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NOTES ON CANONICAL SURFACES

EIJI HORIKAWA

(Received February 1, 1990, revised May 7, 1990)

1. Surfaces with c21=3pg-7. As Ashikaga and Konno are going to publish their 

paper on surfaces of general type [2], I would like to take this opportunity to state 
several results on these surfaces and related problems.

A minimal algebraic surface S is called a canonical surface if the map •¬K:S•¨Pn, 

n=pg-1, associated to the canonical system |K| induces a birational map of S onto 

its image. Let Quad(S) denote the intersection of all the quadrics through the image 

ƒÓK(S). If S is a canonical surface, then c21•¬3pg-7 (see [10, Part II, Lemma 1.1]). If 

the equality sign holds here, S has rather simple structure and its construction can be 

completely described as in [2]. These are all essentially due to Castelnuovo [4], and I 

obtained my proof in 1976, which is mostly similar to [2,•˜•˜1-4]. Moreover, I noticed 

that some of the canonical surfaces with pg=7, c21=14 (such that Quad(S) is a cone 

over the Veronese surface) have obstructed deformations. For such S, |K| is not ample, 

and the canonical system |Kt| remains non-ample for any small deformation St of S. 

So, by [3], S has generically non-reduced moduli. This was insinuated in [10, Part III, 

Remark on p. 229], but with an erroneous citation pg=6, c21=11. (I planned to write 

a paper entitled "On certain canonical surfaces" to discuss surfaces with c21=3pg-7 

and 3pg-6, but it was never completed.)

This surface was independently found recently by Miranda [15]. But he missed 

one point: If {St: t•¸M} is a flat family over a parameter space M, then does {Quad(St): 

t•¸M} form a flat family? This is not true in general, because the dimension of Quad(St) 

may jump in some case.

LEMMA 1. In the present case, Quad(St) form a flat family provided that the 

parameter space M is reduced.

PROOF. Let {ƒÓi} be a basis of H0(S, •¬(K)). Then the products ƒÓiƒÓj generate H0(S,•¬(2K))

. Hence, for some set of indices •È, ƒÓiƒÓj, (i, j)•¸•È, form a basis of H0•iS,•¬(2K)•j

. Since the irregularity q vanishes these ƒÓi are extended to the sections 

ƒÓi(t) of H0(St, •¬(Kt)). Hence the products ƒÓi(‚”)ƒÓ‚Š(‚”),(i,j)•¸ƒ© form a basis of•@H0(S‚”,•¬(2K‚”))

. Therefore, the other products are linear combinations of these products. 

This implies that any quadratic relation among the ƒÓi's can be extended to that of the 

ƒÓi(t)'s. This proves that Ut Quad(St) is an analytic subset of P6•~M. It is well-known 

that, for all possible candidates for Quad(St), dim H0(Quad(St), •¬(m)) are the same. 

Since M is reduced, this proves the normal-flatness and hence the flatness of Quad(St).
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By this lemma, Quad(St) remains the cone over the Veronese surface, because its 
vertex is a rigid singularity [17]. Analogous example of nonreduced moduli for surfaces 
of general type was previously found in [10, Part III]. Note that these two are put 
together in a recent work of Catanese [5].

2. Canonical surfaces with c21=3pg-6, q=0. As to these surfaces, the following 

lemmas will take care for large values of pg.

LEMMA 2. (i) If pg•¬5 then Quad(S) is of dimension•¬3.

(ii) If pg•¬12, then Quad(S) is a threefold of degree n-2 in Pn, and S has a pencil 

of curves of genus 3 of non-hyperelliptic type (i,e., the general fibres are non-hyperelliptic).

LEMMA 3. If S has a pencil of curves of genus 3 of non-hyperelliptic type, then it 
has one degenerate fibre which is given by

(1) q(x, y, z)2+t2f(x, y, z, t)=0

in P2•~‡™, where ‡™={t•¸C:|t|<ƒÃ} is a parameter space and q and f are homogeneous 

polynomials in (x, y, z) of degrees 2 and 4, respectively.

My proof of Lemma 2 is a mimic of Petri's analysis on canonical curves as presented 
by Saint-Donat [16], or one can apply Harris' result [8, Theorem 3.15].

The equation (1) only gives a singular model with a double curve along the conic 
Q defined by q=t=0. This can be (partially) resolved by introducing a new variable w 

and considering the following equations:

(2) {w2+f(x, y, z, t)=0,
 q-wt=0.

