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A classification of the baryon isobars has been investigated on basis of the unitary 
symmetry model which has been developed in a previous paper under the same title. 

The purpose of this note is to investigate problems of baryon isobars from 
the viewpoint of the unitary symmetry model_ll In this model, the mass differ
ences among mesons and among baryons are neglected. As the result, one may 
wonder if such a model can be applicable to the study of the baryon isobars 
which appear in the meson-baryon scattering, where these mass differences are 
certainly not negligible. It is almost probable that our model will present a 
very poor approximation for this problem if compared quantitatively. However, 
it might be possible that many of qualitative features could be roughly explained 
by our model. It is due to this hope that this work has been undertaken. So 
all results given in this paper should not be taken in its face value, but only 
in a qualitative sense. In this paper, we shall concern ourselves with the case 
of studies of Yamaguchi-Gell-Mann scheme/l since the case of the Sakata scheme 
has been treated already1J,BJ and would not produce any new results. We may 
note that our results here could be applied also for study of meson-meson reso
nances or for baryon-baryon scattering resonances, with small changes. 

As has been noted in the previous paper/l,2J the baryon octet (N, E, l.', A) 

and the meson octet (K, K, rr, rr0') belong to irreducible representations 
U3 (1, 0, -1) of the 3-dimensional unitary group U 3, and they are represented 
by two traceless tensors N/ and f/', respectively, as follows: 

rr+=J?, ;r_=f.}, rro= J,/f/-.f}), rro'=-J6.f}, 

(1) 
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Note on Unitary Symmetry in Strong Interaction. II 25 

We may note that the same representation Eq. (I) has been given by many 
others4 l in matrix notations. Now, as has been remarked in (I), the baryon 
isobars N*, N**, ¥ 0* and Y1* have to belong to some of the following irre
ducible representations in the right-hand side of the next equation. 

Us(l, 0, -1) xUs(l, 0, -1) =2Us(l, 0, -1) +Us(O, 0, 0) +Us(2, 0, -2) 

+Us (2, -1, --1) +Us (1, 1, - 2) . (2) 

The same is also true for meson-meson scattering isobars or for baryon-baryon 
scattering resonances, since both the mesons and the baryons belong to the same 
irreducible representations Us (1, 0, -1), and therefore their scattering states to 
the product representation 'Us (1, 0, -1) X Us (1, 0, -1). Thus all results given 
in this paper can be immediately translated from our baryon isobar case into 
the meson-meson and baryon-baryon scattering cases, but here we study only 
in the case of meson-baryon scattering problem. Below, we list a classification 
of particles contained in each of these irreducible representations. This can 
be easily done by applying the technique developed previously.1l 

(a) Us (1, 0, -1) 

(I= 1/2, Y= 1), (I= 1/2, Y= -1), (I= 1, Y =0), (1=0, Y=O). 

(b) Us(O, 0, 0) 

(1=0, Y=O). 

(c) Us (2, 0, - 2) 

(1=2, Y=O), (1=3/2, Y=+1), (1=3/2, Y=-1), 

(1=1, Y=2), (1=1, Y=-2), (1=1, Y=O), 

(1=1/2, Y=1), (1=1/2, Y= -1), (1=0, Y=O). 

(d) Us(2, -1, -1) 

(1=3/2, Y= I), (I= 1, Y=O), (I= 1/2, Y = -1) (1=0, Y= -~). 

(e) Us (1, 1, - 2) 

(1=3/2, Y= -1), (I= 1, Y=O), (I= 1/2, Y= + 1) (1=0, Y = +2), 

where Y stands for hypercharge, so that Y = S + 1 in terms of the strangeness 
S in the present case. First of all, we note that a particle with I= 1 and Y = 0 
is contained in all representations except in Us (0, 0, 0). Thus, we cannot iden
tify the representation to which Y1 * belongs. We shall investigate all of these 
in turn. 

