Note on three-character (q + 1)-sets in PG(3, q)

Mauro Zannetti Fulvio Zuanni

Department of Electrical and Information Engineering University of L'Aquila, L'Aquila Italy

mauro.zannetti@univaq.it fulvio.zuanni@univaq.it

Abstract

We give a combinatorial characterization of twisted cubics in PG(3, q).

1 Introduction

Let $S_r = S_{r,q} = PG(r,q)$ be a Galois space of dimension r and order q, where $q = p^h$, p a prime. We recall that the number of the points of a d-subspace S_d of S_r is denoted by $\theta_d = \theta_{d,q} = \sum_{i=0}^d q^i$, $0 \le d \le r$. Moreover the number of d-subspaces S_d of S_r is denoted by $\gamma_{r,d} = \gamma_{r,d,q} = \prod_{i=0}^d \frac{\theta_{r-i}}{\theta_{d-i}}, 0 \le d \le r$ and $\gamma_{r,-1} = 1$.

The study of the k-sets of S_r , that is, the sets of k points of S_r , has been founded and deepened by Segre [10].

A useful tool to study a k-set K of S_r is the *d*-characters of K, i.e. the numbers $t_i^d = t_i^d(K)$ of *i*-secant *d*-subspaces. Following [11], we call the *degree*, with respect to the dimension *d*, of *K*, the greatest integer $g^d = g^d(K)$ such that $t_q^d \neq 0$.

By counting in two different ways the total number of *d*-subspaces S_d , the number of pairs (P, S_d) where $P \in K$ and S_d is a *d*-subspace through P, and the number of pairs $(\{P, Q\}, S_d)$ where $\{P, Q\} \subset K$ and S_d is a *d*-subspace through P and Q, we get the following system of linear equations on integers t_i^d .

$$(1.1) \begin{cases} \sum_{i=0}^{\theta_d} t_i^d = \gamma_{r,d,q} \\ \sum_{i=0}^{\theta_d} it_i^d = k\gamma_{r-1,d-1,q} \\ \sum_{i=0}^{\theta_d} i(i-1)t_i^d = k(k-1)\gamma_{r-2,d-2,q} \end{cases}$$

A set K is said to be of class $[m_1, m_2, \ldots, m_s]_d$ if $t_i^d \neq 0$ implies $i \in \{m_1, m_2, \ldots, m_s\}$. Moreover, a set K of class $[m_1, m_2, \ldots, m_s]_d$ is called of type $(m_1, m_2, \ldots, m_s)_d$ if $i \in \{m_1, m_2, \ldots, m_s\}$ implies $t_i^d \neq 0$; see [1], [4], [8], [9], [11] and [12].

A set K is said to be an s-character set with respect to the dimension d if exactly s d-characters of K are different from zero; see [3].

A normal rational curve C of S_r is an irreducible algebraic variety of dimension 1 which is contained in S_r but not in a proper subspace. A k-arc of S_r is any k-set of linearly independent points of S_r if $k \leq r$ or does not contain r+1 linearly dependent points if $k \geq r+1$.

In this paper r is assumed to be three and q odd. A *twisted cubic* C can be represented in its canonical form as follows

$$C = \{ P(t) = (t^3, t^2, t, 1), t \in GF(q) \cup \{\infty\} \},\$$

where $t = \infty$ gives the point (1, 0, 0, 0). Twisted cubics over finite fields were defined and studied by Segre [10]. Further properties and relation to hyperbolic quadrics were given by Hirschfeld [2], [5], [6] and [7]. The main property of a twisted cubic of S_3 is that it is a maximal arc [10], namely it is a set of q + 1 points of S_3 , no four of which are coplanar. Segre shows that in S_3 , any (q + 1)-arc is a twisted cubic; see [10]. In this scheme of things we prove the following result.

Theorem. In S_3 , a (q + 1)-set of class $[a, b, c]_1$ such that $g^2 = g^1 + 1$, is a twisted cubic.

