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1 Introduction and summary

1.1 Introduction

Gravitational high-energy scattering probes an interesting regime of quantum gravity. At
large impact parameters (very small momentum transfer) the scattering amplitude is given
by a single graviton exchange. As the impact parameter is lowered, the amplitude is related
by a Fourier transform in the impact parameter space to the exponential of the eikonal
phase (see e.g. [1] for a review). As the impact parameter b becomes comparable with the
Schwarzschild radius Rs associated with the total energy, a black hole may form — this is
reflected in the imaginary part of the eikonal phase. These issues have been a subject of
active investigation starting from [2–8]. For example, ref. [9] advocated a black hole ansatz
to describe the breakdown of unitarity. Generally one needs the full eikonal phase, to all
orders in the ratio Rs/b, to study the black hole regime.

A simplification happens when one of the particles is very heavy, so that its mass is the
largest scale in the problem, and the other particle is highly relativistic. In this case the
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eikonal phase determines the deflection of null geodesics in the Schwarzschild background
(see e.g. [10–36] for some work related to the computation of the heavy-light scattering
angle.) The deflection angle can in principle be computed to all orders in Rs/b.

A similar problem can be posed in AdS spacetime,1 where the eikonal phase (a.k.a.
the phase shift) is an interesting object from the point of view of the holographically dual
CFT. For example, in [48] the phase shift was used to distinguish black hole microstates
from conical defects. In [49] it was argued that conformal two-point functions in a generic
heavy state could be used to obtain the AdS-Schwarzschild eikonal phase. Moreover, the
phase is only sensitive to the stress-tensor sector of the correlator, which only contains
contributions from the stress tensor and its composites.

There has been some progress in computing the stress-tensor sector of such corre-
lators [50–61]. In particular, in [50] the leading twist stress tensor OPE coefficients in
holographic CFTs were shown to be largely universal — independent of the higher deriva-
tive terms in the bulk gravitational action. In [53] the contributions of all leading twist
double stress tensors in such CFTs were shown to produce a very simple function. In [55]
it was explained how the leading twist stress tensor sector can be computed by bootstrap
and in [58] it was shown how to go beyond the leading twist — the phase shift played
an important role in this story. So, the AdS-Schwarzschild eikonal phase is an important
object. In this paper we discuss its properties and investigate various limits.

1.2 Summary and outline

As we review in section 2, to compute the phase shift one needs to Fourier transform
a heavy-heavy-light-light (HHLL) correlator on the boundary. The Fourier transformed
correlator is a function of the energy, pt, and the angular momentum pϕ. In the limit
where pt and pϕ are large, the eikonal phase can be computed exactly as a function of the
ratio α = pϕ/pt, related to the impact parameter, and is given by [49]

δ = pt∆t− pϕ∆ϕ , (1.1)

where ∆t and ∆ϕ are the time and angular displacements of the null geodesic with the
energy pt and angular momentum pϕ.

As we describe in section 2, this is simply a consequence of the WKB approximation
to the differential equation which determines the holographic correlator. Another way
to illustrate how eq. (1.1) emerges involves considering a probe particle with the mass
which is large in AdS units. The two-point function is then determined by the length of
spacelike geodesics and is peaked around points connected by null geodesics. Such points
form a codimension one subspace on the boundary. There is a null geodesic which gives
the dominant contribution. The parameters of this geodesic can be determined from the
stationary phase condition — it is precisely the null geodesic whose energy and angular
momentum are equal to the pt and pϕ parameters of the Fourier transform. Hence, we end
up with the expression (1.1) for the phase shift.

1See e.g. [37–47] for work addressing the eikonal phase in AdS.
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The AdS eikonal phase is directly related to the usual eikonal phase in the flat space
scattering computed in the probe limit. To get the latter, one simply needs to take the flat
space limit of the AdS result, which we do in section 3. One can confirm that the resulting
formula is the conventional flat space eikonal phase by considering the relation between
the AdS phase shift and the deflection angle — this relation is exactly the same as the one
which follows from the stationary phase approximation to the eikonal scattering amplitude
in flat spacetimes.

