω)` , (3.48b)

where we have used s(T1) = s(T2) = s(T3). The order of the basic transformations s(gθ),

s(gω), s(T4), s(T5) and s(T6) is 2. Furthermore, from eq. (3.47a) we obtain

s(T1)
2 s(T2) s(T3) = s(T1)

4 = 1 , (3.49)

and s(T1) generates a Z4 factor. Consequently, all transformations s(gθ), s(gω), s(T1),

s(T4), s(T5) and s(T6) are independent. Hence, the SG flavor symmetry DS obtained from

the space group selection rule is given by

(Z2 ×Z2)
PG ×Z4 ×Z2 ×Z2 ×Z2 , (3.50)

with discrete charges

k , ` , n1 + n2 + n3 , n4 , n5 and n6 , (3.51)

respectively, and we have verified this result additionally using the VEV-method of sec-

tion 3.5.

Z2 dark matter-parity. By considering the fixed points of this Z2 × Z2 orbifold, one

can check that all massless strings carry even Z4 charges, i.e.

n1 + n2 + n3 ∈ {0, 2} . (3.52)

Hence, the allowed interactions of massless strings are not constrained by a Z4 factor in

eq. (3.50), but only by Z2. However, there are massive strings with odd discrete charges

n1 + n2 + n3 ∈ {1, 3} under Z4, for example a winded string with constructing element

(1, e1). Consequently, massive strings with odd Z4 charges can only be produced and

annihilated in pairs. Thus, the lightest massive string with odd Z4 charge could serve as a

dark matter candidate, which is stable because there is a Z2 dark matter-parity with

|matter〉 7−→ +|matter〉 , (3.53a)

|dark matter〉 7−→ −|dark matter〉 , (3.53b)

and the mass of the dark matter particle depends on the compactification radii. This fact

is common to many SG flavor symmetries in table 1 and might be relevant for the observed

dark matter content of the universe and also for its cosmological evolution.

3.6.3 Space group with roto-translation: Z2 × Z2 − 2 − 5

Consider the Z2×Z2–2–5 orbifold from the classification in refs. [25, 26] (it corresponds to

the Z2×Z2 orbifold labeled 1–9 in ref. [33]). The twists in the lattice basis (see eq. (2.10))

– 15 –
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are given by

θ̂ =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


and ω̂ =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


. (3.54)

The space group S is generated by six translations Ti = (1, ei) and two roto-translations

gθ =

(
θ,

1

2
e3

)
and gω =

(
ω,

1

2
e5

)
. (3.55)

By writing down the presentation of S we identify the relations (see eq. (2.15))

s(T1) = s(T2) , s(T3) = s(T5) = s(gθ)
2 = s(gω)2 and (3.56a)

s(Ti)
2 = s(gθ)

4 = s(gω)4 = 1 for i = 1, . . . , 6 . (3.56b)

Consequently, the most general charge s(g) is given by

s(g) = s(T1)
n1 s(T2)

n2 s(T3)
n3 s(T4)

n4 s(T5)
n5 s(T6)

n6 s(gθ)
k s(gω)` (3.57a)

= s(T1)
n1+n2 s(T4)

n4 s(T6)
n6 s(gθ)

k+2(n3+n5) s(gω)` , (3.57b)

where we have used s(T1) = s(T2) and s(T3) = s(T5) = s(gθ)
2. Next, we analyze the

consequences of s(gθ)
2 = s(gω)2 from eq. (3.56a), i.e. we make the ansatz

s(gθ) = exp

(
2πi

4
αθ

)
and s(gω) = exp

(
2πi

4
αω

)
. (3.58)

Then, s(gθ)
2 = s(gω)2 yields

exp

(
2πi

2
αθ

)
= exp

(
2πi

2
αω

)
⇔ αω = αθ + 2x , (3.59)

for some x ∈ Z. Thus,

s(gω) = exp

(
2πi

4
αω

)
= exp

(
2πi

4
αθ

)
exp

(
2πi

2
x

)
= s(gθ) sx . (3.60)

where s(gθ) and sx are now independent and of order 4 and 2, respectively. Using eq. (3.60)

in eq. (3.57b) we obtain

s(g) = s(gθ)
k+`+2(n3+n5) s`x s(T1)

n1+n2 s(T4)
n4 s(T6)

n6 , (3.61)

where the orders of s(gθ), sx, s(T1), s(T4) and s(T6) are 4, 2, 2, 2 and 2, respectively. Now,

we have solved all relations (3.56) and, consequently, all transformations s(gθ), sx, s(T1),
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s(T4) and s(T6) are independent. Hence, the space group selection rule results in a SG

flavor symmetry

(Z4 ×Z2)
PG ×Z2 ×Z2 ×Z2 , (3.62)

with discrete charges

k + `+ 2(n3 + n5) , ` , n1 + n2 , n4 and n6 , (3.63)

respectively. This result has also been verified using the VEV-method of section 3.5.

