©Science and Education Publishing

Notes on a Double Inequality for Ratios of any Two Neighbouring Non-zero Bernoulli Numbers

Feng $Q_{i}^{1,2,3,,^{* *}}$
${ }^{1}$ Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, China
${ }^{2}$ College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China
${ }^{3}$ School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China
*Corresponding author: qifeng618@gmail.com, qifeng618@hotmail.com

Received June 17, 2018; Revised August 04, 2018; Accepted September 09, 2018

Abstract

In the paper, the author notes on a double inequality published in "Feng Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, Journal of Computational and Applied Mathematics 351 (2019), 1-5; Available online at https://doi.org/10.1016/j.cam.2018.10.049."

Keywords: double inequality, ratio, Bernoulli number, Riemann zeta function, open problem, guess
Cite This Article: Feng Qi, "Notes on a Double Inequality for Ratios of any Two Neighbouring Non-zero Bernoulli Numbers." Turkish Journal of Analysis and Number Theory, vol. 6, no. 5 (2018): 129-131. doi: 10.12691/tjant-6-5-1.

1. Introduction

We recall from [[1], p. 804, 23.1.1] and [[2], p. 3, (1.1)] that the Bernoulli numbers B_{n} can be generated by

$$
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}=1-\frac{z}{2}+\sum_{k=1}^{\infty} B_{2 k} \frac{z^{2 k}}{(2 k)!}
$$

for $|z|<2 \pi$. It is easy to verify that the function

$$
\frac{x}{e^{x}-1}-1+\frac{x}{2}
$$

is even in $x \in \mathbb{R}$. Consequently, all the Bernoulli numbers $B_{2 k+1}$ for $k \in \mathbb{N}$ equal 0 .

To discover explicit formulas, recurrent formulas, closed expressions, and integral representations of the Bernoulli numbers $B_{2 k}$ for $k \in \mathbb{N}$ is a classical topic. For recently published results, please refer to the papers [3-12] and closely related references therein.

To bound the Bernoulli numbers $B_{2 k}$ for $k \in \mathbb{N}$ by inequalities is an alternative topic. In [[1], p. 805, 23.1.15], [[13], Theorem 1.1], [[2], p. 14, (1.23) and p. 23, Exercise 1.2], and the papers $[14,15,16]$, some inequalities for bounding the Bernoulli numbers $B_{2 k}$ were established and collected. Most of these inequalities have been refined or sharpened in [17] by the double inequality

$$
\begin{equation*}
\frac{2(2 k)!}{(2 \pi)^{2 k}} \frac{1}{1-2^{\alpha-2 k}} \leq\left|B_{2 k}\right| \leq \frac{2(2 k)!}{(2 \pi)^{2 k}} \frac{1}{1-2^{\beta-2 k}} \tag{1}
\end{equation*}
$$

for $k \in \mathbb{N}$, where $\alpha=0$ and

$$
\beta=2+\frac{\ln \left(1-6 / \pi^{2}\right)}{\ln 2}=0.649 \ldots
$$

are the best possible in the sense that they can not be replaced respectively by any bigger and smaller constants in the double inequality (1).

To study the differences $\left|B_{2 k+2}\right|-\left|B_{2 k}\right|$ and the ratios $\frac{\left|B_{2 k+2}\right|}{\left|B_{2 k}\right|}$ for $k \in \mathbb{N}$ is also an interesting topic. In the newly published paper [18], the ratios $\frac{\left|B_{2 k+2}\right|}{\left|B_{2 k}\right|}$ for $k \in \mathbb{N}$, which is equivalent to the differences $\ln \left|B_{2 k+2}\right|-\ln \left|B_{2 k}\right|$, were bounded by the double inequality

$$
\begin{align*}
& \frac{2^{2 k-1}-1}{2^{2 k+1}-1} \frac{(2 k+1)(2 k+2)}{\pi^{2}}<\frac{\left|B_{2 k+2}\right|}{\left|B_{2 k}\right|} \tag{2}\\
& <\frac{2^{2 k}-1}{2^{2 k+2}-1} \frac{(2 k+1)(2 k+2)}{\pi^{2}}
\end{align*}
$$