The flat space limit yields a very simple formula for the eikonal phase, as we observe
in section 3. It can be summed to give an analytic function; we perform this summation
in four spacetime dimensions. The resulting phase is real for impact parameters larger
than the radius of the circular null orbit, but develops a large imaginary part for smaller
impact parameters. As a result, the total inelastic cross-section is equal to the geometric
absorption cross-section of the Schwarschild black hole.

In section 4 we consider the opposite limit of large impact parameters. More precisely,
we take a double scaling limit where the impact parameter becomes large (the momentum
approaches the lightcone) and at the same time the Schwarzschild radius also becomes large
in AdS units. This limit is particularly interesting from the dual CFT point of view — it
retains contribution from all leading twist multi-stress tensors. We study the propagation
of null geodesics in the effective metric derived in [60] and use eq. (1.1) to compute the
phase shift. It agrees (as it should) with the corresponding limit of the full phase shift. We
also compute the Lyapunov exponent for the null geodesics approaching the null orbit in
the effective metric.

We discuss our results in section 5. appendices contain some technical details used in
the main text.

2 Eikonal phase in AdS-Schwarzschild

Ref. [49] argued that two-point functions in certain heavy states in holographic CFTs with
a large central charge CT can be used to define the eikonal phase (a.k.a. the phase shift).
One should simply Fourier transform the CFT correlator on the d-dimensional Lorentzian
cylinder (the boundary of the d+ 1 dimensional asymptotically AdS spacetime)

eiδ '
∫
dtdϕ e−ip

tt (sinϕ)d−2C
d−2

2
pϕ (cosϕ)〈OHOL(t, ϕ)OL(0)OH〉 , (2.1)

where the heavy operators OH (with the conformal dimension ∆H ∼ CT ) are inserted
at t = ±∞ and t, ϕ are the displacements of the two light operators [with ∆L ' O(1)]
on the cylinder (ϕ is the relative angle on the d − 1-dimensional spatial sphere of radius
R). In (2.1) C

d−2
2

pϕ (cosϕ) are the Gegenbauer polynomials with the angular momentum pϕ,
which generalize the spherical harmonics of the d = 4 case. The momenta are taken to be
large, pt � R−1, pϕ � 1 and the integral in (2.1) can be computed in the stationary phase
approximation. Substituting the large pϕ behavior of the Gegenbauer polynomials, (2.1)
can be written as

eiδ '
∫
dtdϕ e−ip

tt+ipϕϕ 〈OHOL(t, ϕ)OL(0)OH〉 . (2.2)

– 3 –



J
H
E
P
0
3
(
2
0
2
1
)
2
8
9

In the following we will mostly set R = 1, but it can be easily recovered on dimensional
grounds. Note that the phase shift, as defined by (2.1) is related to the eikonal phase δ`
conventionally appearing in the scattering amplitudes (see e.g. [9, 25, 26, 62]) by a factor
of two,

δ = 2δ` . (2.3)

The Fourier transformed correlator in the large pt, pϕ limit receives a dominant con-
tribution from a certain null geodesic, as we review below. It was argued in [49] that
the phase shift is given by (1.1) where pt and pϕ are now the conserved quantities which
determine the trajectory of the corresponding null geodesic, while ∆t and ∆ϕ describe
the deviation of the point where the null geodesic emerges at the boundary of the AdS-
Schwarzschild from the pure AdS result. The explicit expression for the phase shift in the
D = d+ 1-dimensional AdS-Schwarzschild spacetime is [49]

δ

(√
−p2, L

)
=
∞∑
k=0

δk

(√
−p2, L

)
=

=
∞∑
k=1

µk

k!
2Γ
[
dk+1

2

]
Γ
[
k(d−2)+1

2

] π
k(d−2)+2

2

Γ
[
k(d−2)+2

2

] √−p2 Πk(d−2)+1,k(d−2)+1(L) .
(2.4)

where

Π∆−1;d−1(x) = π1− d
2 Γ(∆− 1)

2Γ
(
∆− d−2

2

) e−(∆−1)x
2F1

(
d

2 − 1,∆− 1,∆− d

2 + 1, e−2x
)
. (2.5)

and
e2L = p+

p−
= pt + pϕ

pt − pϕ
. (2.6)

In (2.4) and in the rest of the paper µ is proportional to the mass of the AdS-Schwarzschild
black hole M and to the ratio ∆H/CT ,

µ =
[
d− 1
16π Ωd−1

]−1
GNM = 4Γ(d+ 2)

(d− 1)2Γ(d2)
∆H

CT
(2.7)

where GN is the d + 1-dimensional Newton’s constant and Ωd−1 is the volume of the
d− 1-dimensional sphere.

