Note on three-character $(q+1)$-sets in $\mathrm{PG}(3, q)$

Mauro Zannetti Fulvio Zuanni
Department of Electrical and Information Engineering
University of L'Aquila, L'Aquila
Italy
mauro.zannetti@univaq.it fulvio.zuanni@univaq.it

Abstract

We give a combinatorial characterization of twisted cubics in $\operatorname{PG}(3, q)$.

1 Introduction

Let $S_{r}=S_{r, q}=P G(r, q)$ be a Galois space of dimension r and order q, where $q=p^{h}$, p a prime. We recall that the number of the points of a d-subspace S_{d} of S_{r} is denoted by $\theta_{d}=\theta_{d, q}=\sum_{i=0}^{d} q^{i}, 0 \leq d \leq r$. Moreover the number of d-subspaces S_{d} of S_{r} is denoted by $\gamma_{r, d}=\gamma_{r, d, q}=\prod_{i=0}^{d} \frac{\theta_{r-i}}{\theta_{d-i}}, 0 \leq d \leq r$ and $\gamma_{r,-1}=1$.

The study of the k-sets of S_{r}, that is, the sets of k points of S_{r}, has been founded and deepened by Segre [10].

A useful tool to study a k-set K of S_{r} is the d-characters of K, i.e. the numbers $t_{i}^{d}=t_{i}^{d}(K)$ of i-secant d-subspaces. Following [11], we call the degree, with respect to the dimension d, of K, the greatest integer $g^{d}=g^{d}(K)$ such that $t_{g}^{d} \neq 0$.

By counting in two different ways the total number of d-subspaces S_{d}, the number of pairs $\left(P, S_{d}\right)$ where $P \in K$ and S_{d} is a d-subspace through P, and the number of pairs $\left(\{P, Q\}, S_{d}\right)$ where $\{P, Q\} \subset K$ and S_{d} is a d-subspace through P and Q, we get the following system of linear equations on integers t_{i}^{d}.

$$
(1.1)\left\{\begin{array}{l}
\sum_{i=0}^{\theta_{d}} t_{i}^{d}=\gamma_{r, d, q} \\
\sum_{i=0}^{\theta_{d}} i t_{i}^{d}=k \gamma_{r-1, d-1, q} \\
\sum_{i=0}^{\theta_{d}} i(i-1) t_{i}^{d}=k(k-1) \gamma_{r-2, d-2, q}
\end{array}\right.
$$

A set K is said to be of class $\left[m_{1}, m_{2}, \ldots, m_{s}\right]_{d}$ if $t_{i}^{d} \neq 0$ implies $i \in\left\{m_{1}, m_{2}, \ldots\right.$, $\left.m_{s}\right\}$. Moreover, a set K of class $\left[m_{1}, m_{2}, \ldots, m_{s}\right]_{d}$ is called of type $\left(m_{1}, m_{2}, \ldots, m_{s}\right)_{d}$ if $i \in\left\{m_{1}, m_{2}, \ldots, m_{s}\right\}$ implies $t_{i}^{d} \neq 0$; see [1], [4], [8], [9], [11] and [12].

A set K is said to be an s-character set with respect to the dimension d if exactly $s d$-characters of K are different from zero; see [3].

A normal rational curve C of S_{r} is an irreducible algebraic variety of dimension 1 which is contained in S_{r} but not in a proper subspace. A k-arc of S_{r} is any k-set of linearly independent points of S_{r} if $k \leq r$ or does not contain $r+1$ linearly dependent points if $k \geq r+1$.

In this paper r is assumed to be three and q odd. A twisted cubic C can be represented in its canonical form as follows

$$
C=\left\{P(t)=\left(t^{3}, t^{2}, t, 1\right), t \in G F(q) \cup\{\infty\}\right\}
$$

where $t=\infty$ gives the point $(1,0,0,0)$. Twisted cubics over finite fields were defined and studied by Segre [10]. Further properties and relation to hyperbolic quadrics were given by Hirschfeld [2], [5], [6] and [7]. The main property of a twisted cubic of S_{3} is that it is a maximal arc [10], namely it is a set of $q+1$ points of S_{3}, no four of which are coplanar. Segre shows that in S_{3}, any $(q+1)$-arc is a twisted cubic; see [10]. In this scheme of things we prove the following result.

Theorem. In $S_{3}, a(q+1)$-set of class $[a, b, c]_{1}$ such that $g^{2}=g^{1}+1$, is a twisted cubic.