Motivated by the double inequality (2) and by the fact that the function $\frac{2^{2 k+x}-1}{2^{2 k+2+x}-1}$ is strictly increasing in $x \neq-2(k+1)$ for all $k \in \mathbb{N}$, we naturally pose a problem: what are the best constants α and β such that the double inequality

$$
\begin{align*}
& \frac{2^{2 k+\beta}-1}{2^{2 k+2+\beta}-1} \frac{(2 k+1)(2 k+2)}{\pi^{2}}<\frac{\left|B_{2 k+2}\right|}{\left|B_{2 k}\right|} \tag{3}\\
& <\frac{2^{2 k+\alpha}-1}{2^{2 k+2+\alpha}-1} \frac{(2 k+1)(2 k+2)}{\pi^{2}} .
\end{align*}
$$

is valid for all $k \in \mathbb{N}$?
In [[2], p. 5, (1.14)], it was listed that

$$
B_{2 k}=\frac{(-1)^{k+1} 2(2 k)!}{(2 \pi)^{2 k}} \zeta(2 k), \quad k \in \mathbb{N},
$$

where the Riemann zeta function ζ can be defined [19,20,21] by the series $\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}$ under the condition $\mathfrak{R}(z)>1$ and by analytic continuation elsewhere.

$$
\begin{equation*}
\frac{\left|B_{2 k+2}\right|}{\left|B_{2 k}\right|}=\frac{(2 k+1)(2 k+2)}{\pi^{2}} \frac{1}{4} \frac{\zeta(2 k+2)}{\zeta(2 k)} \tag{4}
\end{equation*}
$$

for $k \in \mathbb{N}$. By virtue of (4), the double inequality (3) can be rewritten as

$$
\begin{equation*}
\frac{2^{2 k+\beta}-1}{2^{2 k+2+\beta}-1}<\frac{1}{4} \frac{\zeta(2 k+2)}{\zeta(2 k)}<\frac{2^{2 k+\alpha}-1}{2^{2 k+2+\alpha}-1} \tag{5}
\end{equation*}
$$

which can be further reformulated as

$$
\left(1-\frac{1}{2^{2 k+\beta}}\right) \zeta(2 k)<\left(1-\frac{1}{2^{2 k+2+\beta}}\right) \zeta(2 k+2)
$$

and

$$
\left(1-\frac{1}{2^{2 k+2+\alpha}}\right) \zeta(2 k+2)<\left(1-\frac{1}{2^{2 k+\alpha}}\right) \zeta(2 k)
$$

Let

$$
S_{\theta}(x) \triangleq\left(1-\frac{1}{2^{2 x+\theta}}\right) \zeta(2 x), \quad x \in[1, \infty), \quad \theta \in \mathbb{R}
$$

Then

$$
S_{\theta^{\prime}}(x)=\frac{1}{2^{2 x+\theta-1}}\left[\left(2^{2 x+\theta}-1\right) \zeta^{\prime}(2 x)+(\ln 2) \zeta(2 x)\right]
$$

In order that the function $S_{\theta}(x)$ is strictly increasing (or strictly decreasing, respectively) on $[1, \infty$), it is necessary and sufficient that

$$
\left(2^{2 x+\theta}-1\right) \zeta^{\prime}(2 x)+(\ln 2) \zeta(2 x) \gtreqless 0
$$

on $[1, \infty)$, which can be rearranged as

$$
\begin{aligned}
& 2^{\theta} \lesseqgtr\left[1-\frac{(\ln 2) \zeta(2 x)}{\zeta^{\prime}(2 x)}\right] \frac{1}{2^{2 x}} \\
& \rightarrow\left\{\begin{array}{l}
1, \\
\frac{1}{4}-\frac{\pi^{2} \ln 2}{24 \zeta^{\prime}(2)}=0.55 \ldots,
\end{array}\right.
\end{aligned}
$$

