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Abstract This paper proposes to investigate topology opti-
mization with density-dependent body forces and especially
self-weight loading. Surprisingly the solution of such prob-
lems cannot be based on a direct extension of the solution
procedure used for minimum-compliance topology opti-
mization with fixed external loads. At first the particular
difficulties arising in the considered topology problems are
pointed out: non-monotonous behaviour of the compliance,
possible unconstrained character of the optimum and the
parasitic effect for low densities when using the power
model (SIMP). To get rid of the last problem requires the
modification of the power law model for low densities. The
other problems require that the solution procedure and the
selection of appropriate structural approximations be re-
visited. Numerical applications compare the efficiency of
different approximation schemes of the MMA family. It
is shown that important improvements are achieved when
the solution is carried out using the gradient-based method
of moving asymptotes (GBMMA) approximations. Criteria
for selecting the approximations are suggested. In addition,
the applications also provide the opportunity to illustrate
the strong influence of the ratio between the applied loads
and the structural weight on the optimal structural topol-
ogy.

Keywords Convex approximations · MMA · Self-weight ·
Topology optimization

1 Introduction

Since the work by Bendsøe and Kikuchi (1988), much re-
search in topology optimization has been devoted to extend
the basic minimum-compliance design problem for a given
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volume of material to various problems and design criteria
(for a review, see Bendsøe and Sigmund (2003) and Es-
chenauer and Olhoff (2001)).

To solve such large-scale problems optimization meth-
ods based on sequential convex programming, as defined by
(Fleury 1993), proved to be general and flexible, but also
efficient, tools (Duysinx 1997). The approximation concept
consists of replacing the original optimization problem:

min
X

g0(X)

s.t.: gj(X) ≤ gmax
j j = 1 . . . m

x i ≤ xi ≤ xi i = 1 . . . n (1)

which is implicit in terms of the design variables X = {xi ,

i = 1 . . . n}, by the solution of a sequence of explicit and
convex approximated sub-problems that are built based on
a variant of a Taylor series expansion g̃j(X) of the involved
design functions gj(X):

min
X

g̃(k)
0 (X)

s.t.: g̃(k)
j (X) ≤ gmax

j j = 1 . . . m

x(k)
i ≤ xi ≤ x(k)

i i = 1 . . . n (2)

where k is the iteration index. The local approximation
techniques generally require performing of a structural and
a sensitivity analysis for the computation of the function
values and their derivatives. Introducing such approximation
techniques allows the number of structural analyses required
to reach the optimum of the problem (1) to be decreased.

Several publications (see for example Duysinx et al.
(1995), Duysinx and Bendsøe (1998), Pedersen (2000), Sig-
mund (2001)) reported successful and efficient solution
of topology problems while resorting to classical approx-
imation schemes, such as the convex linearization method
(CONLIN, by Fleury and Braibant (1986)) and the method
of moving asymptotes (MMA, derived by Svanberg (1987)).
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The problem of optimal design for self-weight was first
discussed by Rozvany (1977) for plastic design and later ex-
tended for any body forces by the same author in his book
(Rozvany 1989). Optimal designs for wich self-weight load-
ing has been treated successfully are beam, arch and plate
problems (e.g. Rozvany et al. (1980), Wang and Rozvany
(1983), Karihaloo and Kanagasundaram (1987), Rozvany
et al. (1988)), composite structures (e.g. Kwak et al. (1997))
or shape optimization (e.g. Imam (1998)). Nevertheless sur-
prisingly, there is very little published work dealing with
topology optimization using homogenization and density-
dependent body forces like self-weight, centrifugal loads,
inertia loads, etc. To the authors’ knowledge the only pub-
lished results in topology optimization are Turteltaub and
Washabaugh (1999) and Park et al. (2003). However tak-
ing into account density-dependent loads is extremely im-
portant for the preliminary design of many structures: the
self-weight of large civil engineering structures and the body
forces coming from the centrifugal acceleration in rotating
machines are indeed dominant effects. Therefore it is sur-
prising that so little attention has been paid to this kind
of application while efficient solution procedures are now
available for the standard problem of topology optimization
with external dead loads.