Naively, one would expect a Z2 × Z2 point group selection rule with charges k and `

if the point group is Z2 × Z2. However, we have seen that the point group selection rule

yields Z4 ×Z2 with charges k + `+ 2(n3 + n5) and `. If one considers the Z2 subgroup of

the Z4 factor, one identifies the corresponding Z2 charges as k+`. Thus, the naive Z2×Z2

point group selection rule is a subgroup of the full Z4 ×Z2 point group selection rule.

4 Results

In this section we present the main result of this work: we compute the Abelian SG flavor

symmetries DS for all 138 space groups S with Abelian point group and N=1 supersym-

metry. To do so, we adopt the convention of refs. [25, 26] as specified in the geometry files

for the orbifolder [36] (see ancillary files in arXiv.org). The results are listed in table 1.

Q-class Z- and SG flavor discrete

twist vector affine class symmetry DS charge

Z3 1–1 Z
(PG)
3 k(

0, 13 ,
1
3 ,−

2
3

)
(Z3)

3
(n1 + n2, n3 + n4, n5 + n6)

Z4 1–1 Z
(PG)
4 k(

0, 14 ,
1
4 ,−

1
2

)
(Z2)

4
(n1 + n2, n3 + n4, n5, n6)

2–1 Z
(PG)
4 k

Z4 × (Z2)
2

(n3 + n4 + n5, n1 + n2, n6)

3–1 Z
(PG)
4 k

(Z4)
2

(n1 + n2 + n3, n4 + n5 + n6)

Z6–I 1–1 Z
(PG)
6 k(

0, 16 ,
1
6 ,−

1
3

)
Z3 n5 + n6

2–1 Z
(PG)
6 k

Z3 n3 + n4 + n5 + n6

Z6–II 1–1 Z
(PG)
6 k(

0, 16 ,
1
3 ,−

1
2

)
Z3 × (Z2)

2
(n3 + n4, n5, n6)

2–1 Z
(PG)
6 k

Z3 × (Z2)
2

(n1 + n2 + n3 + n4, n5, n6)

3–1 Z
(PG)
6 k

Z3 × (Z2)
2

(n4 + n5, n1 + n2 + n3, n6)

continued. . .
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Q-class Z- and SG flavor discrete

twist vector affine class symmetry DS charge

4–1 Z
(PG)
6 k

Z6 ×Z2 (n1 + n2 + n3 + n4 + n5, n6)

Z7 1–1 Z
(PG)
7 k(

0, 17 ,
2
7 ,−

3
7

)
Z7 n1 + n2 + n3 + n4 + n5 + n6

Z8–I 1–1 Z
(PG)
8 k(

0, 18 ,
1
4 ,−

3
8

)
(Z2)

2
(n1 + n2 + n3 + n4, n5 + n6)

2–1 Z
(PG)
8 k

(Z2)
2

(n1 + n2 + n3 + n4, n5 + n6)

3–1 Z
(PG)
8 k

Z4 n1 + n2 + n3 + n4 + n5 + n6

Z8–II 1–1 Z
(PG)
8 k(

0, 18 ,
3
8 ,−

1
2

)
(Z2)

3
(n1 + n2 + n3 + n4, n5, n6)

2–1 Z
(PG)
8 k

Z4 ×Z2 (n1 + n2 + n3 + n4 + n5, n6)

Z12–I 1–1 Z
(PG)
12 k(

0, 1
12 ,

1
3 ,−

5
12

)
Z3 n5 + n6

2–1 Z
(PG)
12 k

Z3 n1 + n2 + n3 + n4 + n5 + n6

Z12–II 1–1 Z
(PG)
12 k(

0, 1
12 ,

5
12 ,−

1
2

)
(Z2)

2
(n5, n6)

Z2 ×Z2 1–1 (Z2 ×Z2)
(PG)