2 The Proof of the Theorem

We prove the theorem in several steps. Consider a $(q+1)$-set K of S_{3}. It is wellknown that K has at least two characters different from zero, with respect to lines; see [12]. We get

Step 2.1. $A(q+1)$-set K of S_{3} has at least three characters different from zero.
Proof. Suppose on the contrary that K is a $(q+1)$-set of S_{3} of type $(m, n)_{1}$ with $0 \leq m \leq n$. The system of linear equations (1.1) becomes the following:

$$
\left\{\begin{array}{l}
t_{m}+t_{n}=\left(q^{2}+1\right)\left(q^{2}+q+1\right) \\
m t_{m}+n t_{n}=(q+1)\left(q^{2}+q+1\right) \\
m(m-1) t_{m}+n(n-1) t_{n}=(q+1) q
\end{array}\right.
$$

If $m=0$, then from the $2^{\text {nd }}$ and the $3^{\text {rd }}$ equations we have $q=(n-1)\left(q^{2}+q+1\right)>q$. If $m>0$, then from the $1^{\text {st }}$ and the $2^{\text {nd }}$ equations we have $0 \leq(m-1) t_{m}+(n-1) t_{n}=$ $q\left(q^{2}+q+1\right)(1-q)<0$.
In both cases we have a contradiction.
In view of Step 2.1, we will investigate the 3 -character $(q+1)$-sets. From now on let us assume that K is a 3 -character $(q+1)$-set.

Step 2.2. A 3-character $(q+1)$-set K of S_{3} is of type $(0,1, c)_{1}$.
Proof. Let K be a $(q+1)$-set of S_{3} of type $(a, b, c)_{1}$ with $0 \leq a<b<c$. The system of linear equations (1.1) becomes the following:

$$
\left\{\begin{array}{l}
t_{a}+t_{b}+t_{c}=\left(q^{2}+1\right)\left(q^{2}+q+1\right) \\
a t_{a}+b t_{b}+c t_{c}=(q+1)\left(q^{2}+q+1\right) \\
a(a-1) t_{a}+b(b-1) t_{b}+c(c-1) t_{c}=(q+1) q
\end{array}\right.
$$

By subtracting the first equation from the second one we get $(a-1) t_{a}+(b-1) t_{b}+$ $(c-1) t_{c}=q\left(q^{2}+q+1\right)(1-q)$ which is less then zero. Since $0 \leq a<b<c$, if
$(a-1) \geq 0$ then $(a-1) t_{a}+(b-1) t_{b}+(c-1) t_{c}>0$, a contradiction. Therefore $(a-1)<0$ which implies $a=0$. Taking into account the third equation of the system we get

$$
\begin{equation*}
c(c-b) t_{c}=(q+1)\left[(q+1)^{2}-b\left(q^{2}+q+1\right)\right] . \tag{2.1}
\end{equation*}
$$

Since $c(c-b) t_{c}>0$ then $(q+1)^{2}-b\left(q^{2}+q+1\right)>0$. So $q+(1-b)\left(q^{2}+q+1\right)>0$, which implies $b=1$.

From now on let us assume that K is a $(q+1)$-set of type $(0,1, c)_{1}$.
Step 2.3. If K is a 3 -character $(q+1)$-set of S_{3}, then K is a set of type $\left(0,1, p^{t}+1\right)_{1}$ where

1. $0 \leq t \leq h$
2. $t \neq 0$ implies $t \mid h$ and h / t is an odd integer.

Proof. In view of Step 2.2, K is a $(q+1)$-set of type $(0,1, c)_{1}$.
Let P be a point of K and let us denote by n the number of c-secant lines through P. Counting in two different ways the number of pairs (Q, r) where r is a line through P and Q is a point of $r \cap K-\{P\}$, we get $(c-1) n=(q-1)=p^{h}$. Therefore $(c-1) \mid p^{h}$. Thus $c=p^{t}+1$ where $0 \leq t \leq h$. Since $b=1$ from (2.1) we have $c(c-1) t_{c}=q(q+1)$, that is, $p^{t}\left(p^{t}+1\right) t_{c}=p^{h}\left(p^{h}+1\right)$. So $\left(p^{t}+1\right) t_{c}=p^{h-t}\left(p^{h}+1\right)$, which implies that $\left(p^{t}+1\right) \mid p^{h-t}\left(p^{h}+1\right)$. Since $\left(p^{t}+1\right)$ and p^{h-t} are coprime, we get $\left(p^{t}+1\right) \mid\left(p^{h}+1\right)$. The last condition is equivalent to (2).