In a recent communication (Bruyneel and Duysinx
2001), the authors pointed out that the classical approach
based on these procedures can be much less efficient and
even fail when dealing with the compliance minimization of
structures subjected to their own weight. The present paper
investigates the nature of these problems and shows that the
standard topology optimization procedure diverges mainly
when it is applied to problems including density-dependent
body forces.

The paper is organized as following. At first the formula-
tion of topology problems including density-dependent body
forces is stated (Sect. 2) and the sensitivity analysis is briefly
recalled (Sect. 3). The solution procedure based on different
MMA approximations is summarized in Sect. 4.

In Sect. 5, a case study shows the particular nature of
the topology optimization problem including self-weight:
non-monotonous behavior of the compliance, possible un-
constrained character of the optimum and parasitic effects
due to the incorrect modeling of effective mechanical and
mass properties in the vicinity of zero density with the clas-
sical SIMP law.

Section 6 investigates the selection of appropriate ap-
proximation schemes for topology optimization if monoto-
nous or non-monotonous responses are present. The answer
that is proposed here relies on an evolution of the gradient-
based MMA (or GBMMA) approximation procedure orig-
inally developed in the context of composite structure op-
timization (Bruyneel et al. 2002). This procedure is based
on several approximation schemes of the MMA family and
an automatic strategy to select the most suited scheme. This
new procedure stabilizes the optimization process and re-
duces the number of iterations to come to a stationary so-
lution. Numerical applications developed in the paper also
shed light on the influence of the topology on the ratio be-
tween the dead loads and the density-dependent loads.

2 Formulation of a topology optimization problem with
density-dependent body loads

The basic formulation of a topology optimization problem
(Bendsøe and Sigmund 2003) consists of minimizing the en-
ergy of the applied loads, called compliance, for a given
volume fraction of the material.

Here the local mechanical properties of the material are
parameterized with a power law model called the SIMP
model (see for instance Bendsøe (1989) and Zhou and Roz-
vany (1991)). The effective density ρ and the material stiff-
ness E are related to the base material properties ρo and Eo
for p > 1 according to:

ρ = µρo (3)

E = µp Eo (4)

The continuum mechanics problem is discretized with
the finite element method. In this approach, g and q are,
respectively, the vectors of node loads and node displace-
ments, related by the structural stiffness matrix K through
the equilibrium equation Kq = g. The density field is also
discretized using a usual element-by-element constant dens-
ity function. Thus a variable µi is attached to each finite
element “i” of the model.

If one denotes by µ = {µi, i = 1 . . . n} the vector of con-
tinuous design variables and by Vi the volume of the ith
finite element, the formulation of the topology optimization
including self-weight (or, more generally, density-dependent
body forces) can be stated as follows:

min
µ

C = gT q

s.t.: V ≤
n∑

i=1

µi Vi ≤ V

µ
i

≤ µi ≤ µi i = 1 . . . n (5)

It is important to remark that in (5) a maximum V and
a minimum V > 0 bound on the volume of material are in-
troduced. The minimum bound on the volume of material
0 < V is necessary to reject the trivial solution µi = 0, ∀ i,
which is feasible when a pure self-weight loading is con-
sidered, but which is nonsense from an engineering point
of view. In other words, well-posed engineering problems
require the presence of a non-design-dependent load or of
a non-structural mass (which may be due to the presence of
a non-zero minimum density).

Classically, the stiffness matrix K and the displacement
vector q depend explicitly or implicitly on the density vari-
ables, while the load vector g, which are point loads or sur-
face tractions, is a constant. The particularity of the present
paper is to consider also body forces that depend on the
density, which here is the structural self-weight. In the nu-
merical applications, we consider four-node quadrangular
finite elements and a gravity load applied along the vertical
Y direction so that one fourth of the weight of each finite
element ith is on each of its four nodes.



Note on topology optimization of continuum structures including self-weight 247

gi,X = 0 gi,Y = −µi ρo ag Vi/4 (6)

where ag is the absolute value of the gravitational accelera-
tion. The contributions of adjacent elements are summed at
common nodes.