Consequently, in order that the function $S_{\theta}(x)$ for $x \in[1, \infty)$ and the sequence $S_{\theta}(k)$ with $k \in \mathbb{N}$ are strictly increasing (or strictly decreasing, respectively), it is necessary that $\theta \geq 0$ (or

$$
\theta \leq \frac{\ln \left[\frac{1}{4}-\frac{\pi^{2} \ln 2}{24 \zeta^{\prime}(2)}\right]}{\ln 2}=-0.85 \ldots
$$

respectively). The double inequality (5) can also be reformulated as

$$
2^{2+\beta}<\frac{1}{2^{2 k}} \frac{4-\zeta(2 k+2) / \zeta(2 k)}{1-\zeta(2 k+2) / \zeta(2 k)}
$$

and

$$
2^{2+\alpha}>\frac{1}{2^{2 k}} \frac{4-\zeta(2 k+2) / \zeta(2 k)}{1-\zeta(2 k+2) / \zeta(2 k)}
$$

Since

$$
\begin{aligned}
& \frac{1}{2^{2 k}} \frac{4-\zeta(2 k+2) / \zeta(2 k)}{1-\zeta(2 k+2) / \zeta(2 k)} \\
& \rightarrow \begin{cases}\frac{\pi^{2}-60}{4\left(\pi^{2}-15\right)}=2.44 \ldots, & k \rightarrow 1 \\
4, & k \rightarrow \infty\end{cases}
\end{aligned}
$$

It follows that the necessary conditions are $\alpha \geq 0$ and

$$
\beta \leq \frac{\ln \frac{\pi^{2}-60}{\pi^{2}-15}}{\ln 2}-4=-0.711 \ldots
$$

This implies that the right-hand side inequality in (2) is sharp, but the left-hand side inequality in (2) perhaps can be improved. In conclusion, we guess that the double inequality (3) is valid if and only if $\alpha \geq 0$ and

$$
\beta \leq \frac{\ln \left[\frac{1}{4}-\frac{\pi^{2} \ln 2}{24 \zeta^{\prime}(2)}\right]}{\ln 2}=-0.85 \ldots
$$

Since

$$
\lim _{x \rightarrow 1^{+}}\left\{\left[1-(\ln 2) \frac{\zeta(x)}{\zeta^{\prime}(x)}\right] \frac{1}{2^{x}}\right\}=\frac{1}{2}
$$

and

$$
\lim _{x \rightarrow \infty}\left\{\left[1-(\ln 2) \frac{\zeta(x)}{\zeta^{\prime}(x)}\right] \frac{1}{2^{x}}\right\}=1
$$

we guess that the function

$$
\left(1-\frac{1}{2^{x+\theta}}\right) \zeta(x), \quad x \in(1, \infty)
$$

is strictly increasing (or strictly decreasing, respectively) if and only if $\theta \leq-1$ (or $\theta \geq 0$, respectively).

The double inequality (2) has been cited and applied in the papers [22-29].

Can one generalize the inequality (2) to the case for the Bernoulli polynomials?

This paper and [18] are respectively extracted from the preprints [30,31,32,33].