2.1 The phase shift formula from the WKB approximation

In this subsection we use the WKB approximation for the two-point function in the (ther-
mal) CFT state dual to the AdS-Schwarzschild background to show that the phase shift
is given by (1.1). (See e.g. [63] and also [64, 65] for examples of a WKB approximation in
the computation of a two-point funciton).

In a d+ 1-dimensional AdS-Schwarzschild spacetime,

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩd−1 , (2.8)
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with f = 1− r2 + µ/rd−2, the time delay and the anglular deflection of null geodesics are
given by

∆t = 2pt
∫ ∞
r0

dr

f(r)
√

1− f(r)α2

r2

, ∆ϕ = 2pϕα
∫ ∞
r0

dr

r2
√

1− f(r)α2

r2

, (2.9)

where pt (pϕ) is the energy (angular momentum), α = pϕ/pt and r0 is the largest solution
of f(r)α2 = r2. One can now use (1.1) to arrive at the following formula for the phase shift

δ = 2|pt|
∫ ∞
r0

dr

f(r)

√
1− f(r)α2

r2 . (2.10)

Consider now a holographic two-point function in the thermal state (2.8). The action
for a massive scalar is given by

S '
∫
d5x

√
− det gαβ

[
gµν∂µφ∂νφ−m2φ2

]
. (2.11)

As usual, the mass is related to the conformal dimension of the dual scalar operator by the
AdS/CFT correspondence [66–68] via m2R2 = ∆L(∆L − d). The equation of motion is

r1−d∂r(rd−1f∂rφ)− f−1∂2
t φ+ r−2∂2

ϕφ+m2φ = 0 . (2.12)

Performing the Fourier transform to φ̃(pt, pϕ), substituting

φ̃(pt, pϕ) = eip
tψ (2.13)

and retaining the leading terms in the large energy limit, pt, pϕ � 1,m, yields

(∂rψ)2 = 1
f2(r)

(
1− α2f(r)

r2

)
, (2.14)

which can be integrated and gives precisely (2.10) for the phase shift.

2.2 Null geodesics and the phase shift

It is not hard to prove the following identity for the null geodesics, by performing direct
differentiation of both the lower limit of integration and the integrands,

α
∂

∂α

∫ ∞
r0

αdr

r2
√

1− f(r)α2

r2

− ∂

∂α

∫ ∞
r0

dr

f(r)
√

1− f(r)α2

r2

= 0 . (2.15)

With this identity, one can further show that

∆t = ∂δ

∂pt
, ∆ϕ = − ∂δ

∂pϕ
. (2.16)

Equations (2.16) generalize the result of appendix E in [58]. Note that (2.16) are exactly the
relations between the eikonal phase and the time delay and angular deflection, familiar from
the Regge scattering in flat spacetime [they follow from the stationary phase approximation
for the scattering amplitude; one should also bear in mind a factor of two in (2.3)].
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The identity (2.15) can be used to illustrate how eq. (1.1) emerges from the Fourier
transform of the correlator in the large ∆L limit. In this limit, the two-point function is
related to the length of a geodesic which connects two points on the boundary. At large
momenta, the dominant contribution comes from null geodesics, since they minimize the
length (see e.g. [69] for a related discussion). There is one specific null geodesic which
extremizes the phase shift — its parameters can be determined by the stationary phase
consition. We need to extremize

δ

pt
=
∫ ∞
r0

dr

f(r)
√

1− f(r)α2

r2

− pϕ

pt
α

∫ ∞
r0

dr

r2
√

1− f(r)α2

r2

(2.17)

with respect to the parameter α, which labels null geodesics. In (2.17) the ratio of the ex-
ternal momenta pϕ/pt is fixed (pϕ and pt are simply the variables of the Fourier transform).