Finally, to avoid well-known numerical instabilities, i.e.
mesh dependency and checkerboard patterns, that often hap-
pen in the solution of topology optimization problems, a fil-
tering technique proposed by Sigmund (1997) is used to
solve (5).

3 Sensitivity analysis

By considering the derivative of the equilibrium equation,
the sensitivity of the compliance C can be written:

∂C

∂µi
= 2 qT ∂g

∂µi
−qT ∂K

∂µi
q (7)

When ∂g/∂µi vanishes, the derivative (7) is always nega-
tive, and the structural behaviour of the compliance is then
monotonous. This fact was exploited to build efficient up-
date strategies based on optimality conditions in the first
works devoted to topology optimization (see for example
Bendsøe and Sigmund (2003)).

When density-dependent loads are considered, the first
term of (7) does not vanish anymore and it can be seen that
the derivatives of the compliance (7) can be either positive
or negative and even change sign when changing the value
of the design variables. In this case, the compliance C can
experience a non-monotonous character with respect to the
considered design variable µi . As will be shown later, this
property leads to significant difficulties in the standard solu-
tion procedure.

4 Approximations of the MMA family

Because of their general character, the approximations based
on the concept of moving asymptotes (Svanberg 1987;
Bruyneel et al. 2002) are considered here to approximate the
structural responses gj(µ) involved in (5).

4.1 Non-monotonous approximations

In the globally convergent version of MMA (GCMMA) pro-
posed by Svanberg (1995), each function gj(µ) is approxi-
mated according to the following general expansion

g̃j(µ) = gj

(
µ(k)

)
+

n∑
i=1

p(k)
ij

(
1

U(k)
i −µi

− 1

U(k)
i −µ

(k)
i

)

+
n∑

i=1

q(k)
ij

(
1

µi − L(k)
i

− 1

µ
(k)
i − L(k)

i

)
(8)

gj(µ
(k)) is the function value at the current iteration k,

whereas the parameters p(k)
ij and q(k)

ij are computed based on

Fig. 1 Monotonous approximation around x(k)

the first-order derivatives, on the asymptotes L(k)
i and U(k)

i ,
and on a non-monotonic parameter ρ

(k)
j . At each iteration

k, the asymptotes L(k)
i and U(k)

i are updated according to
a heuristic rule that is the same as for the classical MMA,
while the parameter ρ

(k)
j is updated on the basis of a rule

proposed by Svanberg to ensure the globally convergent
character of the approximation. If the parameters p(k)

ij and

q(k)
ij in (8) are positive, the approximation is convex. Because

of the presence of parameter ρ
(k)
j the approximation is non-

monotonous, as illustrated in Fig. 2.
As shown in Bruyneel et al. (2002), the original Svan-

berg’s GCMMA scheme can be much improved when
exploiting the information at previous iteration points. In

Fig. 2 Non-monotonous approximations around x(k)
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the gradient-based MMA approximation schemes (or GB-
MMA), the gradients information from the previous itera-
tion k −1 is used in place of ρ

(k)
j to build (8).

For GBMMA1, p(k)
ij and q(k)

ij in (8) are determined by
matching the first partial derivatives at the current and previ-
ous design points. They are analytically computed from the
following set of equations:

∂gj
(
µ(k)

)
∂µi

= p(k)
ij(

U(k)
i −µ

(k)
i

)2 − q(k)
ij(

µ
(k)
i − L(k)

i

)2

∂gj
(
µ(k−1)

)
∂µi

= p(k)
ij(

U(k)
i −µ

(k−1)
i

)2 − q(k)
ij(

µ
(k−1)
i − L(k)

i

)2 (9)

In GBMMA2, the quality of the approximation (8) is im-
proved by using an estimation of the diagonal second-order
derivatives (10) introduced for the first time in Duysinx et al.
(1995). The determination of the parameters p(k)

ij and q(k)
ij

of the scheme then relies on the first partial derivatives at
the current design points and on the estimated second-order
diagonal derivatives (10).

