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Assuming invariance of theory under three-dimensional unitary group, various conse­
quences have been investigated. Both Sakata's and Gell-Mann's scheme can be treated in 
the same fashion and in a simpler way. Mass formula for particles belonging to the same 

irreducible representation has been derived and compared with experiments. 

§ I. Introduction 

The purpose cif this note is to investigate consequences of the three-dimen­

sional unitary group (denoted as U 3 hereafter), which is a certain generalization 

of the usual isotopic space group. Though many authors1>'2J,aJ have examined 

this problem, our procedure is simpler and some new results have been obtained. 

Also, we can treat different schemes of U3 such as Sakata's1>' 2J or Gell-Mann's3> 

on the same footing by our method. 

First of all, we shall give some motivations for introducing U3• All known 

interactions obey certain symmetries, i.e. they are subject to the corresponding 

transformation groups. We can classify all known groups appearing in the 

studies of elementary particles into the following three categories. 

(I) Space-group 

(i) Lorentz group (ii) Charge conjugation 

(II) Isotopic-groups 

(i) Isotopic spin rotation R 3(I) 

(ii) Baryon gauge transformation R2 <BJ 

(iii) Charge gauge transformation R2 <QJ 

(iv) Strangeness gauge transformation R 2<8 > 

(v) Leptonic gauge transformation R 2<LJ 

(III) Gauge-transformation of the 2nd kind 

(i) Electro-magnetic field 

(ii) Yang-Mills field 

*l A part of this paper has been presented at the La-Jolla Conference held at La-Jolla, 
California, June 12, 1961. 
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950 S. Okubo 

In this list, we have included the charge conjugation into the space-group, 

because of the TCP theorem. These three groups of transformations are cor­

related with each other in some degree, but here we do not go into details. 

Furthermore, we restrict ourselves only in the study of the iso-space groups 

(II), in this paper. Moreover, we do not take account of leptons also, though 

they might be treated on the same footing.4l Then, the groups (II) consist of 

4 groups. However, by virtue of the Nakano.Nishijima-Gell-Mann formula, we 

have one following relation : 

Q=Is+ 1/2· (N+S). (1) 

Thus, only 3 out of the 4 groups are independent. So, the known strong 

interactions have to be invariant under the following group G: 

G=Rs(I) X R2(B) X R2<Ql. 

Now, for the moment, let us suppose that the nature obeys some higher sym­

metry than this. Then, the invariant group U of this higher symmetry must 

include G as a sub-group. One of them including G is Us, which is relatively 

uncomplicated. This is one motivation for adopting Us. Besides, we may note 

that the 3-dimension is the minimum dimension for non-trivial representation of 

the group G. This may be taken as another motivation for Us.5l 

In the next section, we shall give the classification of particles belonging to 

a given irreducible representation by means of restricting U3 into U 2 (two­

dimensional unitary group). In § 3 we shall give applications of Us. Further­

more, the following mass formula will be proved : 

(2) 

This relation holds for particles belonging to a given irreducible representation 

of Us, and S and I stand for the strangeness and isospin of particles contained 

in the representation, respectively. This formula has been proved in the lowest 

order perturbation violating Us-symmetry of the type AA, but in any orders for 

the strong Us-invariant interactions. The proof of Eq. (2) will be given in the 

Appendix. As an application of Eq. (2), we note that if N, A, 2 and B belong 

to an irreducible .representation as in the Gell-Mann scheme, we have 

1/2·[MN+M,5.]=3/4·MA+ 1/4·Mz, 

which is satisfied in good accuracy. Another application of our formula Eq. (2) 

is that the mass of a neutral-isoscalar meson n 0' would be given by 

M (n0') = 4/3 · M (K) -1/3 · M (n) :::::::600 Mev, 

where n0' is the meson belonging to the same representation as .n, K and K 

mesons. Similarly, we should have 

M(K*) =3/4·M((I)) + 1/4·M(p) 
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Note on Unitary Symmetry in Strong Interactions 951 

where p, aJ and K* are bosons 

and (rr-K) system, respectively. 

an error of 12%. 

representing resonant states of (11:-n:), (11:-11:-rc) 

We note that this relation is satisfied within 

§ 2. Classification of particles in U3 

The three-dimensional unitary group U1 is defined by the following transfor­

mation on a vector if>'" (p = 1, 2, 3): 

(3) 

where a/ satisfies 

I:: (a/) *a/=()~· (v, A= 1, 2, 3). (4) 
p=l, 2, 3 

In the Sakata model,6l 'we identify if>h f/>2 and f/>3 with the proton, the neutron 

and the A, respectively. However, this is not the only way. We shall assume 

that ¢1, and ¢2 form an isotopic doublet and f/>3 an isotopic singlet. As for other 

quantum numbers, we can assign according to the following cases : 

(a) f/>1 , f/>2 and f/>3 have the baryon number N = l. f/>1 and f/>2 have the 

strangeness quantum number S = 0, f/>3 has the strangeness S = -1. 

(b) We do not assign any baryon numbers to if>h f/>2 and f/>3, but assign 

Y = 0 for f/>1 and ¢2 , and Y = -1 for f/>3 where Y stands for the hyper­

charge Y=N+S. 