According to (2.15) the extremum is achieved for the value of α which is precisely
equal to the ratio pϕ/pt, thereby confirming (1.1).

3 Flat space limit (small AdS impact parameter)

3.1 Taking the flat space limit

It is interesting to take the flat space limit of (2.4). This is achieved by taking the AdS
radius R to be large compared to the Schwarzschild radius Rs of the black hole and the
impact parameter b. Recall that [49]

b = R sinhL, µ ≈
(
Rs
R

)D−3
. (3.1)

Hence, the flat space limit corresponds to the limit of small µ and L with

µ

LD−3 ≈
(
Rs
b

)D−3
≈
(
Rsp

t

pϕ

)D−3

(3.2)

fixed. The result of this limit for the phase shift is

δM =
∞∑
k=1

√
πΓ
(

(D−1)k+1
2

)
((D − 3)k − 1)k!Γ

(
(D−3)k

2 + 1
) (Rspt)k(D−3)

(pϕ)k(D−3)−1 , (3.3)

where the subscript “M” stands for Minkowski spacetime. It is instructive to compute the
deflection angle,

ϕM = −dδM
dpϕ

. (3.4)

Differentiating eq. (3.3) yields

ϕM =
∞∑
k=1

√
πΓ
(

(D−1)k+1
2

)
k!Γ

(
(D−3)k

2 + 1
) (Rs

b

)k(D−3)
(3.5)

where we substituted b = pϕ/pt.
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3.2 Four-dimensional spacetime

Consider the four-dimensional spacetime, D = 4. As an extra check, we can make use of
eq. (11.32) in [23] (see also appendix D of [22]) where the scattering angle is quoted up to
the next-to-next to leading order. To compare with our results, we need to take the probe
limit, where the mass of one particle is the largest scale in the problem. This produces

ϕM = 2
(
Rs
b

)
+ 15π

16

(
Rs
b

)2
+ 16

3

(
Rs
b

)3
+ . . . . (3.6)

This is in complete agreement with (3.5).
It is interesting that the sum in (3.3) can be computed exactly. One way to do it is to

substitute D = 4 in (3.5) and then integrate the result. It will be convenient to define

x = 3
√

3
2

Rsp
t

pϕ
, (3.7)

which yields

δM = 3
√

3Rspt

2x

(
iπ−π 3F2

[
−1

2 ,
1
6 ,

5
6; 1

2 ,1;x2
]
−x4G

2,3
4,4

[
−1

3 ,0,
1
3 ,1;0,0,−1

2 ,−
1
2;−x2

])
+c ,
(3.8)

where G2,3
4,4 is the Meijer G-function (see appendix A) and c is a real constant. We will

be interested in the imaginary part of the phase shift, which develops for x > 1 (this
corresponds to the impact parameter of a null geodesic which approaches the light orbit).
It has the form (see appendix A)

Im δM = Rsp
tf(x) , (3.9)

where f(x) is plotted in figure 1. The imaginary part is vanishing (the scattering is elastic)
for x < 1 which corresponds to the impact parameter larger than the radius of the circular
light orbit, R∗ = 3

√
3Rs/2. On the other hand, for x > 1, Im δM is very large (since

Rsp
t � 1 in the eikonal limit we consider) — the scattering for these partial waves is

completely non-elastic (they are totally absorbed). The inelastic scattering cross-section is

σin,M = π

(pt)2

ptR∗∑
`=0

(2`+ 1)(1− |eiδ|2) = πR2
∗ . (3.10)

This is the geometric absorption cross-section of the Schwarzschild metric.

4 Leading twist limit (large AdS impact parameter)

Each term in the phase shift result (2.4) has the following behavior in the large impact
parameter regime, L� 1,

δ(k)(p2, L) ∼
√
−p2e−(k(d−2)+1)L ∼ p−e−k(d−2)L , (4.1)

which summarizes the contributions of all leading twist k-stress tensors. Hence, one can
take a double scaling limit µ→∞, µe−(d−2)L fixed, where only such operators survive.