Case (a) : Us (1, 0, -1) 

If Yr * belongs to this representation, we have to identify other three particles 
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26 S. Okubo 

in this representation. Obviously, we can identify the particle with (I= 0, Y = 0) 
as Yo*, and the one with (I= 1/2, Y = 1) as the second pion-nucleon resonance 
N**, while the one with (1=1/2, Y= -1) can be considered as an excited 
state of B. Now, the second resonance N** of the pion-nucleon system is to 
be considered likely to have the character of a ds;2 resonance.5l Accordingly, 
we have to assign the same ds;2 resonances for all Y1 *, Yo* and 8* in this case. 
This is not so bad, because the spin6l of Y1* appears to be 3/2. However, we 
should remark that it is unnecessary to identify the (I= 1/2, Y = 1) state as 
N**. As has been stated in the beginning, our approximation is quite poor, 
and as the result the state with (I= 1/2, Y = 1) might disappear when we take 
account of the mass differences among meson octet and among the baryon octet. 
The above statement is meant to indicate the following : " 'When we neglect 
these mass differences, the state with (I= 1/2, Y = 1) then certainly exists because 
of Us symmetry. Now, we have to change the masses of the pion and the kaon 
and of the nucleon and the E-particle from the common values. We may sup
pose that we can take such a procedure continuously with respect to these masses. 
Then, in course of these operations, the state with (I= 1/2, Y = 1) may cease 
to represent a resonance state." If such thing could ever happen, then we 
cannot say anything about the spin of Y1* and Y0*. But we do not adopt such 
a view here. 

The irreducible representation Us (1, 0, -1) can be characterized by a 
traceless tensor T/' whose identifications with the real isobar states can be ex
pressed exactly in the same way as Eq. (1). Let us consider the decay of these 
isobars into one baryon and one meson states. We can form the following two 
invariant expressions for these processes : 

S1=M/' f-,: T")., 

S2=M/ f/ T).", (3) 

where we have put M." = (N/) t for creation operators of baryons. This oc
currence of two independent forms corresponds to the double appearance of 
Us (1, 0, -1) representation in the product Us (1, 0, -1) X Us (1, 0, -1) as we 
can see from Eq. (2), and thus the same situation does not happen to other 
representations in the right-hand side of Eq. (2). At any rate, we cannot 
determine the .branching ratio of Y1 * -4 ~· + rr against Y1 * -4 A+ ;r in our case, 
unless we make some additional assumptions: One tempting hypothesis is to 
assume the invariance of our theory under the transpose operation ; i.e. we as
sume the invariance under interchanges of lower and upper suffixes. By this 
operation, a tensor F." is changed into F/, so that S1f--'>S2 in Eq. (3) and we 
have the following from Eq. (1). 

(4) 
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Note on Unitary Symmetry in Strong Interaction. II 27 

We may note that similar transformations have already been proposed by many 
authors.7l Then,· we can compute the kinematical weights for the various pro
cesses, since the only invariant expression is now sl + s2 instead of an arbitrary 
linear combination of S1 and S 2 of Eq. (3). We list our results obtained in this 
fashion in the following tables. In Table I the relative weights have their origin 
in numerical coefficients due to generalized Clebsch-Gordon coefficients. If we 
could neglect the mass differences among baryons, then the widths for these 
processes are proportional to the relative weights. However, we should take 
account of the baryon mass differences at least for the calculation of the phase
volume. Thus, for evaluations of relative widths, we should multiply to these 
weights ·the d-wave phase volume which is given by 

_l_.k5 
M2 

(5) 

where M is the mass of the mother isobar, and k is the magnitude of the spatial 
momentum of the meson in the rest system of the isobar. 

Table I. Relative weights and widths for decays in case (a). 

type of process relative weight relative width 

(N**) ~ { n+rr+ 
+ p+ rro 1 1 

(Y1*)+~A+rr+ 4/9 0.014 

CY1*)+~.S+,o+ rro,+ 0 0 

(Yo*)~~I±,o+rr+,o 4/3 0.008 

(B)-*~B o,- + rr-,o 1 ? 

One interesting aspect IS that Y1 * does not decay into a pion and a 1', in 
agreement with experiment. However, this is not characteristic only of the 
present scheme, since the representation U3 (2, 0, - 2) also forbids Y1 *~.l' + rr. 
Actually, it is a natural consequence of the invariance of theory under the trans
pose operation Eq. (4), as has been shown by Sakurai.7l As we shall see shortly, 
the representation U3 (2, 0, - 2) is also invariant under this operation. 

Now, we will investigate the case (c), since the case (b) is quite trivial. 