(c) We do not assign any baryon numbers to if>h f/>2 and f/>3, but assign a 

new quantum number Z = N + 3 · S as Z = 1 for f/>1 and f/>2, and Z = -2 

for ¢3· 

The first assignment (a) corresponds to the usual Sakata model, and the 

second one (b) is practically the same as the Gell-Mann scheme,3l and so we 

refer to it as "Gell-Manri scheme" for simplicity,*l though not exactly. The 

third scheme is actually convenient if we consider the unitary-unimodular group 

of 3 dimensions instead of U3, and so refer to it as " the unitary-unimodular 

scheme". We may give possible schemes other than (a), (b) and (c), but it 

will not be so fruitful. 

First, let us consider the case (a) (referred to as "Sakata scheme" here­

after). In this scheme, consider a special transformation: 

ic"l =1 (p=1, 2, 3). (5) 

Thi~ is a special transformation of Eqs. (3) and ( 4). Then, a component of 

every tensor rz:-:~::. would transform as 

*l Note added in proof: Exactly the same scheme has been proposed by Y. Yamaguchi 

in 1960, so that we should call it as Yamaguchi·Gell·Mann scheme hereafter. Y. Yamaguchi: 

private communication. 
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952 S. Okubo 

In our case, the baryon number N and the strangeness S is obviously given by 

N=a+f1+r 

S=-r. (6) 

Now, all irreducible tensor representation of U3 are characterized by three 

integers fr, j; and j; satisfying a condition fr > j; >fa. We shall denote it as 

U3 ( fr, j;, f 3) , hereafter. The dimension of the representation is given7J by 

D=1/2· (fr-];+1) (fr-fa+2) (j;-fa+1). (7) 

Also, comparing the character of U3(fr, j;, fa) with Eq. (6), we find that the 

baryon number N of this representation is 

N = fr + .f3 + f3· (8) 

Now, to specify sub-quantum numbers Sand the isospin I in U3(fr,.f3,fs), we 

fix the direction of the 3rd component ¢3. So, we restrict ourselves within the 

two-dimensional unitary group u2, whose irreducible representations are specified 

by two integers fr', andj;' satisfyingfr' > j;' and will be referred to as· u2 (fi', j;'). 

Then, the branching rule8J for this decomposition tells us that u3 can be decom­

posed according as 

(9) 

where we sum over all possible integer pairs ( fr', j;') satisfying the following 

conditions : 

(10) 

The decomposition Eq. (9) is an analogue of the well-known decomposition of 

R4 into R3 (Rn being the· n-dimensional rotation group). 

Now, two-dimensional unitary group is a product of 

unimodular group (which we can identify as the usual 

and a gauge group, which defines the nucleon charge. 

immediately given by 

I=1/2· (f/-f/) 

two-dimensional unitary­

isotopic rotation group) 

Then, the isospin I is 

(11) 

and also, comparing the character of U2 (fr',j;') with Eq. (6), we get 

S= (J;.' + ];')- (fr + ];+ f3). (12) 

In this way, we could specify sub-quantum numbers S and I. Furthermore, we 

note9J that two representations u3 ( fr, j;, fa) and u3 (-fa, - j;, - fr) are contra­

gradient to each other, i.e. they are charge-conjugate of each other in our case. 
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Note on Unitary Symmetry in Strong Interactions 953 

This remark does not apply to the cases (b) and (c), since the nucleon number 

is not defined in these cases. 

In order to explain our procedure, consider various cases : 

(i) (fi, j;, fa)= (1, 0, 0) 

This is a 3-dimensional representation by Eq. (7) and the decomposition 

Eqs. (9) and (10) tells us two choices (j;_', j;') = (1, 0) or (0, 0). By Eqs. (8), 

(11) and (12), N = 1 and the former belongs to (I= 1/2, S = 0), and the latter 

to (I= 0, S = -1). So the natural identification would be the triplet (p, n, A). 

(ii) (Ji, j;, fa) = (1, 0, -1) 

By Eqs. (7) and (8), this is a boson representation with 8 components. 

Also, by the remark given after Eq. (12), it must be self-conjugate, i.e. it must 

contain a particle and its anti-particle together. Now, the decomposition Eqs. (9) 

and (19) gives us the choice (f/, j;') = (1, 0), (0, -1), (1, -1) and (0, 0) ,-and 

by Eqs. (11) and (12) they have (I= 1/2, S = 1), (I= 1/2, S = -1), (I= 1, S = 0), 

and (I= 0, S = 0). respectively. By the remark given in the beginning, the first 

two must be charge conjugate of each other and the last two must be self­

conjugate under charge conjugation operation. Natural identification would be 

(K+, K 0), (K+, K 0), (rr+, n.0, ;r_) and rr0', where the last one is a new pseudoscalar 

boson. We may identify the newly found states K*, K*, p and aJ mesons under 

the same category. 

(iii) ( Ji, j;, fa) = (2, 0, -1) 

This is a fermion state with 15 components by Eqs. (7) and (8), and they 

contain the following particles by Eqs. (10), (11) and '(12). 

(!=1/2, S= -2), (I=1, S= -1), (I=O, S= -1), 

(!=1/2, S=O), (!=1, S= +1), (!=3/2, S=O). 