(k, `)(
0, 0, 12 ,−

1
2

)
(Z2)

6
(n1, n2, n3, n4, n5, n6)(

0, 12 , 0,−
1
2

)
1–2 (Z2 ×Z2)

(PG)
(k, `)

(Z2)
5

(n1, n3, n4, n5, n6)

1–3 (Z4 ×Z2)
(PG)

(k + 2(n2 + n6), `)

(Z2)
4

(n1, n3, n4, n5)

1–4 (Z4 ×Z4)
(PG)

(k + 2(n2 + n6), `+ 2(n4 + n6))

(Z2)
3

(n1, n3, n5)

2–1 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
5

(n1 + n2, n3, n4, n5, n6)

2–2 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
4

(n1 + n2, n4, n5, n6)

2–3 (Z4 ×Z2)
(PG)

(k + 2(n3 + n6), `)

(Z2)
3

(n1 + n2, n4, n5)

2–4 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
4

(n1 + n2, n3, n4, n6)

continued. . .
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Q-class Z- and SG flavor discrete

twist vector affine class symmetry DS charge

2–5 (Z4 ×Z2)
(PG)

(k + `+ 2(n3 + n5), `)

(Z2)
3

(n1 + n2, n4, n6)

2–6 (Z4 ×Z4)
(PG)

(k + 2(n3 + n6), `+ 2(n5 + n6))

(Z2)
2

(n1 + n2, n4)

3–1 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
5

(n1, n2 + n3, n4, n5, n6)

3–2 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
4

(n1, n2 + n3, n4, n5)

3–3 (Z2 ×Z4)
(PG)

(k, `+ 2(n5 + n6))

(Z2)
3

(n1, n2 + n3, n4)

3–4 (Z4 ×Z4)
(PG)

(k + 2(n4 + n6), `+ 2(n5 + n6))

(Z2)
2

(n1, n2 + n3)

4–1 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
4

(n1 + n2, n3, n4, n5 + n6)

4–2 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
3

(n1 + n2, n3, n5 + n6)

5–1 (Z2 ×Z2)
(PG)

(k, `)

Z4 × (Z2)
3

(n1 + n2 + n3, n4, n5, n6)

5–2 (Z2 ×Z2)
(PG)

(k, `)

Z4 × (Z2)
2

(n1 + n2 + n3, n5, n6)

5–3 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
4

(n1 + n2 + n3, n4, n5, n6)

5–4 (Z4 ×Z2)
(PG)

(k + `+ 2(n4 + n5), `)

Z4 ×Z2 (n1 + n2 + n3, n6)

5–5 (Z4 ×Z4)
(PG)

(k + 2(n4 + n6), `+ 2(n5 + n6))

Z4 n1 + n2 + n3

6–1 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
4

(n1 + n2, n3 + n4, n5, n6)

6–2 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
3

(n1 + n2, n3 + n4, n6)

6–3 (Z2 ×Z4)
(PG)

(k, `+ 2(n5 + n6))

(Z2)
2

(n1 + n2, n3 + n4)

7–1 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
4

(n1 + n2, n3, n4 + n5, n6)

7–2 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
3

(n1 + n2, n3, n4 + n5)
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8–1 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
4

(n1, n2 + n3, n4, n5 + n6)

9–1 (Z2 ×Z2)
(PG)

(k, `)

Z4 × (Z2)
2

(n1 + n2 + n3, n4 + n5, n6)

9–2 (Z2 ×Z2)
(PG)

(k, `)

Z4 ×Z2 (n1 + n2 + n3, n4 + n5)

9–3 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
3

(n1 + n2 + n3, n4 + n5, n6)

10–1 (Z2 ×Z2)
(PG)

(k, `)

Z4 × (Z2)
2

(n1 + n2 + n3, n4, n5 + n6)

10–2 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
3

(n1 + n2 + n3, n4, n5 + n6)

11–1 (Z2 ×Z2)
(PG)

(k, `)

(Z2)
3

(n1 + n2, n3 + n4, n5 + n6)

12–1 (Z2 ×Z2)
(PG)

(k, `)

(Z4)
2

(n1 + n2 + n3, n4 + n5 + n6)

12–2 (Z2 ×Z2)
(PG)

(k, `)

Z4 ×Z2 (n1 + n2 + n3, n4 + n5 + n6)

Z2 ×Z4 1–1 (Z2 ×Z4)
(PG)

