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1. Introduction 

We recall from [[1], p. 804, 23.1.1] and [[2], p. 3, (1.1)] 
that the Bernoulli numbers nB  can be generated by 
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is even in x∈ . Consequently, all the Bernoulli numbers 
2 1kB +  for k ∈  equal 0. 
To discover explicit formulas, recurrent formulas, 

closed expressions, and integral representations of the 
Bernoulli numbers 2kB  for k ∈  is a classical topic.  
For recently published results, please refer to the  
papers [3-12] and closely related references therein. 

To bound the Bernoulli numbers 2kB  for k ∈  by 
inequalities is an alternative topic. In [[1], p. 805, 23.1.15], 
[[13], Theorem 1.1], [[2], p. 14, (1.23) and p. 23, Exercise 1.2], 
and the papers [14,15,16], some inequalities for bounding 
the Bernoulli numbers 2kB  were established and collected. 
Most of these inequalities have been refined or sharpened 
in [17] by the double inequality 
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for k ∈ , where 0α =  and 
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are the best possible in the sense that they can not be 
replaced respectively by any bigger and smaller constants 
in the double inequality (1). 

To study the differences 2 2 2| | | |k kB B+ −  and the  
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the newly published paper [18], the ratios 2 2
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for ,k ∈  which is equivalent to the differences 

2 2 2ln | | ln | |,k kB B+ −  were bounded by the double 
inequality 
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Motivated by the double inequality (2) and by the fact 

that the function 
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 is strictly increasing in 

2( 1)x k≠ − +  for all ,k ∈  we naturally pose a problem: 
what are the best constants α  and β  such that the double 
inequality 
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is valid for all k ∈ ? 
In [[2], p. 5, (1.14)], it was listed that 
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where the Riemann zeta function ζ  can be defined 

[19,20,21] by the series 
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( ) 1zℜ >  and by analytic continuation elsewhere. 
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for .k ∈  By virtue of (4), the double inequality (3) can 
be rewritten as 
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which can be further reformulated as 
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In order that the function ( )S xθ  is strictly increasing 
(or strictly decreasing, respectively) on [1, )∞ , it is 
necessary and sufficient that 
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on [1, )∞ , which can be rearranged as 
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Consequently, in order that the function ( )S xθ  for 
[1, )x∈ ∞  and the sequence ( )S kθ  with k ∈  are strictly 

increasing (or strictly decreasing, respectively), it is 
necessary that 0θ ≥  (or 
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respectively). The double inequality (5) can also be 
reformulated as 
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It follows that the necessary conditions are 0α ≥  and 
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This implies that the right-hand side inequality in (2) is 
sharp, but the left-hand side inequality in (2) perhaps can 
be improved. In conclusion, we guess that the double 
inequality (3) is valid if and only if 0α ≥  and 
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we guess that the function 
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is strictly increasing (or strictly decreasing, respectively) if 
and only if 1θ ≤ −  (or 0θ ≥ , respectively). 

The double inequality (2) has been cited and applied in 
the papers [22-29]. 

Can one generalize the inequality (2) to the case for the 
Bernoulli polynomials? 

This paper and [18] are respectively extracted from the 
preprints [30,31,32,33]. 
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