We might identify the first four as S, S, A and N, respectively, but then we 

have two other unwanted particles. This interpretation is originally due to 

Yamaguchi,2> but as we will see in a later section this identification seems to 

give small masses for (I= 1, S = 1) and (I= 3/2, S = 0) particles so as to make 

them stable, and so it would be more natural to adopt the case (i) as repre­

senting A and N. Furthermore, if we take the viewpoint (ii) for bosons, then 

(I= 1/2, S = - 2) has to be identified still as E particles. This is because the 

transition 8-'>A+K' must be possible and therefore S (and also S since :z_,A+rr) 

has to be in a product representation U3 (1, 0, 0) X U3 (1, 0, -1). However,1°> 

we have 

U3 (1, 0, 0) x U 3 (1, 0, -1) = Ua (2, 0, -1) + U 3 (1, 1, -1) 

+ Ua(1, 0, 0) 

but U3 (1,1, -1) and U3 (1,0,0) donotcontainaparticlewith(I=l/2,S=-2). 

As for S, the same argument shows that it must belong either to U3 (2, 0, -1) 

or to U3 (1, 1, -1). Ikeda et aJ.l> identify (I=3/2, S=O) in U3 (2, 0, -1) as 
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954 S. Okubo 

N* (the first n-N scattering resonance), then the spin of E has to be 3/2, since 

N* has the space-spin 3/2. Similarly, (I= 1, S = -1) and (I= 0, S = -1) states 

in U3 (2, 0, -1) may be interpreted as Y1 * (n-A scattering resonance) and Yo* 

(11:-2 scattering resonance), respectively. Then, they must have spin 3/2 also. 

In this case, we have to assign U3 (1, 1, -1) for 2. 

(iv) (j;_,j;,fa) = (1, 1, -1) 

This is a fermion state with six components. We have (I= 1/2, S = 0), 

(1=0, S= +1) and (1=1, S= -1), and the last one may be interpreted as 2. 

However, we have a new state with (I= 0, S = + 1), so, we should observe a 

resonance for the reaction K+ + n scattering, which has not so far been found 

experimentally. 

Up to now, we have investigated the case (a), i.e. the Sakata-scheme. Now, 

let us consider the case (b). In this case, we cannot assign any baryon numbers 

to ¢,., so that Eq. (8) has no meaning as to indicate the baryon number. 

Eq. (11) is unchanged as before, but in Eq. (12), S has to be replaced by Y, 

so that in our scheme (b) , we have 

I= 1/2 · (j;_'-j;') 

Y = (j;_' +fa') - (j;_ + f2 +fa) · (13) 

In this case, the representation (1, 0, -1) gives four states; (I= 1/2, Y = 1), 

(1=1/2, Y=-1), (I=1, Y=O) ahd (1=0, Y=O). As for bosons, our assign­

ment is unchanged, since S and Y are the same for bosons. So, we can assign 

(n, K, K, n0') and (p, K*, K\ oJ) to U3 (1, 0, -1). A new phenomenon is that 

we can also assign (N, 2, 2, A) to U3 (1, 0, -1) since the nucleon number is 

no longer defined and the corresponding quantum numbers Y and I can be given 

correctly. This is exactly the same as in Gell-Mann's scheme, though the starting 

points are quite different. As we shall see in the next section, our scheme is 

essentially the same as Gell-Mann's as for all practical purposes, and so we can 

call our scheme (b) as Gell-Mann's. We may note the following decomposi­

tion :10J 

Ua(1, 0, -1) x U3 (1, 0, -1) =2Ua(1, 0, -1) +Ua(O, 0, 0) +U3 (2, 0, -2) 

+U3 (2, -1, -1) +Ua(1, 1, -2) 

so that Y1*, Yo* and N* in the- Gell-Mann scheme have to be included in one 

of the right-hand side, since they decay into one-boson and one-fermion state. 

This will be treated in a forthcoming paper. 

Finally, we may study the consequence of our scheme (c). This was given, 

since it is more natural when we think of the unitary-unimodular group of 3-

dimension (we refer to it as SL(3)) rather than U3• In SL(3), there is no 

distinction between covariant and contravariant tensors. This is because a con­

stant totally anti-symmetric tensor E)..~'" is invariant under SL (3), so that ¢).. 

behaves like E)..~'"T~'. where T~'. is a tensor. More generally, we have that the 
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Note on Unitary Symmetry in Strong Interactions 955 

repres.entation (];., j;, fs), which we have wri:tten11l as Us(];., j;, fs) up to now, 

is the same representation as (J;.+e,fs+e,fs+e) where e is an arbitrary integer. 

Then, obviously Eqs. (12) or (13) is not invariant under SL(3), since it is not 

invariant under f"---"f"+e(p.=1, 2·, 3) and f/---"f/+e(p.=1, 2). Invariant quan­

tum numbers under SL(3) under our decomposition Eq. (9) are given by 

z = 3 (];.' +f./) -2 (];. + j; + fs) ' 

I= 1/2 (];.'-f./) 
(14) 

where Z = N.+ 3 · S. We omit the details for these derivations. In this case, we 

can repeat the same procedures as before, but it gives almost the same results 

as in the case (a), so we will not go too far. Here we may note also that if 

we give up additivity of quantum numbers, we may assign Z = 3 · Y + N(N -1) 

for Eq. (14). In this case, we can assign (1, 0, -1) both for bosons and 

fermion, and we have the same result as Gell-Mann~s again. We shall not con­

sider our case (c) any longer in this paper, and restrict ourselves only in 

discussions of the cases (a) and (b). 