References

[1] M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972.
[2] N. M. Temme, Special Functions: An Introduction to Classical Functions of Mathematical Physics, A Wiley-Interscience Publication, John Wiley \& Sons, Inc., New York, 1996.
[3] H. W. Gould, Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79 (1972), no. 1, 44-51.
[4] B.-N. Guo and F. Qi, A new explicit formula for the Bernoulli and Genocchi numbers in terms of the Stirling numbers, Glob. J. Math. Anal. 3 (2015), no. 1, 33-36.
[5] B.-N. Guo and F. Qi, An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, J. Anal. Number Theory 3 (2015), no. 1, 27-30.
[6] B.-N. Guo and F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math. 255 (2014), 568-579.
[7] S.-L. Guo and F. Qi, Recursion formulae for $\sum_{m=1}^{n} m^{k}$, Z. Anal. Anwendungen 18 (1999), no. 4, 1123-1130.
[8] J. Higgins, Double series for the Bernoulli and Euler numbers, J. London Math. Soc. 2nd Ser. 2 (1970), 722-726.
[9] S. Jeong, M.-S. Kim, and J.-W. Son, On explicit formulae for Bernoulli numbers and their counterparts in positive characteristic, J. Number Theory 113 (2005), no. 1, 53-68.
[10] F. Qi, Derivatives of tangent function and tangent numbers, Appl. Math. Comput. 268 (2015), 844-858.
[11] F. Qi and B.-N. Guo, Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, Analysis (Berlin) 34 (2014), no. 3, 311-317.
[12] S. Shirai and K.-I. Sato, Some identities involving Bernoulli and Stirling numbers, J. Number Theory 90 (2001), no. 1, 130-142.
[13] H.-F. Ge, New sharp bounds for the Bernoulli numbers and refinement of Becker-Stark inequalities, J. Appl. Math. 2012, Article ID 137507, 7 pages.
[14] C. D'Aniello, On some inequalities for the Bernoulli numbers, Rend. Circ. Mat. Palermo (2) 43 (1994), no. 3, 329-332.
[15] A. Laforgia, Inequalities for Bernoulli and Euler numbers, Boll. Un. Mat. Ital. A (5) 17 (1980), no. 1, 98-101.
[16] D. J. Leeming, The real zeros of the Bernoulli polynomials, J. Approx. Theory 58 (1989), no. 2, 124-150.
[17] H. Alzer, Sharp bounds for the Bernoulli numbers, Arch. Math. (Basel) 74 (2000), no. 3, 207-211.
[18] Feng Qi, A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers, Journal of Computational and Applied Mathematics 351 (2019), 1-5.
[19] Q.-M. Luo, B.-N. Guo, and F. Qi, On evaluation of Riemann zeta function $\zeta(s)$, Adv. Stud. Contemp. Math. (Kyungshang) 7 (2003), no. 2, 135-144.
[20] Q.-M. Luo, Z.-L. Wei, and F. Qi, Lower and upper bounds of ((3), Adv. Stud. Contemp. Math. (Kyungshang) 6 (2003), no. 1, 47-51.
[21] L. Yin and F. Qi, Several series identities involving the Catalan numbers, Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, 466474.
[22] B.-N. Guo, I. Mezö, and F. Qi, An explicit formula for the Bernoulli polynomials in terms of the r-Stirling numbers of the second kind, Rocky Mountain J. Math. 46 (2016), no. 6, 19191923
[23] H.-L. Lv, Z.-H. Yang, T.-Q. Luo, and S.-Z. Zheng, Sharp inequalities for tangent function with applications, J. Inequal. Appl. 2017, Paper No. 94, 17 pp.
[24] F. Qi and R. J. Chapman, Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89-100.
[25] Z.-H. Yang, Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function, J. Math. Anal. Appl. 441 (2016), no. 2, 549-564.
[26] L. Zhu, New bounds for the exponential function with cotangent, J. Inequal. Appl. (2018), 2018:106, 13 pages.
[27] L. Zhu, On Frame's inequalities, J. Inequal. Appl. (2018), 2018:94, 14 pages.
[28] L. Zhu, Sharp generalized Papenfuss-Bach-type inequality, J. Nonlinear Sci. Appl. 11 (2018), no. 6, 770-777.
[29] L. Zhu and M. Nenezi'c, New approximation inequalities for circu- lar functions, J. Inequal. Appl. (2018).
[30] F. Qi, A double inequality for ratios of the Bernoulli numbers, ResearchGate Dataset.
[31] F. Qi, A double inequality for ratios of Bernoulli numbers, ResearchGate Dataset.
[32] F. Qi, A double inequality for ratios of Bernoulli numbers, RGMIA Res. Rep. Coll. 17 (2014), Article 103, 4 pages.
[33] F. Qi, A double inequality for the ratio of two consecutive Bernoulli numbers, Preprints 2017, 2017080099, 7 pages.