∂2gj
(
µ(k)

)
∂µ2

i

�
∂gj

(
µ(k)

)
∂µi

− ∂gj
(
µ(k−1)

)
∂µi

µ
(k)
i −µ

(k−1)
i

(10)

It was observed in numerical tests that it is interesting to
use GBMMA2 when the current design point is in the vicin-
ity of the optimum, that is at the end of the optimization
process. Indeed, it makes sense that, in the final conver-
gence stages, the use of second-order information, even if
estimated, improves the convergence speed. Based on this
observation, the contribution of a given design variable µi
in a given design function gj(µ) can be approximated by
GBMMA2 when the criterion (11) is verified:∣∣∣µ(k)

i −µ
(k−1)
i

∣∣∣
µi −µ

i

≤ SWITCH (11)

Fig. 3 Selection of the non-monotonous approximation based on
GCMMA, GBMMA1 and GBMMA2

Otherwise, GBMMA1 is used. This leads to consider
the mixed non-monotonous GBMMA1–GBMMA2 appro-
ximation, for SWITCH ∈]0, 1[.

When p(k)
ij and q(k)

ij computed by GBMMA1 or GB-
MMA2 are not positive, the approximation procedure
switches automatically back to a classical GCMMA to keep
a convex approximation. The automatic selection of the
non-monotonous convex approximation based on (11) is
summarized in Fig. 3.

4.2 Monotonous approximations

Monotonous approximations like MMA or CONLIN can
also be recovered as special cases of the more general non-
monotonous approximation GCMMA. For these approxima-
tions, only one asymptote is used at a time, which means
that, depending on the sign of the first derivatives, either p(k)

ij

or q(k)
ij is set to zero.
The classic method of moving asymptotes (Svanberg

1987), which is illustrated in Fig. 1, is given by

g̃j(µ) = gj

(
µ(k)

)
+

n∑
+,i

p(k)
ij

(
1

U(k)
i −µi

− 1

U(k)
i −µ

(k)
i

)

+
n∑

−,i

q(k)
ij

(
1

µi − L(k)
i

− 1

µ
(k)
i − L(k)

i

)
(12)

In addition, a move-limits strategy proposed by Svanberg
(1987) is necessary to restrict the range of variation of the
design variables during the optimization process.

Furthermore, by forcing L(k)
i = 0 and U(k)

i → ∞, MMA
is reduced to the convex linearization (CONLIN) scheme
proposed by Fleury and Braibant (1986):

g̃j(µ) = gj

(
µ(k)

)
+

∑
+,i

∂gj
(
µ(k)

)
∂µi

(
µi −µ

(k)
i

)

−
∑
−,i

(
µ

(k)
i

)2 ∂gj
(
µ(k)

)
∂µi

(
1

µi
− 1

µ
(k)
i

)
(13)

For the CONLIN approximation, a move-limit strategy (14)
is also used:

µ
i
≤ µ

(k−1)
i −∆µ ≤ µi ≤ µ

(k−1)
i +∆µ ≤ µi (14)

5 A case study including the self-weight

In order to distinguish more clearly the difficulties arising
with topology optimization including self-weight, we con-
sider two versions of the same test case, in which the differ-
ent features are successively introduced.

In the first version, the minimum allowable pseudo-
density is arbitrarily set to 0.2 (reinforcement problem), in
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Fig. 4 Design domain and supports. Minimum density of 0.2

order to prevent the appearance of problems related to the
non-consistent behaviour of the power law model for low
density. This problem allows the non-monotonous character
of the compliance to be pointed out and to show that this
property is the origin of the failure of optimization proced-
ures based on monotonous approximations.

Then in the second version, the minimum density is set to
the usual value of 0.01 to highlight the problem related to the
numerical “artifact” of the SIMP modeling of mechanical
properties in the vicinity of zero density.

The test case illustrated in Fig. 4 consists of designing
a structure that relies on two supports, while supporting its
own weight. Intuitively an arch type structure is expected.
The reference length L is L = 1 m. Due to symmetry con-
ditions, only one half of the design domain is studied and is
discretized with 20×20 four-node quadrangular finite elem-
ents with eight degrees of freedom. The mechanical proper-
ties of the base material to be distributed in the domain are:
Eo = 1 N/m2, ν = 0.3 and ρo = 1 kg/m3, while the gravita-
tional acceleration ag is 9.81 kg m/s2. The exponent p in (4)
is equal to 2. The maximum available amount of material V
on solution is 80%, while the minimum amount of material
V is set to 1%.