§ 3. Tensor representation and applications 

First, let us consider the Sakata scheme (a), and we tak~ the representations 

Us (1, 0, 0) and Us (1, 0, -1) for (A,n, p) and (n, n0', K, K) systems, respec­

tively. Then, p, n and A can be represented by a vector cp"" 

(15) 

and (n, n0', K, K) can be represented by a traceless tensor f.", so that f""=O. 

The identification is 

n+=J;.2, n_=j;\ no= )i(J;.1-j;2), no'=- J6fss, 
(16) 

K+=J;.s, Ko=f.}, K+=fs\ Ko=fs2 

and also (p, aJ, K*, K*) can be represented by a traceless tensor F/ exactly 

in the same fashion as Eq. (16) by replacing n---"P, n0' ---"w, K---'>K*, K---'>K*. 

Actually, F/ has a vector suffix due to space-spin, but we omit it for simplicity. 

The invariant interactions among baryoncboson and among boson-boson 

would be given by 

H1 =ig ~ ro cf.f/, 

H2=ig F."· (f,.:·of/-CJf),."·f/) 

(17) 

(18) 

where the repeated indices mean summations over 1, 2 and 3. In Eq. (17), we 

note that ~ behaves as a contra-variant vector if>". Using the representations 

Eqs. (15) and (16), these Hamiltonians can be written as 

1 - - - -
H1 =ig1/'2Nrs(T·'R')N+igNr5AK+igArsNK 
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956 S. Okubo 

1 - -
+ ig V 6 (Nr;N- 2Ar.A) 7ro1

, 
(17) I 

H2= :J2p(KToK-oKT K) + 11'2 ·g·p(1t X o1t) 

+ :J2K*T[ Ko1t- (o K) 1t] + -J6ig K *[Ko7r0
1 - o K7r0

1 ] 

+ :Yz[1t(oK) -o1tK]·TK*+ J6ig[7r0
1oK-o7r0

1K]K* 

3 - -
+ V 6ig(I)[KoK-oKK]. (18) I 

We note that Eq. (18) 1 agrees with that given by Gell-Mann.3> 

Now, let us consider the Gell-Mann scheme (b). Here, as for bosons, 

Eq. (16) is unchanged. For baryons, we introduce two traceless tensors N/' 

and M/ (so that M 1/=N/'=0) as representing 

.J:+=N12, 2_=N2\ 2o= ) 2 CN/-N22), A;,-J6N33, (19a) 

v -M 2 "f -M 1 v-- 1 (M 1-M 2) A--- 3 M 3 (19b) 
"'"'- - 1 , ~ + - -2 , ""o- VZ 1 2 , - 11'6 3 ' 

;;;;; M3 ;;;;; M3 - M1 - M2 
~-= 1, ~o== 2,p==- s, n= s· 

Then, we have two invariant forms for baryon-boson interactions. 

Explicit calculation gives 

H3=ig M/ r• N>-" f/, 

H4=ig M/ rof>-" N/. 

ig - - - -
- V6"7ro'[2(Er.S) +Ar5A-l:r5l:-Nr5N], 

g .- g -
H4= 

1 
r[zAr.l:7t+ c.c.]-

1 
rCl:r5x l:)7t 

v 6 v 2 

(20a) 

(20b) 

(21a) 
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Note on Unitary Symmetry in Strong Interactions 957 

g -
+ l/f,[iNr6KA +c. c.] 

2g -
- V6[Ar5Br2K+c.c.] 

+ _J'2CiNr5TKl:+c.c.] 

(21b) 

where we have put 

;:_(-Eo) K-(K+) 
~......~- E_' - Ko ' 

and Eqs. (21a) and (21b) are connected with Ln and LF of Gell-Mann3l by 

1 
Ha= .r[Ln+LF], 

2v 2 

1 
H4= .r[Ln-LF], 

2v 2 

when we take the same coupling constants. 

As applications of our formalism, we may think of the boson-baryon scat­

tering in the case of the Sakata scheme. In this case, we can form the following 

invariants of which the S-matrix element is a linear combination : 

T/' f·/ };.),, T/' ~/;.: f"),' T"" ff3a h 13 

where we have put T."="¢:¢., and f, and f represent for incoming and outgoing 

bosons. From this, we can prove the following identities among total cross­

sections. 

a-(n:++P) =a-(K++p), a-(K_+n)=a-(n:++A), 

a-(n:_ + p)=a-(K_+p) =a-(K+ +A), etc. 

a- (tro' + p) = 1/3 · a-(:-ro + p) + 2/3 · a-(Ko+ p). 

These have been derived also by Hara and Singh.12> They are also investigating 

similar identities in the case of Gell-Mann scheme. We can get similar identities 

among magnetic moments of baryons. In the case of Sakata-scheme, let us as­

sume that the electromagnetic current j" has a transformation property as T/ 
component of a tensor T.". This can be taken, since the usual current iepr "P 

has such form. Then, the method mentioned in the above immediately gives 
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958 S. Okubo 

p(A) =fl.(n) and also we can prove that Ko and Ko have n~ electromagnetic 

structures. This is because we can prove <K 0 1jP/K 0 )=<K 0 Jj~/K 0 ) similarly, but 

jP changes its sign under charge conjugation, and therefore <K0 /jP/K0) has to 

be identically zero. 