2 The Proof of the Theorem

We prove the theorem in several steps. Consider a (q + 1)-set K of S_3 . It is wellknown that K has at least two characters different from zero, with respect to lines; see [12]. We get

Step 2.1. A (q+1)-set K of S_3 has at least three characters different from zero.

Proof. Suppose on the contrary that K is a (q + 1)-set of S_3 of type $(m, n)_1$ with $0 \le m \le n$. The system of linear equations (1.1) becomes the following:

$$\begin{cases} t_m + t_n = (q^2 + 1)(q^2 + q + 1) \\ mt_m + nt_n = (q + 1)(q^2 + q + 1) \\ m(m - 1)t_m + n(n - 1)t_n = (q + 1)q \end{cases}$$

If m = 0, then from the 2nd and the 3rd equations we have $q = (n-1)(q^2+q+1) > q$. If m > 0, then from the 1st and the 2nd equations we have $0 \le (m-1)t_m + (n-1)t_n = q(q^2+q+1)(1-q) < 0$.

In both cases we have a contradiction.

In view of Step 2.1, we will investigate the 3-character (q+1)-sets. From now on let us assume that K is a 3-character (q+1)-set.

Step 2.2. A 3-character (q + 1)-set K of S_3 is of type $(0, 1, c)_1$.

Proof. Let K be a (q+1)-set of S_3 of type $(a, b, c)_1$ with $0 \le a < b < c$. The system of linear equations (1.1) becomes the following:

$$\begin{cases} t_a + t_b + t_c = (q^2 + 1)(q^2 + q + 1) \\ at_a + bt_b + ct_c = (q + 1)(q^2 + q + 1) \\ a(a - 1)t_a + b(b - 1)t_b + c(c - 1)t_c = (q + 1)q \end{cases}$$

By subtracting the first equation from the second one we get $(a-1)t_a + (b-1)t_b + (c-1)t_c = q(q^2 + q + 1)(1-q)$ which is less than zero. Since $0 \le a < b < c$, if

 $(a-1) \ge 0$ then $(a-1)t_a + (b-1)t_b + (c-1)t_c > 0$, a contradiction. Therefore (a-1) < 0 which implies a = 0. Taking into account the third equation of the system we get

(2.1)
$$c(c-b)t_c = (q+1)[(q+1)^2 - b(q^2 + q + 1)].$$

Since $c(c-b)t_c > 0$ then $(q+1)^2 - b(q^2 + q + 1) > 0$. So $q + (1-b)(q^2 + q + 1) > 0$, which implies b = 1.

From now on let us assume that K is a (q+1)-set of type $(0, 1, c)_1$.

Step 2.3. If K is a 3-character (q+1)-set of S_3 , then K is a set of type $(0, 1, p^t+1)_1$ where

- 1. $0 \le t \le h$
- 2. $t \neq 0$ implies $t \mid h$ and h/t is an odd integer.

Proof. In view of Step 2.2, K is a (q+1)-set of type $(0, 1, c)_1$.

Let *P* be a point of *K* and let us denote by *n* the number of *c*-secant lines through *P*. Counting in two different ways the number of pairs (Q, r) where *r* is a line through *P* and *Q* is a point of $r \cap K - \{P\}$, we get $(c-1)n = (q-1) = p^h$. Therefore $(c-1) \mid p^h$. Thus $c = p^t + 1$ where $0 \le t \le h$. Since b = 1 from (2.1) we have $c(c-1)t_c = q(q+1)$, that is, $p^t(p^t+1)t_c = p^h(p^h+1)$. So $(p^t+1)t_c = p^{h-t}(p^h+1)$, which implies that $(p^t+1) \mid p^{h-t}(p^h+1)$. Since (p^t+1) and p^{h-t} are coprime, we get $(p^t+1) \mid (p^h+1)$. The last condition is equivalent to (2).

Step 2.4. In view of (1) Step 2.3, the extreme cases are:

- t = 0 which implies that K is a (q + 1)-set of type $(0, 1, 2)_1$, i.e. a cap, a set of points no three of which are collinear.
- t = h which implies that k is a (q+1)-set of type $(0, 1, q+1)_1$, i.e. a line.