The stopping criteria adopted is based on the maximum
variation of the design variables over two design steps,
where TOL = 0.0001:

max
i=1...n

∣∣∣µ(k)
i −µ

(k−1)
i

∣∣∣ ≤ TOL (15)

5.1 Non-monotonous behaviour of the compliance

The particular behaviour of the compliance when self-
weight is considered is illustrated on the reinforcement
problem with a minimum density of (µ = 0.2).

At first CONLIN, a monotonous approximation, is used
to solve the problem. The parameter ∆µ = 0.5 is used in
the move-limit strategy of (14). After a large number of
iterations (200), the optimization process is still not con-

Fig. 5 Solutions obtained with CONLIN at iterations 199 and 200

Fig. 6 Iteration history with CONLIN limited to 200 iterations
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vergent and the values of the compliance and the volume
oscillate from one iteration to another (see Fig. 6). As sug-
gested by Fig. 5, which gives the material distribution at
iterations 199 and 200, the problem stems from the oscilla-

Fig. 7 Evolution of the compliance according to the design variable
40. Monotonous approximation at iteration 199 and bounds on the
design variable

Fig. 8 Solution obtained with GCMMA

tion of several density design variables. (A grey scale is used
to represent the emerging structure: black is solid (µ = 1)
and white is the void (µ = 0).)

Although CONLIN and MMA have been used success-
fully many times for the solution of topology problems
(e.g. Duysinx and Bendsøe (1998), Pedersen (2000), Sig-
mund (2001)), monotonous approximations are not well
suited to the problem considered here. The reason is the
non-monotonous behaviour of the compliance with respect
to some design variables when density-dependent loads are
considered. In Fig. 7, for instance, one plots the behaviour
of the compliance with respect to design variable 40, which
oscillates between its lower and upper bounds. Its is clear
that the compliance is non-monotonous with respect to this
variable. Using monotonous approximations, the minimum
of the subproblem with respect to this variable is only gov-
erned by alternatively the upper and lower bounds limiting
the range of variation of the variable. Oscillations appear
and the optimization process does not converge.

This kind of trouble can be avoided with non-mono-
tonous approximations like GCMMA (Svanberg 1995). Fig-
ure 8 shows the solution of the problem under study when
using GCMMA. The convergence becomes smooth and
a good optimum distribution is reached. However the solu-
tion might be very slow. It will be shown later that conver-
gence speed can be improved by using gradient-based MMA
approximations, which are also non-monotonous.

5.2 Remark on the volume restriction

It is also interesting to remark that optimal solutions of prob-
lems with design-dependent loads can be unconstrained.
Here, the volume fraction of material used in the optimal
solution remains stuck at 32.5% of the available design do-
main even if it is allowed to take a larger value, e.g. 80%
as illustrated in Fig. 9. This is another particularity of the
topology optimization including density-dependent loads al-
ready observed in optimal topology problems of rotating

Fig. 9 Evolution of the volume fraction at the solution
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bodies by Turteltaub and Washabaugh (1999). This property
is possible because of the non-monotonous character of the
compliance.

5.3 Modeling of material properties for low densities

The problem related to the solution of non-monotonous
problems being fixed by resorting to GCMMA or any non-
monotonous approximation, one can detect another diffi-
culty of self-weight topology problems. It is related to the
material model based on a power law when densities are
close to zero. This is illustrated on the second version of the
test case in which the lower bound of design variables is very
small (µ = 0.01). The test case is no longer a reinforcement

Fig. 10 Design domain, supports and non-structural mass at the top.
Minimum density of 0.01

Fig. 11 Solution obtained with GCMMA for a minimum density of
0.01

one, so a non-structural mass, which is placed at the top of
the structure, is necessary to ensure that the problem is well
posed (Fig. 10).