– 7 –
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Figure 1. The plot of ImδM/(Rsp
tπ).

This limit was recently considered in [60], where an effective three-dimensional metric
with the boundary coordinates x+ = t + ϕ, x− = µ

2
d−2 (t − ϕ) was introduced. It is clear

that one should be able to recover (4.10) directly from that effective metric,

δ = 1
2p

+(∆t−∆ϕ) + 1
2p
−∆x+ = p−

2

(
p+

µ
2

d−2 p−
∆x− + ∆x+

)
. (4.2)

where ∆x+ ≡ ∆t + ∆ϕ and ∆x− ≡ µ
2

d−2 (∆t − ∆ϕ) are the coordinate displacements of
the null geodesic.

4.1 Effective metric and null geodesics

We start with the AdS-Schwarschild spacetime (2.8) and consider the limit µ → ∞, x−

fixed. This corresponds to taking the lightcone limit and the large µ limit simultaneously.
A null geodesic propagates in the x+, x−, r part of the spacetime. In the double-scaling
limit the metric (2.8) becomes [60]

ds2 = −1
4

(
1− 1

y2

)
(dx+)2 − y2dx+ dx− + dy2

y2 , (4.3)

where y = rµ−
1

d−2 . There are two conserved quantities,

K+ = −1
4

(
1− 1

yd−2

)
ẋ+ − y2

2 ẋ
−, K− = −K = −y

2

2 ẋ
+ . (4.4)

Note that K > 0 and K+ < 0 to ensure ∆x± > 0. The geodesic equation becomes

ẏ2 + 4KK+ + (y−2 − y−d)K2 = 0 . (4.5)

As usual, the problem is equivalent to a problem of one-dimensional motion in some effective
potential. We can write

∆x+ = 4
∫ ∞
y0

dy

(y4−d − y−2 + α̃y4)
1
2

(4.6)

while
∆x− = 2

∫ ∞
y0

dy
y−d − y−2 + α̃

2

(y4−d − y−2 + α̃y4)
1
2
, (4.7)

– 8 –
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where

α̃ = −4K+
K

= 4K+
K−

= 4µ
2

d−2 p−
p+

= 4µ
2

d−2 p−

p+ = 4µ
2

d−2 e−2L (4.8)

is kept finite in the double scaling limit. The phase shift takes the form

δ = 4p−

α̃

∫ ∞
y0

dyy−4(α̃y4 − y2 + y4−d)
1
2 . (4.9)

4.2 Leading twist in d = 4

To illustrate the discussion above, consider the case of d = 4. One can compute the
sum (2.4) in the double scaling limit directly; the result for the leading twist phase shift is

δ = p−π 2F1(1
4 ,

3
4 , 2, 16µe−2L) . (4.10)

One can also use the effective metric to write down the explicit expressions for ∆x+, ∆x−:

∆x+ = 2π√
α̃u0

2F1

(1
2 ,

1
2 , 1, ũ1

)
, (4.11)

∆x− = α̃

4 ∆x+ + π

8
√
α

(3
2 2F1

(5
2 ,

1
2 , 3, ũ1

)
− 2F1

(3
2 ,

1
2 , 2, ũ1

))
, (4.12)

where u0,1 = (1±
√

1− 4α̃)/(2α̃) and ũ1 = u1/u0. Now we can compute the leading twist
phase shift

δ = 2p−

α̃
√
u0

∫ ∞
u0

du

u
5
2

(
α̃u2 − u+ 1

) 1
2 = πp−√

α̃u0
2F1

(
−1

2 ,
1
2 , 2, ũ1

)
. (4.13)

Note that (4.13) exactly agrees with (4.10), as expected (see appendix B).