Case (c) : U3 (2, 0, - 2) 

This is a 27-dimensional representation, which IS characterized by a tensor 
T~{J having the following properties: 

T~{J = T"c/'p = T~~' T~{J = 0. (6) 

We can form a base of the unitary representation U3 (2, 0, -2) from this T~{J, 
which is given by 

(i) (1=2, Y=O) 
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28 S. Okubo 

(ii) (I= 3/2, y = 1) 

23 2 ( 23 13) , 2 ( 13 23) • /-T 13 j - ,-
V2 Tn , 3 2T12 - Tu , - ,J 3 2T12 - T22 , - v 2 22 • 

(iii) (I= 3/2, y = -1) 

(iv) (1=1, Y=2) 

(v) (1=1, Y= -2) 

(vi) (1=1, Y=O) 

. /- T 32 j 5 (T 23 T 13) v 5 31 ' -~-- 23 - 13 ' . 2 

(vii) (I= 1/2, Y = 1) 

(viii) (I= 1/2, Y = -1) 

(ix) (1=0, Y=O) 

In the table listed in the above, all terms in a given sub-classification as (I, Y) 
have the same transformation properties as spherical harmonics Y Men (M =I, I -l, 
· · ·, -I) in the decreasing order from the left to the right. The relative nu
merical coefficients belonging to different sub-classifications with different (I, Y) 
have been determined from a requirement that 

27 

I; (T~~) *T~~ =I; (XA) * XA (7) 
p.,11,a,fJ A=l 

where XA(A=l, ···, 27) represents each term listed in the above. The condi
tion Eq. (7) shows that these 27 XA's form the desired unitary base of our 
representation U3 (2, 0, - 2) . Thus, we can identify each XA with each isobar 
states appearing in U 3 (2, 0, - 2) as in Eq. (I). 

In this case, we have an undesired isobar with (I= 1, Y = 2), which could 
be detected in kaon-nucleon scattering but so far not found. However, we may 
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Note on Unitary Symmetry in Strong Interaction. II 29 

suppose again that such state would not appear if we take the mass differences 
among mesons and among baryons. We may identify (1=1, Y=O), (I=O, Y=O) 
and (1=3/2, Y=1) with Y1*, Y0* and N*, respectively, where N* represents 
for the first pion-nucleon resonance. Then, all these have to be resonances in 
the Ps;2 states, since the last one is known to be so. Then, the state with 
(I= 1/2, Y = 1) in our representation must be a resonance in Ps;2 state also and 
thus this state is difficult"> to be identified with N**, though we cannot com
pletely rule out a possibility of the Ps;2 resonance for N** at the moment.· The 
possible existence of other states in Us (2, 0, - 2) does not lead to. any disagree
ment with the experimental data. 

Now, let us consider the decay 'matrix element of isobars into mesons and 
baryons. In this case, there is only one invariant form under Us. 

(7') 

We may note that Eq. (7') is invariant under the transpose operation as has 
been mentioned already. We can reduce this in terms of XA and of meson and 
baryon components by using the table listed in the above and by Eq. (1). 

Table II. Relative weights and widths for decays in the case (c). 

type of the decay relative weight relative width 

(N*)++---7P+n+ 1 1 

(Y1*)+---7A+n+ 3/5 0.36 

C Y1 *) + ---7 2: +,o+ no,+ 0 0 

(Yo*)---72:±,o+ TC'fO 1/20 0.01 
(N**) ---7 { p+no 1/10 0.45 + n+n+ 
(Y2 *)++---7.Z++ n+ 2 

(Z)++---7p+K 2 

Then, we can compute the kinematical weight factors for the decay as before. 
For the calculation of the relative widths in the above table, we have multiplied 
the pcwave phase volume factor : 

(8) 

Again, Y1 * does not decay into ~· + rr, because of the transpose invariance of 
Us (2, 0, - 2) as has been mentioned already. In the table, Y2 * means the state 
with (I= 2, Y = 0), and Z represents the state with (I= 1, Y = 2). 

We should note that appearance of Y2*, Y1* and Y0* could be easily under
stood8> in terms of the static p-wave pion-hyperon interactions, if we assume that 
fAx':?fSI:· Indeed, this is the case if we take the D-type inte:raction1>· 2> in Cell
Mann's notation, which is also invariant under the transpose transformation. 

Case (d) : Us (2, -1, -1) 

This is a 10-dimensional representation, and can be specified by a tensor 
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.30 S. Okubo 

F~'P. having the following properties: 

F~"p=F~~= -F~/1, F~"p=O. (9) 

The unitary base XA(A=1, ···, 10) of U3 (2, -1, -1) can be formed from F~~ 
in the same way as in the previous case, giving that 

(i) (!=3/2, Y=1) 

Fu23, v3 Fl223 ( =- v3 Fu13)' - v3. F1213 ( = v3 F2223)' - F2213 . 

(ii) (!=1, Y=O). 

v3 Fra23 (=v3 Fn12), v6 Fr/2(=- v6 Frr=v6 F2a23), 

- v3 F2/3 c = v3 F2/2) . 