Although GCMMA is used, it is seen in Fig. 11 that an
undesirable effect appears in the solution of the problem: er-
ratic intermediate density patterns alter the final topology.
The explanation is the following. The ratio between the
weight g÷µ and the stiffness K÷µp becomes infinite when
the effective pseudo-density tends to zero, which means that
the displacements and the compliance become unbounded in
low-density regions. The algorithm tries to fix the problem
by allowing some material to reduce the uncontrolled node
displacements. This is totally artificial from an engineering
point of view.

Following the work done by Pedersen (2000, 2001) for
eigenvalues and prestressed problems, the parameterization
(4) can easily be modified to avoid this undesirable effect.
A linear profile is selected under a given pseudo-density µC ,
as illustrated in Fig. 12. A threshold of µC = 0.25 proved
to be efficient in our numerical applications. The modified
model then takes the form (16).

ρi = µi ρ0 0 < µ
i
≤ µi ≤ 1

Ei =



µ
p
i E0

µi

(
µ

p−1
C E0

) µC < µi ≤ 1

0 < µ
i
≤ µi ≤ µC (16)

The modified interpolation law limits the ratio between
the weight load and the stiffness to a given finite value for
low densities, and stabilizes the optimization process.

One may be worried about the fact that the relationship
(16) is now non-differentiable whereas our solution algo-
rithm is gradient based. However, while theoretically this is
a problem, practically we experienced no problems during
numerical applications. Indeed, the non-smooth point is not
a solution point, and there is no change of sign of the deriva-
tive, so the algorithm just goes through the non-smooth
points. A more elegant solution could be found by adopting
the alternative interpolation model proposed by Stolpe and
Svanberg (2001), which is smooth everywhere and which
always has a positive (non-zero) slope at zero density. The
particular choice of the interpolation law has no influence on
the conclusions of this paper. The chosen modification of the
SIMP model (16) just has the advantage of working with the
very popular choice of power law.

The solution of the arch problem with the modified SIMP
law (16) and GCMMA is proposed in Fig. 13. When com-
pared to the material distribution of Fig. 11, the optimal
material distribution is free of parasitic appendices in the
low-density regions.

Finally it is interesting to verify with Figs. 14 and 15 that
the optimization process still diverges with CONLIN even
if the modified SIMP law is used. Oscillations of the de-
sign variables appear during the optimization process: some
of them have values successively at the upper bound and at
the lower bound defined in (14), where ∆µ = 0.3. Obviously
the modified SIMP law does not remove the solution prob-
lem discussed previously and the solution still requires the
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Fig. 12 Penalizations of the intermediate densities. µC = 0.25 for the modified material parameterization

Fig. 13 Optimal topology for the arch problem when using GCMMA
and the modified SIMP law

Fig. 14 Topology obtained by CONLIN at iteration 199 (modified
SIMP law)

use of non-monotonous approximations. Thence the two dif-
ficulties pointed out here are definitively two independent
problems and must be treated separately.

6 Improving solution performance with GBMMA

We now show that there is great interest in using the recent
gradient-based MMA approximations (GBMMA) to solve

Fig. 15 Topology obtained by CONLIN at iteration 200 (modified
SIMP law)

delicate topology optimization problems like self-weight
loaded problems. Three numerical applications are proposed
and solved with different approximation schemes from the
MMA family. The performance of the different approxima-
tions are compared for three applications: the arch prob-
lem already explored previously, the beam structure (that
is a variant of the so called MBB beam) and a bridge de-
sign problem. The main comparison criterion here is the
number of iterations, since all the optimization techniques
under study require the same number of finite element and
sensitivity analyses at each iteration. In the following appli-
cations, the stopping criteria is satisfied when the maximum
variation of the design variables is lower than a user-defined
precision, TOL in (15). This parameter will be varied be-
tween 0.01 and 0.0001. For all applications, the gravity acts
from top to bottom and the gravitational acceleration ag is
9.81 kg m/s2.