In the case of Gell-Mann scheme (h), we can give some relations among 

magnetic moments of baryons. By the same reason as in the above, let us as­

sume that the electromagnetic current jl' behaves as T/ of a. tensor T.~', with 

respect to U 3• We have to take the expectation value of jl', i.e. T/. From 

invariance, we have 

<T.~')=aM),~' N/+bM/"N),~'+c·a.~'. (Mpa Nafl) 

where M and N represent baryons as in Eq. (19) and we have omitted spinor 

indices. By putting p = v = 1, and comparing with Eq. (19), we have p (p) =a+ c, 

p(n) =c, etc. Then, we have the following relations: 

p(p) =p(~+)' 

p(Eo) =p(n), 

p(E_) =p(~_)' 

p(A) =1/6·[p(p) +p(~_) +4p(n)], 

P,(~o) =1/2·[p(~+) +p(~_)J. 

(22) 

Furthermore, if we demand that T.~' is traceless, i.e. T/'=0, then we should 

have a+ b + 3c = 0 and then this condition gives one more relation : 

p (A) = (1/2) p (n). (23) 

Relations Eqs. (22) and (23) have been given also by Coleman and Glaschow13> 

by somewhat more direct method. We note that they used Tpa=M),aN/ 

-M/N),a, so that obviously Taa=O is satisfied. From our derivation, however, 

it is clear that the explicit form for T/ is unnecessary. 

We can give other applications of our method for the weak leptonic decays 

of bosons an~ fermions. In case of the strangeness-violating leptonic decays, 

the interaction Hamiltonian would be given by 

(24) 

where 01' is the strangeness-violating· current. Let us consider the case of Gell­

Mann scheme, and assume that 01' has the transformation property as T 1
3 

component of a tensor T.~', so that it has the same character as K+. Then, we 

may construct two tensors M),3N 1), and M/N)..3 out of M and N, and it would 

be natural to take 

(25) 

[ 1 -;;;;; -;;;;; 1 -;;;;; 1/6 - J =a ~(.!:i_·A) + (.!::i 0 ·~ +~.!::i-·~) -~(A·p) 
1/6 + v2 o 3 
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Note on Unitary Symmetry in Strong Interactions 959 

[ 1 - - 1 -- v6 - J +b ~(A·p) + (2'_·n+~2'o·P) --(B_·A) 
V6 1/2 3 

where we omitted r-matrices. Of course, this behaves as a component of an 

isotopic spinor14l in the usual isospin assignment. 

§ 4. Applications of mass formula 

If there are no interactions violating u3 symmetry, all particles belonging 

to the same irreducible representation have to have the same mass, the same 

spin and parity. So we should have the same mass for pion and kaon, which 

is not true. We must therefore have some interactions violating U3• According 

to Yamaguchi,2l we may suppose that such interactions may be moderately strong, 

as compared with the very strong U3-conserving interactions. Our purpose in 

this note is to investigate the result of mass-splitting among particles in a given 

irreducible representation due to this moderately strong U 3-violating interac­

tion. In the Appendix, we shall prove that the mass splitting is given by the 

following formula. *l 

M =a+b·S+c· [l/4·S2-l(l+ 1)]. (26) 

Eq. (26) has been proved in the lowest order perturbation for such U3-violating 

interaction with the transformation property T 3
3 of a tensor T/ but in any orders 

for U3-conserving very strong interactions. In Eq. (26), a, b and care constants 

which do not depend upon such sub-quantum numbers as the strangeness S and 

isospin I, but may depend upon the nature of the interaction and upon the ir­

reducible representation to be considered. Eq. (26) may be rewritten as 

M=a' +b'Y + c'[1/4· Y 2-I(I + 1)] (27) 

if we use the hyper charge Y = N + S instead of S. 

holds for both the Sakata and the Gell-Mann scheme. 

may consult the Appendix. 

Formula Eqs. (26) or (27) 

For the details, the reader 

Now, in this section, we shall investigate the result of Eqs. (26) or (27). 

First, let us consider boson system (n, :r0', K and K). An application of (26) 

or (27) immediately gives that we have a relation 

M(K) = 1/Z·[M(K) +M(K) ]=3/4·M(n0') + 1/4·M(n). (28) 

From this, we can calculate the mass of no' with M (rro') ::::::: 600 Mev. It is in­

teresting to note that a similar valu~ has been predicte~ by other methods.15) 

The same formula as Eqs. (28) holds for the (w, p, K*, K*) system. 

M(K*) =l/2·[M(K*) +M(K*)]=3/4·M(w) +1/4·M(p). (29) 

*l A similar formula has already been suggested by R. P. Feynman at Gatlingburg Conference 

held in 1958. 
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960 S. Okubo 

The calculated value for M(K*) by using M(ltl) and M(p) is 780 Mev, compared 

to the experimental value 885 Mev. This relation Eq. (29) holds as long as (p, 

w, K *, K*) belongs to the same irreducible representation. Previously we have 

assigned (1, 0, -1) for these, but another possibility is that these may belong to 

27-dimensional representation (2, 0, - 2) instead of the 8-dimensional U3 (1, 0, -1) 

representation. Then, the method of § 2 tells us that we have 5 more states 

(1=1,8=±2), (1=3/2,8=±1) and (I=2,S=O) inadditionto (p,to,K*,K*). 

