NOTE ON THE TIGHTNESS OF THE METRIC ON THE SET OF COMPLETE SUB σ -ALGEBRAS OF A PROBABILITY SPACE

By J. NEVEU

University of Paris

The purpose of this note is to show that the usual metric on the set of complete sub σ -algebras of a probability space is very tight; a recent result from E. B. Boylan on equi-convergence of martingales follows and is thereby, we believe, better understood.

Given a probability space (Ω, \mathcal{A}, P) , a metric can be introduced on the set S of all complete sub σ -algebras \mathcal{B} of \mathcal{A} by letting (see [1])

$$d(\mathscr{B}_1,\mathscr{B}_2) = \sup_{B_1 \in \mathscr{B}_1} \inf_{B_2 \in \mathscr{B}_2} P(B_1 \triangle B_2) + \sup_{B_2 \in \mathscr{B}_2} \inf_{B_1 \in \mathscr{B}_1} P(B_1 \triangle B_2)$$

where \triangle denotes symmetric difference of sets as usual; here a sub σ -algebra \mathscr{B} of \mathscr{A} is said to be complete (relatively to \mathscr{A}) if every set $A \in \mathscr{A}$ of probability zero belongs to \mathscr{B} . The following proposition is then the main result of this note.

PROPOSITION. Let \mathcal{B} , \mathcal{B}' be two complete sub σ -algebras of \mathcal{A} in (Ω, \mathcal{A}, P) such that $\mathcal{B} \subset \mathcal{B}'$. Then there exists a set $A \in \mathcal{B}$ such that

$$P(A^c) \leq 4d(\mathcal{B}, \mathcal{B}')$$
 and $A \cap \mathcal{B}' = A \cap \mathcal{B}$.

Conversely if $A \in \mathcal{B}'$ is such that $A \cap \mathcal{B}' = A \cap \mathcal{B}$, then $d(\mathcal{B}, \mathcal{B}') \leq P(A^c)$.

When $A \in \mathcal{A}$ and $\mathcal{B} \in S$, we denote by $A \cap \mathcal{B}$ the σ -algebra of subsets of A which are of the from $A \cap B$ for a $B \in \mathcal{B}$; when $A \in \mathcal{B}$, then this class $A \cap \mathcal{B}$ is also the σ -algebra of subsets of A belonging to \mathcal{B} .

Proof.

(a) When $\mathcal{B} \subset \mathcal{B}'$, the distance $d(\mathcal{B}, \mathcal{B}')$ can be characterized as the smallest positive real number d for which the following implication holds

$$B' \in \mathscr{B}', P^{\mathscr{B}}(B') \leq \frac{1}{2} \text{ a.s.} \Rightarrow P(B') \leq d,$$

where $P^{\mathscr{B}}(B')$ denotes the conditional expectation of the indicator function $1_{B'}$ of B' with respect to \mathscr{B} . This is easily proved as follows.

Because $P(B \triangle B') = E[|P^{\mathscr{B}}(B') - 1_B|]$ when $B \in \mathscr{B}$ and $B' \in \mathscr{B}'$, we have for every $B' \in \mathscr{B}'$

$$\inf_{B \in \mathscr{B}} P(B \triangle B') = \inf_{B \in \mathscr{B}} E[|P^{\mathscr{B}}(B') - 1_{B}|]$$
$$= E\{\min[P^{\mathscr{B}}(B'), 1 - P^{\mathscr{B}}(B')]\}$$

the infimum being for instance achieved by the \mathscr{B} -set $\{P^{\mathscr{B}}(B') > \frac{1}{2}\}$. Hence

$$d(\mathscr{B}, \mathscr{B}') = \sup_{B' \in \mathscr{A}'} E\{\min[P^{\mathscr{A}}(B'), 1 - P^{\mathscr{A}}(B')]\}.$$

Received November 24, 1971.

1370 J. NEVEU

Now we use the hypothesis $\mathscr{B} \subset \mathscr{B}'$ to assert that for every $B' \in \mathscr{B}'$, the set $B^* = B' \triangle \{P^{\mathscr{B}}(B') > \frac{1}{2}\}$ is also in \mathscr{B}' ; since

$$P^{\mathscr{B}}(B^*) = \min[P^{\mathscr{B}}(B'), 1 - P^{\mathscr{B}}(B')] \le \frac{1}{2}$$

it is not hard to see that

$$d(\mathcal{B}, \mathcal{B}') = \sup[P(B''); B'' \in \mathcal{B}', P^{\mathcal{B}}(B'') \leq \frac{1}{2}]$$

as announced.

(b) If \mathscr{B} , $\mathscr{B}' \in S$ still verify $\mathscr{B} \subset \mathscr{B}'$, let A be a \mathscr{B} -atom of \mathscr{B}' [i.e. a set $A \in \mathscr{B}'$ such that $A \cap \mathscr{B}' = A \cap \mathscr{B}$] with largest possible conditional expectation $P^{\mathscr{B}}(A)$; the existence of such a set has been proved in [2], Theorem 1, page 258. Let us show now that $P(A^c) \leq 4d(\mathscr{B}, \mathscr{B}')$.

By Theorem 2 of [2], we may find a set $C \in \mathcal{B}'$ such that

$$P^{\mathscr{B}}(C) \leq \frac{1}{2} \leq P^{\mathscr{B}}(C) + P^{\mathscr{B}}(A)$$
.