(k, `)(
0, 0, 12 ,−

1
2

)
(Z2)

4
(n1 + n2, n3, n4, n5 + n6)(

0, 14 , 0,−
1
4

)
1–2 (Z2 ×Z4)

(PG)
(k, `)

(Z2)
3

(n3, n4, n5 + n6)

1–3 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2 + n5 + n6, n3, n4)

1–4 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2, n3, n5 + n6)

1–5 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2 + n4, n3, n5 + n6)

1–6 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2 + n4, n3, n4 + n5 + n6)

2–1 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
4

(n1 + n2, n3 + n4, n5, n6)

2–2 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2, n3 + n4, n5)

2–3 (Z4 ×Z4)
(PG)

(k + 2(n1 + n2 + n3 + n4), `)

(Z2)
2

(n5, n6)
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2–4 (Z4 ×Z4)
(PG)

(k + 2(n3 + n4 + n6), `)

(Z2)
2

(n1 + n2 + n6, n5)

2–5 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2, n5, n6)

2–6 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2, n3 + n4 + n6, n5)

3–1 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2 + n3, n4, n5 + n6)

3–2 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3, n4)

3–3 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3, n5 + n6)

3–4 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3, n4 + n5 + n6)

3–5 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n4, n5 + n6)

3–6 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3 + n5 + n6, n4)

4–1 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2, n3 + n4 + n5, n6)

4–2 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2, n3 + n4 + n5)

4–3 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3 + n4 + n5, n6)

4–4 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n6, n3 + n4 + n5 + n6)

4–5 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2, n6)

5–1 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2 + n3 + n4, n5, n6)

5–2 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3 + n4, n5)

6–1 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2 + n4 + n5, n3, n6)

6–2 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n3, n6)
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6–3 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n4 + n5, n3)

6–4 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n4 + n5 + n6, n3)

6–5 (Z4 ×Z4)
(PG)

(k + 2(n1 + n2 + n3 + n4 + n5), `)

Z2 n6

7–1 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
3

(n1 + n2 + n3 + n4, n5, n6)

7–2 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3 + n4, n5)

7–3 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3 + n4, n6)

8–1 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3, n4 + n5 + n6)

8–2 (Z2 ×Z4)
(PG)

(k, `)

Z2 n4 + n5 + n6

8–3 (Z2 ×Z4)
(PG)

(k, `)

Z2 n1 + n2 + n3 + n4 + n5 + n6

9–1 (Z2 ×Z4)
(PG)

(k, `)

Z4 ×Z2 (n1 + n2 + n3 + n4 + n5, n6)

9–2 (Z2 ×Z4)
(PG)

(k, `)

Z4 n1 + n2 + n3 + n4 + n5

9–3 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3 + n4 + n5, n6)

10–1 (Z2 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3 + n4 + n5, n6)

10–2 (Z2 ×Z4)
(PG)

(k, `)

Z2 n1 + n2 + n3 + n4 + n5

Z2 ×Z6–I 1–1 (Z2 ×Z6)
(PG)

(k, `)(
0, 0, 12 ,−

1
2

)
(Z2)

2
(n3, n4)(

0, 16 , 0,−
1
6

)
1–2 (Z2 ×Z6)

(PG)
(k, `)

Z2 n3

2–1 (Z2 ×Z6)
(PG)

(k, `)

(Z2)
2

(n5, n6)

2–2 (Z2 ×Z6)
(PG)

(k, `)

Z2 n5
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Z2 ×Z6–II 1–1 (Z2 ×Z6)
(PG)

(k, `)(
0, 0, 12 ,−

1
2

)
2–1 (Z2 ×Z6)

(PG)
(k, `)(

0, 16 ,
1
6 ,−

1
3

)
3–1 (Z2 ×Z6)

(PG)
(k, `)

4–1 (Z2 ×Z6)
(PG)

(k, `)

Z3 ×Z3 1–1 (Z3 ×Z3)
(PG)

(k, `)(
0, 0, 13 ,−

1
3

)
(Z3)

3
(n1 + n2, n3 + n4, n5 + n6)(

0, 13 , 0,−
1
3

)
1–2 (Z3 ×Z3)

(PG)
(k, `)

(Z3)
2

(n1 + n2, n3 + n4)

1–3 (Z3 ×Z3)
(PG)

(k, `)