6.1 Arch structure

The problem of Fig. 10 is considered, where a non-structural
mass is placed at the top to load the structure. The data of the
problem are the same as in the previous sections. L = 1 m
is a reference length. The mechanical properties of the base
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Table 1 Number of iterations needed for solving the arch problem
for different values of TOL in (15). GBMMA1–GBMMA2 is related
to Fig. 3 (SWITCH = 0.2)

Approximations 0.01 0.001 0.0001

MMA 130 402 438
GCMMA 80 200 253
GBMMA1 51 98 130
GBMMA2 73 109 139
GBMMA1–GBMMA2 54 91 112

material to be distributed in the domain are: Eo = 1 N/m2,
ν = 0.3 and ρo = 1 kg/m3 while an an exponent p = 2 is
selected in the SIMP law.

At first we remind the reader that, when CONLIN is
used, no optimal topology can be obtained. The topology
changes from one iteration to another (Figs. 14 and 15) and
there are oscillations of the design variables during the op-
timization process. Such a monotonous approximation is
definitively not efficient for solving this non-monotonous
problem.

For the other approximations described in this paper:
MMA, GCMMA, GBMMA1, GBMMA2 and GBMMA1–
GBMMA2, a solution can always be reached (similar
to Fig. 13). Although MMA gives rise to monotonous ap-
proximations of the design functions, it is able to come to
an optimal topology, thanks to a robust move-limits strat-
egy suggested by Svanberg (1987). However, as reported in
Table 1 for different values of the precision TOL in (15),
MMA requires a lot of iterations: twice as many as GCMMA
and nearly four times more than the best GBMMA. For self-
weight problems, the non-monotonous approximations are
obviously much more efficient, especially when gradients
from the previous iteration are used as in GBMMA approx-
imations. According to the results of Table 1, GBMMA is
always faster than GCMMA. The best results are obtained
with the automatic strategy combining GBMMA1 and GB-
MMA2. In this case, the mixed GBMMA1–GBMMA2
scheme is nearly twice as fast than GCMMA.

6.2 Beam structure

The second application given in Fig. 16 is a variant of the
classic MBB beam. Due to symmetry conditions, one half
of the design domain is discretized with 40 ×20 quadran-
gular finite elements with eight degrees of freedom. The
mechanical properties of the base material to be distributed
in the domain is characterized by a Young’s modulus of
Eo = 100 N/m2, ν = 0.3 and ρo = 1 kg/m3. A penalization
p = 3 is chosen in the SIMP model. The obtained volume
fraction of material at the optimal solution is 24% for the
problem including only self-weight. For an objective com-
parison, this value is taken as the bound V for the volume
constraint (5) assigned to the problems including external
loads.

When self-weight is not taken into account, the ampli-
tude of the load P has no influence on the resulting op-
timal topology, shown in Fig. 17. In this case, 103 itera-

Fig. 16 MBB beam: design domain, supports and applied load

tions are needed to reach the solution with the monotonous
MMA approximation, while 229 design steps are required
for GCMMA (with TOL = 0.01). This can be attributed
to the too conservative character of the non-monotonous
GCMMA in solving such a classical topology optimization
problem without self-weight loads. In the case of fixed loads
(i.e. not design dependent), we recover the usual conclusion
that MMA works very well.

Conversely when only self-weight is considered in the
design problem, MMA, GCMMA, GBMMA1 and GB-
MMA2 take respectively 121, 112, 76 and 55 iterations to
find the optimal topology (with TOL = 0.01) and it is clear
that there is a strong advantage in using non-monotonous
schemes.

Let us now investigate situations in which the self-weight
and the applied load P are considered simultaneously in the
design problem. As illustrated in Fig. 17 a first conclusion
is that the resulting topology depends on the ratio between
the applied load and the structural weight at the solution. It
is seen that, when the structural weight becomes preponder-
ant in comparison to the applied load, the stiffeners under
the load disappear and the shape of the structure tends to be
an arch, which makes sense from an engineering point of
view.

It is then interesting to look at the solution effort re-
quired by the different algorithms. The number of itera-
tions needed to reach the solutions is given in Table 2 as
a function of the ratio between the fixed load P and the
self-weight of the structure (50% means that the applied
load is 50% of the total structural weight at the solution).
Although GCMMA gives rise to non-monotonous approxi-
mations of the structural functions, it is sometimes not able
to reach the optimum within a small number of iterations.
This behaviour can be related to a sometimes too conserva-
tive character of the GCMMA approximation as admitted by
its author (Svanberg 1995). This behaviour cannot be pre-
dicted; it depends on the ‘good’ choice of initial values of
internal parameters of the algorithms in regard to the prob-
lem characteristics. This is a disadvantage of this scheme.