4.3 Lyapunov exponent

As explained in [70] (and recently investigated in the context similar to that of the present
paper in [71, 72]) an interesting quantity is the Lyapunov exponent λ. It is related to the
critical behavior of ∆t,

∆t ≈ − 1
λ

log(α̃− α̃c), ∆ϕ ≈ −ωc
λ

log(α̃− α̃c) , (4.14)

which leads to the Lyapunov scaling as α̃ approaches α̃c,

δ∆ϕ
δα̃
∼ eλ∆t . (4.15)

In the double scaling limit we consider in this section, ∆t ≈ ∆ϕ ≈ ∆x+/2, and from (4.11)
we infer α̃c = 1/4 and λ =

√
2 for d = 4. More generally, one can use the explicit

formula [70] to compute

λ =

√
V ′′eff
2ṫ2

=
√
d− 2 , (4.16)

where the effective potential is read off from (4.5) and all quantities in (4.16) are evaluated
on the circular light orbit.
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It would be interesting to investigate the relation of the classical Lyapunov exponent
discussed in this section and the Lyapunov exponent which appears in out-of-time ordered
correlators which satisfy the bound on chaos [78]. The latter originated from a (squared)
commutator of two local operators and hence measures quantum chaos. The regularization
used in [78], which involves separating commutators by a half thermal circle in the euclidean
time, leads to a correlator where operators appear on both sides of the thermofield double.
This holographically corresponds to insertions of the operators on the two sides of the
ethernal AdS-Schwarzschild. The resulting geodesic calculation probes different geometry,
compared to the one discussed in this section — it would be interesting to see if there is a
connection between the two calculations.

5 Discussion and open questions

In this paper we consider the eikonal phase which appears in the probe limit of high energy
gravitational scattering in AdS spacetime. The AdS eikonal phase has been useful in the
context of holographic CFTs, where it receives contributions from the stress tensor sector
and is often insensitive to the double trace contributions (see however [48]). It remains
to be seen whether it can play an important role outside of holography, since in generic
CFTs one expects a number of low lying higher spin operators, which would contribute
to the phase shift. It would be interesting to see how the finite gap in the spectrum of
spinning operators would affect the phase shift. This corresponds to stringy corrections to
the eikonal phase in the bulk, a subject that received a lot of attention starting from [3].
It would also be interesting to see a direct derivation of the scattering amplitude in AdS
in the Regge limit.

Note that to reproduce the correct inelastic scattering cross-section of the
Schwarzschild metric it was sufficient to observe that the phase shift develops a large
imaginary part (3.9) for x > 1. The exact behavior of the function f(x) didn’t matter for
this conclusion, but it would be interesting to understand it better. Can it be obtained from
some effective action for Regge scattering [73, 74]? One may also wonder whether geodesics
which probe the black hole interior (see e.g. [75, 76]) play a role in computing f(x).

From the dual CFT point of view the flat space limit of the phase shift equals the
anomalous dimension of the corresponding heavy-light operators2 Hence, complex values
of the phase shift imply complex anomalous dimensions. Of course in the heavy-light
scattering case considered here, the heavy-light operators are extremely heavy to start
with. On the other hand, the situation must be qualitatively similar for the light-light
scattering. Namely, the physics of the black hole formation at sufficiently small impact
parameters should imply complex anomalous dimensions of the double trace operators. It
would be interesting to see if holography can shed more light on this (see e.g. [77] for a
recent CFT interpretation of complex anomalous dimensions). Another possibility would
be a scenario similar to what happens in a light-light scattering setup when the finite string
length corrections are taken into account and the phase shift becomes complex. In this

2It was explicitly shown to O(µ2) in [51] but we verified this to next order, and believe it holds generally.
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case new single trace operators emerge [45, 47] in the S-channel3 (heavy-light channel in
our situation).

In addition to the eikonal phase, we computed the Lyapunov exponent associated
with the limiting behavior of null geodesics as they approach the circular null orbit (the
photosphere). We obtained a universal value λ =

√
d− 2 which does not depend on the

addition of higher derivative gravitational terms to the bulk action. It is interesting to
compare it with the Lyapunov exponent considered in [78], λC = 2πT , even though the
two quantities apprarently describe different physics (λC is related to the behavior of four-
point functions in the finite temperature background, while λ is related to the two-point
function; in the bulk language the former is dominated by the near-horizon scattering, while
the latter reflects the behavior of geodesics near the photosphere). The minimal value of
the AdS-Schwarzschild temperature in the units of AdS radius is Tmin = (2π)−1√d(d− 2),
which gives λC,min =

√
d(d− 2) > λ, so, interestingly, λ satisfies the bound on chaos [78].