Then, we can use our formula Eq. (26) and we can calculate the mass, of these 

states in terms of M(p) and M(to), to get 

M(I=1, S= ±2):::::::::770 Mev, 

M(Io=c3/2, S= ± 1) :::::::::720 Mev, M(l=2, S=O) :::::::::700 Mev. 

However, we do not observe [=3/2 resonance for the K-rr system, and so this 

value for M (I= 3/2, S = ± 1) contradicts the experiment. Accordingly, it seems 

that our assignment of (1, 0, -1) for (p, w, K*, K*) is more reasonable than 

that of (2, 0, - 2). The above argument equally applies both to the Sakata and 

the Gell-Mann schemes. 

As for baryons, let us first consider the Gell-Mann scheme; then (A, l:, N, 8) 

belongs to U3 (1, 0, -1) representation. Then, by using Eq. (27), we have a 

relation 

1/2[M(N) +M(S)]=3/4·M(A) + 1/4·M(J:) (30) 

which i13 satisfied with good accuracy. 

In the case of Sakata scheme, we do not have such relation unless we in­

clude (N, B, A, l:) in U3 (2, 0, -1) representation as we mentioned in § 2. 

Then, we have Eq. (30) still. However, U3 (2, 0, -1) representation contains 

two other states with (1=3/2, S=O) and (l=O, S= +1). We can calculate 

the masses of these particles by Eq. (26) and by using the experimental masses 

of N, A, and E. Then, we get 

M(I=3/2, 8=0):::::::::1050 Mev C<M(N) +M(rr)), 

M(I=O, S= + 1) ::::::770 Mev (<M(N)) 

which seems to have too small masses not to be detected experimentally. Thus, 

this assignment originally due to Yamaguchi would not be so good. Therefore, 

we take the view that U3 (2, 0, -1) represents S, N*, Y0*, Y1*, etc., as has been 

mentioned in § 2. In this case, we have the following relations : 

M(Y1*) =1/2·[M(8) +M(N*)], 

M(I=1/2, S=O) =1/2·[M(Y0*) +M(l=1, S= +1)], (31) 

M(l= 1, S= + 1) =M(Y1*) +2[M(Y0*) -M(B)]. 

The first relation gives us M ( Y1 *)::::::::: 1280 Mev by using the experimental values 
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Note on Unitary Symmetry in Strong Interactions 961 

for M(S) and M(N*) and it should be compared to the experimental value 

of M(¥1*)::::::::1385 Mev. Similarly, the last two equations give us 

M(/=1, S= +1)::::::1560Mev, 

M(/=1/2, S=O) ::::::::1480 Mev 

where we have used the experimental masses for Yo* and Y1*. Consequently, 

we may identify the (I= 1/2, S = 0) state as the 2nd pion-nucleon resonance, if 

it corresponds to the Ps12 resonance instead of the usual ds12 resonance. As for 

(1=1, S= +1), resonance for K++n or K++P scattering has not been discov­

ered yet, and this gives a trouble to this scheme. 
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Appendix 

Derivation of Mass Formula 

Here, we shall prove the mass formula Eq. (26). 

Let us consider infinitesimal Us transformation. Then, the infinitesimal 

generator A/ of U, satisfies the Lie equation : 

[A,a"', A/]=a.a"·A."'-a."'·A.a'"· (A·1) 

This relation holds actually for general linear transformation of arbitrary dimen­

sion. The unitary restriction gives 

where Qt means the hermitian conjugate of Q. For comparison's sake, our A/ 
is related to Ikeda et al,l>'s X,.. by 

A/= -1/2·[(1+i)X.,.+ (1-i)X,..], 

X'".= -1/2 · [ (1 + i) A."+ (1-i) A,."]. (A·3) 

However, their notation X'"" makes the mixed tensor character of A." obscure. 

For an arbitrary mixed tensor T/, the commutation relation is given by 

[A,a"', T."]=a.a'"·T."'-a."'·T.a"· (A·4) 

Comparing this with Eq. (A ·1), we see that A." has the property of a mixed 

tensor. 
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962 S. Okubo 

Generalized Casimir operators of our Lie algebra can be given by 

M1=A/'=(A), 

M2=A/'·A,:=<A·A), 

M 3 =A/'· A>:· Ap'" =(A· A· A) 

(A·5) 

where the repeated indices mean summation over 1, 2 and 3, and we used the 

notations (Q) and defined product tensor Q · R of two tensor Q/ and R.P by 

(Q)=QPP' 

(Q. R) / = Q,.P. R. ;>.. (A·6) 

It is easy to see that M 1 , M 2 and M 3 commute with all A.P and therefore they 

commute with each other. Thus, they are constants in a given irreducible 

representation. Again, we will give a relation between our Mt and N, M, M' 
of Ikeda et aJ.ll 

M=1/2·M2, 

M'= -1/2·M3 +3/4·M2-1/4· (M1) 2, 

and so the relation between eigenvalues of Mi and j;_, j;, f 3 of U3 ( j;_, j;, fg) ts 

given1l by 

M1 = - (j;_ +h.+ fa) , 

M2= (fl+ h.2 + fa2) + 2 (j;_-fa), 

M3 = - (j;_3 + f23+ fa3) + [-3/2 ·.f;_2 + 3/2 ·h.2 + 9/2 ·fa2] 

-1/2· (fr+h.+fa) 2 + (2j;_+2J;.-4fa). 