Then we let

$$D = C\{P^{\mathscr{A}}(A) \leq \frac{1}{4}\} + A\{\frac{1}{4} < P^{\mathscr{A}}(A) \leq \frac{1}{2}\} + A^{c}\{P^{\mathscr{A}}(A) > \frac{1}{2}\}.$$

This set D belongs to \mathcal{B}' and is such that

$$\frac{1}{4}[1 - P^{\mathscr{B}}(A)] \leq P^{\mathscr{B}}(D) \leq \frac{1}{2}$$
 a.s.

as is easily checked on each of the three sets $\{P^{\mathscr{A}}A \leq \frac{1}{4}\}$, $\{\frac{1}{4} < P^{\mathscr{A}}A \leq \frac{1}{2}\}$ and $\{\frac{1}{2} < P^{\mathscr{A}}(A)\}$ on which respectively $P^{\mathscr{A}}(D) = P^{\mathscr{A}}(C)$, $P^{\mathscr{A}}(A)$, or $1 - P^{\mathscr{A}}(A)$. The properties of this set D imply with the aid of (a) that

$$d(\mathcal{B}, \mathcal{B}') \ge P(D) \ge \frac{1}{4} [1 - P(A)].$$

The direct part of the proposition is thus proved. The converse is immediate; indeed if $A \in \mathscr{B}'$ is such that $A \cap \mathscr{B}' = A \cap \mathscr{B}$, then for every $B' \in \mathscr{B}'$ there exists a $B \in \mathscr{B}$ for which AB' = AB and then $P(B \triangle B') \leq P(A^c)$; hence $d(\mathscr{B}, \mathscr{B}') \leq P(A^c)$. \square

The following easy corollary has an interest only for equi-integrable sets of functions (for which $\delta_H(a) \downarrow 0$ as $a \nearrow \infty$).

COROLLARY. Let H be a set of real integrable functions defined on a probability space (Ω, \mathcal{A}, P) and let $\mathcal{B}, \mathcal{B}'$ be two sub σ -algebras of \mathcal{A} such that $\mathcal{B} \subset \mathcal{B}'$. Then the following inequality holds

$$\sup_{f \in H} ||E^{\mathscr{B}}(f) - E^{\mathscr{B}'}(f)||_1 \leq 16ad(\mathscr{B}, \mathscr{B}') + 4\delta_H(a)$$

for every real a > 0, provided one lets

$$\delta_{H}(a) = \sup_{f \in H} \int_{\{|f| > a\}} |f| \, dP.$$

PROOF. Let A be a set with the properties stated in the preceding proposition and let f be a \mathscr{B}' -integrable function. Then it is easily checked (see Lemma 2, page 257 of [2]) that $E^{\mathscr{B}}(f1_A) = fP^{\mathscr{B}}(A)$ a.s. on A; hence

$$\begin{aligned} ||E^{\mathscr{D}}(f1_{A}) - f1_{A}||_{1} &= \int_{A^{c}} |E^{\mathscr{D}}(f1_{A})| dP + \int_{A} |f|[1 - P^{\mathscr{D}}(A)] dP \\ &\leq \int_{\Omega} E^{\mathscr{D}}(|f|)[1_{A^{c}} + P^{\mathscr{D}}(A^{c})] dP \\ &= 2 \int_{\Omega} |f| P^{\mathscr{D}}(A^{c}) dP .\end{aligned}$$

On the other hand

$$||E^{\mathscr{B}}(f1_{A^c}) - f1_{A^c}||_1 \leq 2||f1_{A^c}||_1 = 2 \int_{\Omega} |f| \, 1_{A^c} \, dP.$$

The addition of the two inequalities gives that

$$||E^{\mathscr{D}}(f) - f||_1 \leq 2 \int |f|[P^{\mathscr{D}}(A^c) + 1_{A^c}] dP$$

for every \mathscr{B}' -integrable function f; the inequality remains valid for every integrable f, if $E^{\mathscr{B}'}(f)$ is substituted for f in the first member and then

$$||E^{\mathscr{T}}f - E^{\mathscr{T}}(f)||_{1} \leq 2 \int_{\Omega} |f|[P^{\mathscr{T}}(A^{c}) + \mathbf{1}_{A^{c}}] dP$$

$$\leq 4aP(A^{c}) + 4 \int_{\{|f|>a\}} |f| dP$$

$$\leq 16ad(\mathscr{B}, \mathscr{B}') + 4 \int_{\{|f|>a\}} |f| dP.$$

By taking the supremum of the extreme members over H, we obtain the formula of the corollary. \square

Boylan has recently proved [1] that for any equi-integrable subset H of $L^1(\Omega, \mathcal{N}, P)$ and for any monotone sequence $(\mathcal{D}_n, n \in N)$ of sub σ -algebras of \mathcal{N} the L^1 -convergence $\lim_{n\to\infty} E^{\mathcal{N}_n}(f) = E^{\mathcal{N}_\infty}(f)$ holds uniformly on H, provided \mathcal{D}_∞ denotes the limiting σ -algebra of the increasing or decreasing sequence $(\mathcal{D}_n, n \in N)$ and provided $d(\mathcal{D}_n, \mathcal{D}_\infty) \to 0$ as $n \uparrow \infty$. This theorem can be readily obtained from the preceding corollary, since by this result

$$\sup_{H} ||E^{\mathscr{A}_n}(f) - E^{\mathscr{A}_\infty}(f)|| \leq 16ad(\mathscr{D}_n, \mathscr{D}_\infty) + 4\delta_H(a)$$

$$\to 0$$

when $n \nearrow \infty$ and then $a \nearrow \infty$.

REFERENCES

- [1] BOYLAN, E. S. (1971). Equi-convergence of martingales. Ann. Math. Statist. 42 552-559.
- [2] NEVEU, J. (1967). Atomes conditionnels d'espace de probabilité. Symposium on Probability Methods in Analysis; Lecture Notes in Mathematics 31 256-271, Springer Verlag, Berlin.