It would be interesting to see how generic the value of λ is. Generalization to the
asymptotically AdS black holes with rotation and/or charge should be straightforward.
Another natural question is a field theoretic interpretation of the critical behavior (4.14).
Note that it is related to the critical behavior of the eikonal phase δ, since ∆t is related
to δ via (2.16). Presumably this critical behavior of the eikonal phase is related to the
asymptotic behavior of the leading twist multi stress tensor OPE coefficients. It would be
interesting to make it precise.

Finally, one may wonder whether the effective metric (4.3), which encodes the con-
tributions of leading twist multi stress operators, has important physical significance. It
is interesting to note that this metric is not maximally symmetric and is not a solution
of the vacuum Einstein equations. Perhaps the asymptotic symmetries of this metric can
be used to infer a higher dimensional analog of the Virasoro algebra.4 We leave this for
future investigation.
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A Analytic continuation of phase shift

The phase shift in D = 4 is given by (3.8) To continue it to x > 1, we use the integral
expression for the functions,

3F2

[
−1

2 ,
1
6 ,

5
6

1
2 , 1

;x2
]

= − 1
4π

∫
ds Γ(s)Γ(−1/2− s)Γ(1/6− s)Γ(5/6− s)

Γ(1/2− s)Γ(1− s) (−x2)−s . (A.1)

For x > 1, we take the poles s = 1/6 + n , 5/6 + n. We adjust the contour so that s = 1/2
pole is also included. We deform the contour to exclude the pole and a clean distinction
of contour. Finally,

3F2

[
−1

2 ,
1
6 ,

5
6

1
2 ,1

;x2
]
ac

=
Γ(−2

3)Γ(1
6)

4 3√2π3/2(−x2)1/6 3F2

[
1
6 ,

1
6 ,

2
3

1
3 ,

5
3

; 1
x2

]
+

Γ(−4
3)Γ(5

6)
8 3√4π3/2(−x2)5/6 3F2

[
5
6 ,

5
6 ,

4
3

5
3 ,

7
3

; 1
x2

]

− 2ix
3
√

3
. (A.2)

Similarly the analytical continuation of the Meijer-G function is given by,

G2,3
4,4

[
−x2

∣∣∣∣ −1
3 ,0,

1
3 ;1

0,0;−1
2 ,−

1
2

]
ac

=π

∫
ds

cscπs
s

Γ(2/3−s)Γ(4/3−s)
Γ(3/2−s)2 (−x2)−s ,

=
√

3πΓ(−2
3)

2Γ(1
6)2(−x2)4/3 3F2

[
5
6 ,

5
6 ,

4
3

5
3 ,

7
3

; 1
x2

]
−

√
3πΓ(2

3)
Γ(5

6)2(−x2)2/3 3F2

[
1
6 ,

1
6 ,

2
3

1
3 ,

5
3

; 1
x2

]

− 2
√

3
x2 4F3

[
1
2 ,

1
2 ,1,1

2
3 ,

4
3 ,2

; 1
x2

]
. (A.3)

The relevant pole contributions being s = 1+n, s = 2/3+n and s = 4/3+n with n ∈ Z≥0.
The last term in the above does not have any imaginary contribution and hence we will
neglect this term subsequently.

Hence, for x > 1,

δM (x)
πRspt

=
(

1+ 2ix
3
√

3
−

Γ(−2
3)Γ(1

6)
4 3√2π3/2(−x2)1/6 3F2

[
1
6 ,

1
6 ,

2
3

1
3 ,

5
3

; 1
x2

]
−
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3)Γ(5
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5
6 ,

5
6 ,

4
3

5
3 ,

7
3

; 1
x2

]

− x

4π

( √
3πΓ(−2

3)
2Γ(1

6)2(−x2)4/3 3F2

[
5
6 ,

5
6 ,

4
3

5
3 ,

7
3

; 1
x2

]
−

√
3πΓ(2

3)
Γ(5

6)2(−x2)2/3 3F2

[
1
6 ,

1
6 ,

2
3

1
3 ,

5
3

; 1
x2

]

− 2
√

3
x2 4F3

[
1
2 ,

1
2 ,1,1

2
3 ,

4
3 ,2

; 1
x2

]))
.