(A·7) 

Note that M 4 =(A·A·A·A), etc., are unnecessary. They are given as functions 

of M 1, M 2 and M 3 as will be seen shortly. 

Now, we will prove the following theorem. 

[Theorem I] 

In any irreducible representations of U3, any mixed tensors T.P can be re­

garded as a linear combination : 

T .p =a· a .p + b · A.P + c (A· A) /. (A·8) 

Eq. (A·8) means that it holds good when we take matrix elements of both 

sides in a given irreducible representation. Constants a, b and c are independent 

of tensor suffices p. and v and of sub-quantum numbers S and I of the repre­

sentation, but may depend upon j;_, f 2 and fa and upon the nature of the tensor 

T/. Eq. (A·8) is an analogue of the so-called vector algebra in R 3, t.e. 
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Note on Unitary Symmetry in Strong Interactions 963 

where VP (p. = 1, 2, 3) is a vector in R 3 , and JP means the angular momentum 

operator in R3• 

Before proving our theorem, we will show that this equation will give the 

desired mass formula Eq. (26). 

First, let us consider the case of Sakata scheme. In that case, the nucleon 

.number N, the strangeness quantum number S, and the isotopic spin operator 

I are defined1l by 

N=-<A), 

I+= Cl1 +ii2) = -A12, I_= Cl1-ii2) = -A21, 

Ia=1/2(A2
2-A/). 

(A·9) 

Now, let us suppose that the mass-splitting interaction is given by T 3
3 which 

has the same property as X. A in the case of Sakata model. Then, the mass 

splitting is given by diagonal matrix element of T 3
3• 

Then, noting (A9) and 

(A·A) 3
3 =1/2·<A·A)+ 1/2·S2 + 1/2(3·S-<A))- (1) 2 -1/4· (S-<A)) 2, 

we find that our theorem I (Eq. (A· 8)) gives the desired mass formula Eq: (26). 

In the case of Gell-Mann scheme, we have only to replace S by Y, hence 

we, get Eq. (27). In this case, N is simply a parameter to distinguish repre­

sentations. 

Now, let us prove our theorem Eq. (A·8). First, we will show the fol­

lowing lemma. 

[Lemma I] 

In the three-dimensional space, suppose that a tensor S~~ is anti-symmetric 

with respect to exchanges of a and ~ and of p. and v and furthermore S ~~ = 0, 

i.e. traceless; then S~~ is identically zero. Schematically, this means that 

S~~= -S!:= -S~t and S~~=o~s~~=O. 

[Proof] 

Let us consider a tensor 

T~f~ = s;t ·a),. 7 - S;J ·a/- S~f ·a),. a 

+ srt. a p a- sr:. a/- s~t. a p 7 • 

Then, T~f~ is totally anti-symmetric for any two exch11-nges of a, ~ and r and 

satisfies traceless condition T~f?. = 0. However, such tensor must be identically 

zero in the three-dimensional space, since only non-zero independent component 

must be T ;;~ and by traceless-condition, this has to be identically zero, (for 

example, consider the case p.= 1). Thus. we have T~~;;=O. Then, by putting 

r = v and summing over v, we find 
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964 S. Okubo 

T~f;: = s;t- S~ff = 2SZt==O. (Q.E.D.) 

Our lemm!i I is not surprising .at all, since such tensor S~~ must be an 

irreducible representation in Un but such type of irreducible representation is 

not possible in Us. (However, it is possible in Un(n>4) and has signature 

(1, 1, -1, -1) in u4.) 

[Lemma II] 

In Us, for any two arbitrary tensors M/ and N/, we have the following 

identities : 

[Proof] 

(M/'·Nt/+Mt~a·N/')- (M_a·Np''+Mp''·N.a) 

=J/[(M)Nt~a+Mt~a(N)- (M·N) tJa-M/·N),.a] 

-J.a[(M)Np''+ Mp''(N)- (M·N) t~~'-M/·N),.~'] 

-JtJ~'[(M)·N.a+M.a·(N)- (M·N).a-M"),.·N),.a] 

' 
+J/[(M)·N/+M/·(N)- (M·N)_~'-M"),.·N),.~'] 

- (J_~'.atJa-a.a.atJI') ·[(M)·(N)-(M·N)]. 

Define a tensor Q ~~ by 

Q~f= (M/·N/-M/·N-a)- (M.a·N/-M/·NI'a) · 

Then, Q~~ is anti-symmetric for exchanges of a and p and of p. and v. Fur­

theremore, construct a new tensor s~~ by 

szt=Q~f- cal'a·Q~~ +a/ ·Q~:+a.a.Q~f+ af·Q~~) 

+1/2· ca/.af-J.a.a/)Q~~. 

We can see that S~~ satisfies the conditions of lemma I, and must be identically 

zero. This gives the desired identity. (Q.E.D.) 