Step 2.4. In view of (1) Step 2.3, the extreme cases are:

- $t=0$ which implies that K is a $(q+1)$-set of type $(0,1,2)_{1}$, i.e. a cap, a set of points no three of which are collinear.
- $t=h$ which implies that k is a $(q+1)$-set of type $(0,1, q+1)_{1}$, i.e. a line.

Remark. In $P G\left(3, p^{2^{n}}\right)$ a 3 -character $(q+1)$-set is either a line or a cap.
Step 2.5. If K is a set of type $(0,1, c)_{1}$ of $P G(3, q)$, then, for each plane π of S_{3}, the set $K \cap \pi$ is a set of class $[0,1, c]_{1}$ of π.

Step 2.6. If $2<c<(q+1)$ then $g^{2}>c+1$.
Proof. Let r be a c-secant line of K. Since $c<(q+1)$, there is at least one point P of K not on r. Let π denote the plane through P and r. As the set $K \cap \pi$ is a set of class $[0,1, c]_{1}$, then each line through P and a point of r is a c-secant line. So $|K \cap \pi| \geq\left(c^{2}-c+1\right)$. Since $2<c$, we have $g^{2} \geq|K \cap \pi|>c+1$.

Step 2.7. A 3-character $(q+1)$-set K such that $g^{2}=g^{1}+1$ is a set of type $(0,1,2)_{1}$.

Proof. In view of Step 2.3, K is a $(q+1)$-set of type $\left(0,1, p^{t}+1\right)_{1}$ where $0 \leq t \leq h$. We have to prove that $t=0$ necessarily. On the contrary let us assume that $t>0$, so $\left(p^{t}+1\right)>2$. Since $g^{2}=g^{1}+1$, we have that K is not a line. Therefore $\left(p^{t}+1\right)<(q+1)$ and $t \neq h$. Moreover $2<\left(p^{t}+1\right)<(q+1)$, and from Step 2.6 we have that $g^{2}>c+1=g^{1}+1$, a contradiction.

Finally, the Theorem follows from the previous steps and by observing that $g^{2}=3$ and so K is a $(q+1)$-arc.

References

[1] L.M. Batten and J.M. Dover, Some sets of type (m, n) in cubic order planes, Design, Codes and Cryptography 16 (1999), 211-213.
[2] A.A. Bruen and J.W.P. Hirschfeld, Applications of line geometry over finite fields, I. The twisted cubic, Geom. Dedicata 7 (1978), 333-353.
[3] A. De Wispelaere and H. Van Maldeghem, Some new two-character sets in $\operatorname{PG}\left(5, q^{2}\right)$ and a distance-2 ovoid in the generalized hexagon H(4), Discrete Math. 308 (2008), 2976-2983.
[4] D.G. Glynn, On the characterization of certain sets of points in finite projective geometry of dimension three, Bull. London Math. Soc. 15 (1983), 31-34.
[5] J.W.P. Hirschfeld, Classical configuration over finite fields, I. The Double-Six and the cubic surface with 27 lines, Rend. Mat. e Appl. 26 (1967), 115-152.
[6] J.W.P. Hirschfeld, Rational curves on quadrics over finite fields of characterisic two, Rend. Mat. 3 (1971), 772-795.
[7] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford, 1985.
[8] J.W.P. Hirschfeld, X. Hubaut and J.A. Thas, Sets of type ($1, n, q+1$) in finite projective spaces of even order q, Math. Reports Acad. Sci. Canada 1 (1979), 133-136.
[9] T. Penttila and G.F. Royle, Sets of type (m, n) in the affine and projective planes of order nine, Design, Codes and Cryptography 6 (1995), 229-245.
[10] B. Segre, Curve razionali normali e K-archi negli spazi finiti, Ann. Mat. Pura e Appl. 39 (1955), 357-379.
[11] G. Tallini, Graphic characterization of algebraic varieties in a Galois space, Atti dei convegni Lincei, Colloquio internazionale sulle Teorie Combinatorie Tomo II, Roma 1976, 153-165.
[12] M. Tallini Scafati, The K-sets of $P G(r, q)$ from the character point of view, Finite Geometries (Eds. C.A. Baker and L.M. Batten), Marcel Dekker Inc., New York, 1985, 321-326.