(A.4)

Now consider the imaginary part of the phase shift. For 0 < x ≤ 1,

Im δM (x ≤ 1) = 0 . (A.5)
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For x > 1,

Im
δM (x> 1)
πRspt

=
(
1+ 2x

3
√

3
+

Γ(−2
3)Γ(1

6)
8 3√2π3/2x1/3 3F2

[
1
6 ,

1
6 ,

2
3

1
3 ,

5
3

; 1
x2

]
+

Γ(−4
3)Γ(5

6)
16 3√4π3/2x5/3 3F2

[
5
6 ,

5
6 ,

4
3

5
3 ,

7
3

; 1
x2

]

−
3Γ(−2

3)
16Γ(1

6)2x5/3 3F2

[
5
6 ,

5
6 ,

4
3

5
3 ,

7
3

; 1
x2

]
−

3Γ(2
3)

8Γ(5
6)2x1/3 3F2

[
1
6 ,

1
6 ,

2
3

1
3 ,

5
3

; 1
x2

])
. (A.6)

Since the hypergeometric functions and the Γ−functions are real, the imaginary part comes
only from the factor (−)

1
3 etc. After some simplifications,

Im
δM (x> 1)
πRspt

= 2+ 3
√

3
2x

(
9Γ(1

3)
16Γ(1

6)2
1
x5/3 3F2

[
5
6 ,

5
6 ,

4
3

5
3 ,

7
3

; 1
x2

]
−

3Γ(2
3)

4Γ(5
6)2

1
x1/3 3F2

[
1
6 ,

1
6 ,

2
3

1
3 ,

5
3

; 1
x2

])
.

(A.7)
One can show that

lim
x→∞

Im
δM (x > 1)
πRspt

= 2. (A.8)

B Phase shift for leading twist

Here we will show that (4.10)

δ

p−
= π2F1

(1
4 ,

3
4 , 2, 4α̃

)
(B.1)

exactly equals (4.13). Start from

δ

p−
= 2
α̃
√
u0

∫ ∞
u0

du

u5/2 (α̃u2 − u+ 1)1/2 = π√
α̃u0

2F1

(
−1

2 ,
1
2 , 2,

u1
u0

)
. (B.2)

where, u0,1 = (1±
√

1− 4α̃)/(2α̃), so that u0u1 = 1/α̃. After some simplifications,

δ

p−
=

√
2π√

1 +
√

1− ρ
2F1

[
−1

2 ,
1
2

2
; (1−

√
1− ρ)2

ρ

]
, ρ = 4α̃ . (B.3)

We expand the 2F1[−1/2, 1/2, 2, x] in terms of the sum,

δ

p−
=
√

2π
∞∑
k=0

(−1
2)k(1

2)k
k!(2)k

(1−
√

1− ρ)2k+1/2

ρk+1/2 . (B.4)

and,
(1−

√
1− ρ)2k+1/2

ρk+1/2 =
∞∑
n=0

2−3/2−2k−2n(1 + 4k)Γ(1
2 + 2k + 2n)

n!Γ(3
2 + 2k + n)

ρk+n , (B.5)

so that,

δ

p−
=
√

2π
∞∑
k=0

∞∑
n=0

(−1
2)k(1

2)k
k!(2)k

2−3/2−2k−2n(1 + 4k)Γ(1
2 + 2k + 2n)

n!Γ(3
2 + 2k + n)

ρk+n . (B.6)

We change variables n = a− k with 0 ≤ k ≤ a. We perform the k-sum so that,

δ

p−
=
√

2π
∞∑
a=0

2−1/2−2a(2a− 1/2)!√
πa!(1 + a)! ρa = π2F1

(1
4 ,

3
4 , 2, 4α̃

)
. (B.7)
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