In every situation, the number of structural analyses
required to get the optimum is reduced when resorting
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to GBMMA approximations and using the information
from the previous iteration. The performance of the mixed
GBMMA1–GBMMA2 approximation procedure (with the
parameter SWITCH = 0.2) is outstanding for all problems.
Furthermore the number of iterations remains stable, in-

Fig. 17 Optimal topologies for different ratios between the applied
load and the self-weight

Table 2 Beam problem: Number of iterations required to solve
the problem with TOL = 0.01 in (15). GBMMA1–GBMMA2 with
SWITCH = 0.2

Load/weight MMA GCMMA GBMMA1–GBMMA2

200% 90 176 101
100% 171 109 80
50% 123 273 106
25% 182 357 117
10% 176 180 120

dependent of problem characteristics, which is even bet-
ter from a practical point of view for industrial applica-
tions.

6.3 Bridge structure

The definition of the last application, concerning the design
of a bridge structure, is given in Fig. 18. A non-structural
mass is placed at the top to load the structure to take into ac-
count the weight of the road surface. Because of symmetry,
only one half of the design domain is studied and discretized
with 20×20 quadrangular finite elements with eight de-
grees of freedom. The mechanical properties of the base
material to be distributed in the domain are: Eo = 1 N/m2,
ν = 0.3 and ρo = 1 kg/m3. The optimal topology is pre-

Fig. 18 Bridge structure: design domain, supports and non structural
mass at the top

Fig. 19 Optimal topology for the bridge problem
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Table 3 Bridge problem: number of iterations required to solve the
problem. GBMMA1–GBMMA2 with SWITCH = 0.2

TOL MMA GCMMA GBMMA1–GBMMA2

0.01 71 67 58
0.001 87 83 65
0.0001 109 97 101

sented in Fig. 19. It is composed of an arch reinforced by
additional vertical pillars.

A comparison of the performance of the different ap-
proximation schemes MMA, GCMMA and GBMMA1–
GBMMA2 is reported in Table 3. In these numerical appli-
cations, the performance of GBMMA1–GBMMA2 is still
extremely good, even if the superiority of GBMMA com-
pared to MMA and GCMMA is not as large as in the other
applications. Nonetheless, the most important thing is that
GBMMA always provides one of the best solutions, which
demonstrates the reliable character of this solution proced-
ure.

7 Conclusions

The solution of topology optimization including the self-
weight, and more generally of density-dependent body
loads, is not a direct extension of the classical design prob-
lems. The particularities of topology optimization including
the self-weight and the difficulties in the solution of the
related compliance minimization problem were presented:
the possible unconstrained character of the optimum, the
parasitic effect for low densities and the non-monotonous
behaviour of the compliance. As the power law model is not
appropriate for self-weight loading and density-dependent
body forces, a modification of the SIMP model in the
low-density part was proposed and validated on numeri-
cal applications. But the major contribution of this work
is concerned with some proposals for an efficient solu-
tion procedure. A comparison of different approximation
schemes of the MMA family has been performed. When
the self-weight of the structure is predominant in the prob-
lem, CONLIN and MMA approximations can diverge or
converge very slowly, and a non-monotonous approximation
like GCMMA is advised. For classical topology optimiza-
tion (with fixed external loads), monotonous approximations
(e.g. MMA) remain reliable and generally faster for solv-
ing the design problem. However, in all cases, the recent
GBMMA schemes using the gradient information at previ-
ous iteration points were constantly superior to both MMA
and GCMMA in terms of number of iterations and reliabil-
ity. This scheme should therefore be preferred to the others.
Finally, numerical applications have shown that consider-
ing the self-weight in the optimization process can strongly
influence the optimal topologies.

Acknowledgement Professor Claude Fleury (University of Liège) is
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