If the coefficients of f are sufficiently general, (2) determines over t=0 a hyperelliptic 

curve C of genus 3 which is a double covering of the conic Q branched at 8 points 

defined by f (x, y, z, 0)=0 (w can be regarded as an inhomogeneous fibre coordinate 

on the P1-bundle associated to •¬(2)).

This type of degenerate fibre contributes +1 to the value c21-3pg. Conversely, we 
start with a p2-bundle W over P1, and take a hypersurface S' which cuts a quartic on 
each fibre and which has one double conic like (1). Then take its minimal resolution 
essentially given by (2) (S may be described as a complete intersection in a P1-bundle 
over a p2-bundle over P1).

For small values of pg (the cases •¬4 are studied in [10]), Quad(S) can be either 

P4 or a threefold of degree n-1 or n-2, i.e. ‡™=1 or 0 in Fujita's sense. In the first 

case, S is a complete intersection of two cubics. In the second case one can apply Fujita's 

classification of varieties with ‡™=1[6a, 6b]. But I did not fully investigate the cases in 

which Quad(S) is singular. The third case is similar to the above with a few exceptional 

cases.
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It may be interesting to investigate deformations of these surfaces, including the 

non-canonical surfaces. As a special case, this includes the class of sextic surfaces in 

P3 (pg=10, K2=24, see •˜4 below).

3. Pencil of curves of genus 3. The above Lemma 3 fascinated me with the idea 
that all degenerate fibres of pencil of genus 3 of non-hyperelliptic type may be described 
as degenerations of quartics like (1), extending the results for the case of pencil of genus 
2 [11]. This was almost worked out around 1981. The aim is to make a complete list 
of all possible degenerations of plane quartics up to Cremona transfomations, and 
calculate the non-negative contribution of each of them to the value of c21-3pg. As a 
consequence, for such a pencil without exceptional curves in a fibre, we can prove

c21•¬3x+10(ƒÎ-1)

where x=pg-q+1 is the Euler-Poincare characteristic and ƒÎ denotes the genus of the 

base curve. Since we have c21•¬(8/3)(x+4ƒÎ-4) for hyperelliptic pencil of genus 3 [10, 

V, Theorem 2.1], it follows that, in the range 3x+10(ƒÎ-1)>c21•¬(8/3)(x+4ƒÎ-4), any 

hyperelliptic pencil of genus 3 is never deformed to non-hyperelliptic type. Examples 

are in [10, IV, Theorems 3.1, 3.2].

I found it rather difficult to write down the results in a concise, and still readable 
form. As of now I am not sure if (1) is only the "essential" degeneration, in a sense 
analogous to the case of genus 2 in [14].

I also worked out the case of hyperelliptic pencil of curves of genus 3. As one may 
learn from (1), this should not be studied as degeneration of double coverings of P1, 

but as those over the conic Q. Then some degeneration comes from that of the branch 
locus, and others from that of the conic Q, and from both in many cases.

4. Sextic surfaces. After I finished with quintic surfaces, I have thought, from 
time to time, of the next surfaces, the sextic surfaces in P3. These surfaces are embedded 
in P3 not by the canonical system, but by one half of it. This implies that S has an 
even intersection form on H2(S, Z), or in other words, the second Stiefel-Whitney class 
W2 vanishes. Conversely, this topological condition assures that K is divisible by 2 as 
K=2L for any deformation of S. So we only have to study numerical sextics with W2=0.

First one proves h0(L)=4 (It is easy to show h0(L)=4 or 5. The case h0(L)=5 

must be excluded with some effort.) There are six possibilities for the map ƒ³L associated 

to L.

(Ia) Embedding as a sextic.

(Ib) Double cover over a cubic surface.
(Ic) Triple cover over a quadric.

(IIa) Double cover over a smooth quadric.
(IIb) Double cover over a singular quadric.

(III) Composed of a pencil of genus 3 of non-hyperelliptic type.
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A surface of type (Ib) is a complete interesction of two hypersurfaces in the weighted 

projective space P(3, 1, ,1, 1, 1) defined by

•¬

where deg w=3, deg ƒÔi=1, 0•¬i•¬3, and f and g are homogeneous polynomials in xi of 

degrees 6 and 3, respectively. This is deformed to sextic surfaces if we replace the second 

equation by

•¬

where t is a parameter ranging over a neighborhood of the origin . For t•‚0 these two 

equations are reduced to g2+t2f=0. A surface of type (Ic) is a complete intersection 

of two hypersurfaces of the form

•¬

, g=0

in P(2, 1, 1, 1, 1), where degu=2, and A2j and g are homogeneous polynomials in 

(x0, x1, x2, x3) of degrees 2j and 2, respectively. This is similarly deformed to sextic 
surfaces by considering the equation tu-g=0.