(Z3)
2

(2(n1 + n2) + n5 + n6, n3 + n4)

1–4 (Z3 ×Z3)
(PG)

(k, `)

(Z3)
2

(n1 + n2 + 2(n3 + n4), 2(n3 + n4) + n5 + n6)

2–1 (Z3 ×Z3)
(PG)

(k, `)

(Z3)
2

(n1 + n2 + n3 + n4, n5 + n6)

2–2 (Z3 ×Z3)
(PG)

(k, `)

Z3 n1 + n2 + n3 + n4

2–3 (Z3 ×Z3)
(PG)

(k, `)

Z3 n5 + n6

2–4 (Z3 ×Z3)
(PG)

(k, `)

Z3 n1 + n2 + n3 + n4 + 2(n5 + n6)

3–1 (Z3 ×Z3)
(PG)

(k, `)

(Z3)
2

(n1 + n2 + n3 + n4, n5 + n6)

3–2 (Z3 ×Z3)
(PG)

(k, `)

Z3 n5 + n6

3–3 (Z3 ×Z3)
(PG)

(k, `)

Z3 n1 + n2 + n3 + n4 + n5 + n6

4–1 (Z3 ×Z3)
(PG)

(k, `)

(Z3)
2

(n1 + n4, n2 + n3 + n5 + n6)

4–2 (Z3 ×Z3)
(PG)

(k, `)

Z3 n1 + n4

4–3 (Z9 ×Z3)
(PG)

(k + 2`+ 6(n1 + n2 + n3 + n4 + n5 + n6), `)

5–1 (Z3 ×Z3)
(PG)

(k, `)

Z3 n1 + n2 + n3 + n4 + n5 + n6

Z3 ×Z6 1–1 (Z3 ×Z6)
(PG)

(k, `)(
0, 0, 13 ,−

1
3

)
Z3 n3 + n4(

0, 16 , 0,−
1
6

)
1–2 (Z3 ×Z6)

(PG)
(k, `)
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2–1 (Z3 ×Z6)
(PG)

(k, `)

Z3 n5 + n6

2–2 (Z3 ×Z6)
(PG)

(k, `)

Z4 ×Z4 1–1 (Z4 ×Z4)
(PG)

(k, `)(
0, 0, 14 ,−

1
4

)
(Z2)

3
(n1 + n2, n3 + n4, n5 + n6)(

0, 14 , 0,−
1
4

)
1–2 (Z4 ×Z4)

(PG)
(k, `)

(Z2)
2

(n1 + n2, n3 + n4)

1–3 (Z4 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n5 + n6, n3 + n4)

1–4 (Z4 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3 + n4, n3 + n4 + n5 + n6)

2–1 (Z4 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2 + n3 + n4, n5 + n6)

2–2 (Z4 ×Z4)
(PG)

(k, `)

Z2 n5 + n6

2–3 (Z4 ×Z4)
(PG)

(k, `)

Z2 n1 + n2 + n3 + n4

2–4 (Z4 ×Z4)
(PG)

(k, `)

Z2 n1 + n2 + n3 + n4 + n5 + n6

3–1 (Z4 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2, n3 + n4 + n5 + n6)

3–2 (Z4 ×Z4)
(PG)

(k, `)

Z2 n1 + n2 + n3 + n4 + n5 + n6

4–1 (Z4 ×Z4)
(PG)

(k, `)

(Z2)
2

(n1 + n2, n3 + n4 + n5 + n6)

4–2 (Z4 ×Z4)
(PG)

(k, `)

Z2 n3 + n4 + n5 + n6

4–3 (Z4 ×Z4)
(PG)

(k, `)

Z2 n1 + n2

5–1 (Z4 ×Z4)
(PG)

(k, `)

Z2 n1 + n2 + n3 + n4 + n5 + n6

5–2 (Z4 ×Z4)
(PG)

(k, `)

Z6 ×Z6 1–1 (Z6 ×Z6)
(PG)

(k, `)(
0, 0, 16 ,−

1
6

)(
0, 16 , 0,−

1
6

)
Table 1. Space group flavor symmetries obtained from the space group selection rule for all space

groups with Abelian point group and N=1 supersymmetry [25, 26].
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4.1 Discrete anomalies of the SG flavor symmetry DS