Remark. In $PG(3, p^{2^n})$ a 3-character (q+1)-set is either a line or a cap.

Step 2.5. If K is a set of type $(0, 1, c)_1$ of PG(3, q), then, for each plane π of S_3 , the set $K \cap \pi$ is a set of class $[0, 1, c]_1$ of π .

Step 2.6. If 2 < c < (q+1) then $g^2 > c+1$.

Proof. Let r be a c-secant line of K. Since c < (q + 1), there is at least one point P of K not on r. Let π denote the plane through P and r. As the set $K \cap \pi$ is a set of class $[0, 1, c]_1$, then each line through P and a point of r is a c-secant line. So $|K \cap \pi| \ge (c^2 - c + 1)$. Since 2 < c, we have $g^2 \ge |K \cap \pi| > c + 1$.

Step 2.7. A 3-character (q+1)-set K such that $g^2 = g^1 + 1$ is a set of type $(0, 1, 2)_1$.

Proof. In view of Step 2.3, K is a (q+1)-set of type $(0, 1, p^t + 1)_1$ where $0 \le t \le h$. We have to prove that t = 0 necessarily. On the contrary let us assume that t > 0, so $(p^t + 1) > 2$. Since $g^2 = g^1 + 1$, we have that K is not a line. Therefore $(p^t + 1) < (q + 1)$ and $t \ne h$. Moreover $2 < (p^t + 1) < (q + 1)$, and from Step 2.6 we have that $g^2 > c + 1 = g^1 + 1$, a contradiction.

Finally, the Theorem follows from the previous steps and by observing that $g^2 = 3$ and so K is a (q + 1)-arc.

References

- L.M. Batten and J.M. Dover, Some sets of type (m, n) in cubic order planes, Design, Codes and Cryptography 16 (1999), 211–213.
- [2] A.A. Bruen and J.W.P. Hirschfeld, Applications of line geometry over finite fields, I. The twisted cubic, *Geom. Dedicata* 7 (1978), 333–353.
- [3] A. De Wispelaere and H. Van Maldeghem, Some new two-character sets in $PG(5,q^2)$ and a distance-2 ovoid in the generalized hexagon H(4), Discrete Math. **308** (2008), 2976–2983.
- [4] D.G. Glynn, On the characterization of certain sets of points in finite projective geometry of dimension three, Bull. London Math. Soc. 15 (1983), 31–34.
- [5] J.W.P. Hirschfeld, Classical configuration over finite fields, I. The Double-Six and the cubic surface with 27 lines, *Rend. Mat. e Appl.* 26 (1967), 115–152.
- [6] J.W.P. Hirschfeld, Rational curves on quadrics over finite fields of characterisic two, *Rend. Mat.* 3 (1971), 772–795.
- [7] J.W.P. Hirschfeld, *Finite Projective Spaces of Three Dimensions*, Oxford University Press, Oxford, 1985.
- [8] J.W.P. Hirschfeld, X. Hubaut and J.A. Thas, Sets of type (1, n, q+1) in finite projective spaces of even order q, Math. Reports Acad. Sci. Canada 1 (1979), 133–136.
- [9] T. Penttila and G.F. Royle, Sets of type (m, n) in the affine and projective planes of order nine, Design, Codes and Cryptography 6 (1995), 229–245.
- [10] B. Segre, Curve razionali normali e K-archi negli spazi finiti, Ann. Mat. Pura e Appl. 39 (1955), 357–379.
- [11] G. Tallini, Graphic characterization of algebraic varieties in a Galois space, Atti dei convegni Lincei, Colloquio internazionale sulle Teorie Combinatorie Tomo II, Roma 1976, 153–165.
- [12] M. Tallini Scafati, The K-sets of PG(r,q) from the character point of view, *Finite Geometries* (Eds. C.A. Baker and L.M. Batten), Marcel Dekker Inc., New York, 1985, 321–326.