A surface of type (IIa) is constructed as follows. Take a diagonal D on ‡”0=p1•~p1
, 

and six points Pi, 1•¬i•¬6 on D. Then take a curve B0 of bidegree (9 , 9) on ‡”0 which 

has triple points at the six points Pi, Then the minimal resolution of the double covering 

with branch locus B=D+B0 is a general surface of type (IIa) . Surfaces of type (IIb) 

are constructed similarly, by using the Hirzebruch surface ‡”2 in place of ‡”0 .

To construct deformations of a surface S of type (IIa) , we take a quadratic equation 

g=0, a linear equation l=0 and a cubic equation h=0 in the variables (x
0, x1, x2, x3). 

If they are sufficiently general, then l=0 determines a diagonal D on ‡”0 defined by 

g=0, and h=0 cuts out six points on D . Then we define a double covering by

•¬

over g=0, where A 2j is of degree 2j. This is a singular model of a surface of type (IIa) . 
To resolve the singularity, we introduce a new variable u of degree 2 which satisfies ul=h 

(this has the same effect as the blowing up of h=l=0) and set w = w/l2. Consequently, 
S is defined by the following three equations:

•¬

ul=h,

g =0.

We take two parameters t and s, and consider the following equations:

•¬

sw=ul-h,
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tu=g.

Then, for t=0, s•‚0, these equations define a surface of type (Ic) and, for t•‚0
, s•‚0, 

they define a surface of type (Ia). The same construction works for surfaces of type (IIb) .

A surface S of type (III) is constructed as follows. Let V=P(•¬(-5)•¬(-6)) 

be a P2-bundle over P1, and let (z0, z1) be a system of homogeneous coordinates on 

P1. We take homogeneous coordinates (Z0, Z1, Z2) on the fibres. We can consider that 

zi has weight (1, 0) and the Zj, j=0, 1, 2 have weights (0, 1), (5, 1), (6 ,1), respectively . 

Then, S is birationally equivalent to a hypersurface S' in V defined by

(3) •¬

where A is of weight (10, 2) and B is of weight (18 , 3). This defines a singular fibre of 

the form (1) in •˜2 over z0=0. Since A cannot contain the term Z22 , it follows that S' 

contains the line G: Z0=Z1=0. Moreover, Z0, restricited on S' , vanishes to the fourth 
order on G. From this fact it follows that the minimal resolution S of S' is even (Note 
that there is an ordinary double point on G). To construct deformations of a surface 
S of type (III) to sextic surfaces, we use a construction which is analogous to what 
Griffin [7] has done for quintic surfaces. The graded ring

•¬

is generated by four elements x0, x1, x2, x3 of degree 1, three elements y, y2 , z of 

degree 2 and one element w of degree 3 (xi, yj and z generate the coordinate ring of 

V, and w corresponds to A/z0Z10/2 in (3)). There are three relations of degree 2 and 

three of degree 3 among ƒÔ, and yj, three relations of degree 4 involving w linearly
, and 

one relation of degree 6 involving w2. All the syzygies among these relations can be 

also written down. After these preparations we construct a family R
, of deformations 

of the ring R as in [7]. The computation is rather long and cannot be reproduced here .

The above list essentially exausts the surfaces which are the deformations of sextic 
surfaces (As usual, some mild degenerations are allowed. For example , the diagonal 
may decompose into two intersecting lines in (IIa), and the branch locus may have 
some mild singularities which do not affect the canonical ring.) In particular, there is 
no such surface with hyperelliptic pencil of genus 3. The proof of this fact seems to 
require the knowledge of most degenerate fibres of hyperelliptic pencils of genus 3.

It eventually turns out that all these surfaces (Ia)-(III) together form an irreducible 
family. Since W2=0, any complex structure on the underlying differentiable manifold 
X is automatically minimal. Therefore the above list exhausts all possible complex 

structures on X.

5. Even algebraic surfaces, or semi-canonical surfaces. It may be worthwhile to 

study surfaces of general type with W2=0. In this case, K=2L, and we can prove that
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L is either composed of a pencil, or satisfies L2•¬2h0(L)-4([10,Part I, Lemma 7.6]).

In the exceptional case L2<2h0(L)-4, S has a pencil of curves of genus 2 and 

K2=2pg-4, pg•ß2 mod 4. All of these surfaces already appeared in [10, Part I].