Discrete groups can be anomalous and their anomaly coefficients can be computed directly

using Fujikawa’s method for the Jacobian of the path integral measure [37, 38]. Following

refs. [27, 39], the mixed ZN − Gi − Gi anomaly coefficient of a discrete group ZN and a

non-Abelian gauge group factor Gi is given by

AZN−Gi−Gi =
∑
r(f)

q(f) `
(
r(f)

)
. (4.1)

Here, the summation runs over all fermions that transform in the representation r(f) of

the gauge group factor Gi and q(f) denotes their discrete ZN charge as given in table 1 for

a string with constructing element3

g = (T1)
n1 . . . (T6)

n6 (gθ)
k (gω)` ∈ S , (4.2)

with n1, . . . , n6, k, ` ∈ Z. In addition, the Dynkin index `
(
r(f)

)
is normalized such that

`(N) = 1 for the fundamental representation N of SU(N) and `(2N) = 2 for the vector

representation 2N of SO(2N). Furthermore, the ZN − grav. − grav. anomaly coefficient

reads

AZN−grav.−grav. =
∑
m

q(m) dim(R(m)) , (4.3)

where the summation runs over all fermions that transform in the representation R(m) of

G1 ×G2 × . . ., being the full non-Abelian gauge group of the theory.

For all space groups from table 1 we have constructed more than 1,000 random orbifold

models using the orbifolder [36]. For every orbifold model we have checked that for each

ZN factor of DS there is a discrete Green-Schwarz constant ∆GS [27, 40] such that for all

non-Abelian gauge group factors Gi the anomalies are universal, i.e.

AZN−Gi−Gi = ∆GS mod N , (4.4a)

AZN−grav.−grav. = 12AZN−Gi−Gi mod N . (4.4b)

Consequently, if ∆GS 6= 0 the universal discrete anomalies can be canceled by a discrete

Green-Schwarz mechanism involving a single, universally coupled axion. Thus, we have

performed a non-trivial test of all SG flavor symmetries.

5 Conclusions

There are large sets of semi-realistic string orbifold models, whose phenomenology may

reveal interesting features of the string landscape, restricting thereby string constructions

in the search of an ultraviolet completion of low-energy physics. Studying the phenomenol-

ogy of orbifold compactifications requires, as one of the first steps, the identification and

understanding of all symmetries of a string model.

3Note that in the presence of roto-translations this constructing element g is equal to g = (θk ω`, λ(k,`)+

niei) for some non-trivial translation λ(k,`). The discrete charges q(f), however, do not depend on λ(k,`)

but only on the integers ni, k, ` ∈ Z.
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In this work, we have studied the Abelian SG flavor symmetry DS that arises from the

constraints on closed strings to split and join while propagating on a six-dimensional orb-

ifold, defined by a space group S. By demanding that DS be a (non-faithful) representation

of S and that the discrete charges of all closed strings be well-defined and conserved, we

find that the SG flavor symmetry DS corresponds to the Abelianization of the space group

S. We have discussed how this observation can be applied to space groups with different

features, rendering the precise structure of DS and their charges for all closed strings.

In section 4, we computed DS for all 138 space groups with Abelian point group that

yield N = 1 effective field theories in four dimensions. It is known that the identified

symmetries, displayed in table 1, play a key role as part of the flavor symmetries at low

energies and are thus essential for phenomenology. As a cross check of the validity of

these symmetries, we have also explicitly verified in thousands of E8×E8 heterotic orbifold

models that all identified DS lead to universal anomalies, which allows them to be canceled

by a universal Green-Schwarz mechanism.

The SG flavor symmetries DS are respected in interactions of both massless and mas-

sive strings. Interestingly, there are cases where the charges of massless strings are restricted

such that the symmetry of the massless sector is only a subgroup of DS . An intriguing

consequence is that the lightest massive string (which can be a winding mode) can only be

produced and annihilated in pairs. Thus, the lightest massive string is stable and, hence,

contributes to a dark sector of the effective model, see section 3.6.2. Whether this fea-

ture might be seen as an explanation of (some of) the dark matter of the universe and its

evolution, or whether it rules out some of the orbifold geometries shall be studied elsewhere.

A natural extension of our work is the study of non-Abelian orbifolds, i.e. orbifolds

whose point groups P are non-Abelian [41–43]. One should explore how the constraints

we imposed on the SG flavor symmetries DS and their charges apply to orbifolds with

non-Abelian point groups, to answer whether this contribution to flavor symmetries is also

Abelian in those scenarios.
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