(iii) (I= 1/2, y = -1) 

v3 Fra12 (=v3 Faa22), -v3 Fa/3(=V3 F2s12). 

(iv) (I=O, Y= -2) 

It is interesting to note that we have a particle with the strangeness - 3. The 
decay matrix element is again unique and has the same form as Eq. (7') when 
we replace T~"p by F~"p. Then, once again we can compute the weights and 
the relative widths. Now, we have the decay Y1*~rr+1' in this case. 

Table III. Relative weights and widths for decays in the case (d). 

type of decay relative weight relative width 

(N*)++~P+rr+ 1 1 

(Y1*)+~A+rr+ 1/2 0.30 

(.Yl*)+~J'o,+ + rr+,o 1/3 0.043 

Case (e): U 3 (1, 1, -2) 

This is the contragradient representation of U 3 (2, -1, -1) ; i.e. the one 
which can be obtained from U 3 (2, -1, -1) by the transpose operation. Thus, 
it is specified by a tensor G~"p satisfying the following conditions. 

(10) 

Similarly, we can construct the unitary base by 

(i) (I=3/2,Y=-1) 

G"a22, -v3 Gra12 (=v3 G2s22), -v3 G2/2C=vs Gra11), G2s11 • 

(ii) (I=l, Y=O) 

-vs G1323 (=v3Gl222), -v6 Gr/2 C=v6 Gra13=-v6 G2a23), 

vs- G2/3C=vs G1211). 
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Note on Unitary Symmetry in Strong Interaction. II 31 

(iii) (I= 1/2, y = 1) 

v3 Gr333 ( =-1/3 Gr223), v3 Gr/3 ( = v3 G2333). 

(iv) (!=1/2, Y= +2) 

We may identify (!=1, Y=O) and (!=1/2, Y=1) with Y1* and N**, respec
tively, and we can compute the widths in a similar fashion. 

Table IV. Relative weights and widths for decays in the case (e). 

type of decay relative weight relative width 

(N**)+~N +rr 1 1 

CYr*)+~.S+,o+rro,+ 2/3 1.9 X I0-3 

(Y1*)+~A+rr+ 1 3.2xi0-2 

Finally, we shall give an application of the mass formula, which has been 
derived in (I). For particles belonging to the same irreducible representation, 
we have a relation among masses of these particles. It is given by 

M=a+b· Y+c·[l/4 Y2 -l(I+1)] (11) 

where a, b and c are some constants. This relation has been proved in the 
lowest order perturbation of a certain type of interactions causing the mass
differences, but in all orders of the U3-conserving interactions. As lws been 
stated in the beginning, this would not be q. good approximation for the meson
baryon scattering problem, where the mass differences between the pion and the 
kaqn is quite important. Thus, we should not expect that our results to be 
given in the below have some quantitative meanings. At any rate, Eq. (11) 
has three unknown constants, a, b and c. Thus, we have six relations among 
masses of particles contained in U 3 (2, 0, - 2). If we use the experimental 
masses of Yr*, Yo* and N*, then the masses of six other particles in U3 (2, 0, -2) 
can be computed in terms of these three masses. In this way, we have 

M(I=2, Y=0):::::::1345Mev, 

M(I=3/2, Y=-1):::::::1505Mev, 

M(I=1, Y=2):::::::1125Mev, 

M(I=1, Y=-2):::::::1665Mev, 

M(I=1/2, Y=1) :::::::1265 Mev, 

M(I=1/2, Y=--1):::::::1535Mev. (12) 

A serious trouble is that the mass of the particle with (I= 1, Y = 2) is so low 
that it is stable against the decay into a nucleon' and a kaon. However, this 
difficulty may not 1;>~ ;;;o :;;~rious, since ;;;u~h st<tte may disappear <tS re!Jlarkect 
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32 S. Okubo 

already. We may note that we have a similar trouble in the case of the Sakata 
scheme.1l It is also interesting to compare Eqs. (11) and (12) to those obtained 
in the case of the global symmetry model,9l and to those of the Sakata scheme.1),JO) 

We have made a group-theoretical classification of isobar stat~s. As has 
been mentioned in the beginning, almost all of the results given in this paper 
are also immediately applicable to the study of the meson-meson resonances or 
of the baryon-baryon scatterings, with small modifications. However, we would 
not go into details for these cases. From our analysis on baryon isobars, it 
seems to be difficult to identify the best irreducible representation for these at 
the moment. One interesting problem is to determine the parity of the reso
nances so as to enable us to distinguish whether the resonances are of the p312 

or da;2 character. 
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