If the equality L2=2h0(L)-4 holds, then ƒ³L, is a map of degree 2 onto P2, some 

Hirzebruch surface, or a cone over a rational curve as in [10, Part I], but this time, 

with two exceptions, S has a pencil of curves of genus 3 of hyperelliptic type of some 

simple kind. More precisely, the branch locus has at most simple triple points.

6. Regular threefolds with trivial canonical bundle. If V is a smooth threefold 

with trivial canonical bundle and if V is embedded in a projective space, then its 

hyperplane section H is a smooth surface S and the restriction Hs is the canonical 

bundle of S. So we have H2S•¬2h0(HS)-4, which implies H3•¬2h0(H)-6. If one starts 

with V and an ample line bundle H on it, then this inequality is not necessarily true. 

But in the exceptional case, it can be shown that V has a structure of elliptic threefold 

with a rational section, which should be manageable through the Weierstrass model. 

So excluding this case, I studied the extreme case H3=2h0(H)-6, and determined their 

structures. They are mostly pencils of K3 surfaces of degree 2 which doubly cover a 

P2-bundle over P1.

THEOREM 1. Let V be a threefold with Kv=0 which is not elliptic, and let H be an 
ample line bundle on V. Suppose H3=2h0(H)-6. Then V is one of the following:

(1) A double covering of P3 with branch locus of degree 8 (h0=4).
(2) A double covering of a smooth quadric in P4 whose branch locus is cut out by

 a hypersurface of degree 6 (h0=5).

(3) A double covering of a p2-bundle W=P(•¬(ƒ¿)•¬•iƒÀ•j•¬(ƒÁ)) over P1 whose 

branch locus is in |-2Kw|(h0=ƒ¿+ƒÀ+ƒÁ+3).

(4) A double covering of the cone over the Veronese embedding of p2 branched 
along an intersection with a quintic hypersurface and the vertex (h0=7).

The third case occurs with

(ƒ¿, ƒÀ, ƒÁ)=(k, k, k), (k, k, k+l), (k, k+1, k+1), (k, k, k+2), (k, k+1, k+2) (k•¬1).

And these five types appear periodically with various polarizations. They have the 

Picard number 2 and the other ones have the Picard number 1.

The above list is quite similar to [10, Part I]. Note that the fourth case corresponds 
to surfaces with pg=2, K2=1 embedded by |2K|.

THEOREM 2. Let (V, H) be as in Theorem 1, but we suppose H3=2H0(H)-5. Then 
V is one of the following:

(1) The same as (4) in Theorem 1 (equipped with one-half of H, h0=3).
(2) A triple covering of P3 realized in the line bundle of degree 2 (h0=4).
(3) Smooth model of a double covering of P3 whose branch locus consists of a plane
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L and a surface B0 of degree 9 which has a triple curve on a cubic on L (h0=4, 
cf. [10, II, Theorem 2.3]).

(4) A smooth quintic in P4 (h0=5).
(5) Smooth model of a certain double covering of the P2-bundle W=P(•¬(1)•¬(2)) 

over P1 whose branch locus is of degree 8 on each fibre (h0=6, cf. [10, 

II, Theorem 1.3, B1)]).

(6) Smooth model of a double covering of W=P(•¬(ƒ¿)•¬(ƒÀ)•¬(ƒÁ)) over P1 whose 

branch locus consists of a fibre „C and a divisor B0•¸|-2K+ƒ¡| which has a 

triple curve along a conic on „C (h0=ƒ¿+ƒÀ+ƒÁ+3,cf. [10, II, Theorem 1.3, A)]).

For large h0 only the sixth class appears. Such threefolds exist for

(ƒ¿, ƒÀ, ƒÁ)=(k, k, k), (k, k, k+1), (k, k+1, k+1) (k•¬1) .

Each of them has a pencil of K3 surfaces of degree 2 which degenerate into an elliptic 

K3 surface at one fibre (see [12, •˜8]). Needless to say, this list is parallel to [10, Part II].

I asked Masahisa Inoue if one can say something about the upper bound of H3 

in terms of h0(H). Then he obtained the inequality H3•¬6h0(H), and also proved that, 

if the equality sign holds, then V is unramifiedly covered by an abelian threefold. The 

proof of these facts is based on Yau's solution of Calabi's conjecture [18].

All these results were announced in a note [13] in Japanese.

I think these should be studied in the category of minimal models. Also, threefolds 

of general type may be investigated in this way if one can sufficiently develop the 

investigation in •˜5.
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Added in proof. I tacitly assumed q=O in •˜5.