[Theorem II] 

In Us, for any tensor T/ and for infinitesimal operator A/, which satisfy 

the commutation relations Eqs. (A ·1) and (A· 4), we have the following identity. 

2·[(A·T·A)/+ (T·A·A).~'+ (A·A·T).~']- (2(A)+9) ·[(A·T)/+ (T·A)/] 

-2·(T)(A·A) .~'+ [6(A)+ 12+ ((A)) 2 ]T.~' 

-1/2·[(A·A)T/+T/·(A·A)]+[6(T)+2(A)(T)-2(A·T)]A/ 

+a/· (-(T)-[((A)) 2 -(A·A)+4(A)+4]+ (2(A)+6)(A·T) 

-2(A·A·T))=O. 

Note that [(A), T/]=0, [(T), A/]=0 but [(A·A), T/]='\=0. 

[Theorem III] 

6(A·A·A)/-[6(A)+ 18]· (A·A)/+[3· ((A)) 2-3·(A·A)+ 
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Note on Unitary Symmetry in Strong Interactions 

+ 12·(A)+ 12]·A/ 

-[((A)) 3 +4((A)) 2+4(A)-3(A)·(A·A)+2(A·A·A) 

-6(A·A)]a/=0. 

965 

Theorem III can be obtained from theorem II by putting T =A. From this, 

we see that (A·A·A·A)/ can be expressed as a linear combination of a.", A/, 

(A· A)." and (A·A·A)v", and so (A· A· A· A) is a function of (A), (A· A) and 

(A·A·A). So are (An) (n>4), as has already been mentioned. 

To prove theorem II, we put M/ = N/ =A." in lemma II, and multiply T a" 

from the left, and using commutation relations Eqs. (A ·1) and (A· 4), we find 

our theorem II, when we change the indices suitably. We may give another 

direct proof of theorem II as follows. Any tensor Q~~~~ which is anti-symmetric 

with respect to any exchanges of two variables among a, {1, r and 8 must be 

identically zero in U3• Therefore, we have 

~( -1)PT,/·A)c.e·A/ .a/=0 
p 

where P means permutations among a, {1, r and 8. Then putting n={1, r=.A, 

8 = JJ and taking traces, we find our theorem II again after somewhat long calcu­

lations. 

Now, we shall prove our theorem I, Eq. (A·8). Using the commutation 

relations 

[M3, T/]=3(A·A·T)."-3(T·A·A)."-3[M2, T."], 

[M2, S/]=2(A·S)/-2(S·A).", 

we -can rewrite theorem II as follows. 

3(T·A·A)."- (T·A)v"· (2(A)+9) +T."·[l/2· ((A)) 2 

-1/2 ·(A· A)+ 3(A) + 6] 

= -1/2·[M2, (TA)."- ((A)+3)T/]-1/3[M3, T."] 

+ (A·A)/·(T)-A/·[((A)+3) ·(T)-(T·A)] 

-a/ ([(A)+ 3](T· A)-(T· A· A) -1/2 · (T) ·[((A) )2- (A· A)+ 4(A) + 4]). 
(A·9) 

Now, in a given irreducible representation, M 2 and M 3 are constants, so that 

matrix elements (aJ[M2, Q]Jf1)=0 and (aJ[M3 , Q]Jf1)=0, hence we can omit 

the first and second terms in the right-hand side of Eq. (A· 9) in our case. 

Thus, we have 

3(T·A·A)/- (T·A) ."(2(A)+ 9) + T."·[l/2.· ((A)) 2-1/2·(A·A)+ 3(A)+6] 

= (A·A)/·(T)-A."·[((A)+3)(T)-(T·A)] 

-a/ ([(A)+ 3](T ·A)- (T ·A· A)-
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966 S. Okubo 

-1/2· (T) · [ ((A)) 2 - (A· A)+ 4(A)+ 4]). (A·10) 

Eq. (A ·10) is true wheil we take any matrix elements in a given irreducible 

representation. Now, T/' is. arbitrary, as long as it satisfies the commutation 

relation Eq. (A· 4), and so we can replace T by T ·A and T ·A· A in Eq. (A ·10). 

For quantities like T ·A· A· A or T · (A· A· A· A), we use our theorem III and 

we can reduce them to a linear combination of T, T ·A and T ·A· A. Then, 

Eq. (A ·10) gives three equations of the form 

ali (T ·A· A)/+ tl:!i (T ·A)/+ aai (T) /' 

=b1i (A·A) /'+b2i (A) /'+bai .a.". (i=1, 2, 3) (A-10) 

We can give an explicit form for aiJ and biJ> but as it is a little complicated, 

here we simply remark that ai1 are functions of only (A), (A· A) and (A· A· A), 

i.e. ai1 depend only upon _[I, f; and fs by Eq. (A· 7), biJ depend upon _{I, f; 

and fs, and also upon (T), (T·A) and (T·A·A), which are constants in their­

reducible representation which we are considering. We can solve Eq. (A ·10), 

since the determinant det(ai1) is, in general, not identically zero; thus we get 

T/'=a·a."+b·A/+c(A·A)/' 

and two other equations for (T ·A)/ and (T ·A· A).". This is the desired formula 

theorem I. 
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