
Notes on Decomposition Methods

Stephen Boyd, Lin Xiao, Almir Mutapcic, and Jacob Mattingley
Notes for EE364B, Stanford University, Winter 2006-07

May 11, 2015

Contents

1 Primal decomposition 3

1.1 Simple example . 5

2 Dual decomposition 7

2.1 Simple example . 9

3 Decomposition with constraints 11

3.1 Primal decomposition . 11
3.2 Dual decomposition . 12
3.3 Simple example . 13
3.4 Coupling constraints and coupling variables 15

4 More general decomposition structures 17

4.1 General examples . 18
4.2 Framework for decomposition structures . 19
4.3 Primal decomposition . 20
4.4 Dual decomposition . 21
4.5 Example . 22

5 Rate control 24

5.1 Dual decomposition . 24
5.2 Example . 26

6 Single commodity network flow 28

6.1 Dual decomposition . 29
6.2 Analogy with electrical networks . 30
6.3 Example . 31

1

Decomposition is a general approach to solving a problem by breaking it up into smaller
ones and solving each of the smaller ones separately, either in parallel or sequentially. (When
it is done sequentially, the advantage comes from the fact that problem complexity grows
more than linearly.)

Problems for which decomposition works in one step are called (block) separable, or
trivially parallelizable. As a general example of such a problem, suppose the variable x can
be partitioned into subvectors x1, . . . , xk, the objective is a sum of functions of xi, and each
constraint involves only variables from one of the subvectors xi. Then evidently we can solve
each problem involving xi separately (and in parallel), and then re-assemble the solution x.
Of course this is a trivial, and not too interesting, case.

A more interesting situation occurs when there is some coupling or interaction between
the subvectors, so the problems cannot be solved independently. For these cases there
are techniques that solve the overall problem by iteratively solving a sequence of smaller
problems. There are many ways to do this; in this note we consider some simple examples
that illustrate the ideas.

Decomposition in optimization is an old idea, and appears in early work on large-scale
LPs from the 1960s [DW60]. A good reference on decomposition methods is chapter 6 of
Bertsekas [Ber99]. Some recent reference on decomposition applied to networking problems
are Kelly et al [KMT97] and Chiang et al [CLCD07].

The idea of decomposition comes up in the context of solving linear equations, but goes
by other names such as block elimination, Schur complement methods, or (for special cases)
matrix inversion lemma (see [BV04, App. C]). The core idea, i.e., using efficient methods to
solve subproblems, and combining the results in such a way as to solve the larger problem,
is the same, but the techniques are a bit different.

The original primary motivation for decomposition methods was to solve very large prob-
lems that were beyond the reach of standard techniques, possibly using multiple processors.
This remains a good reason to use decomposition methods for some problems. But other
reasons are emerging as equally (or more) important. In many cases decomposition methods
yield decentralized solution methods. Even if the resulting algorithms are slower (in some
cases, much slower) than centralized methods, decentralized solutions might be prefered for
other reasons. For example, decentralized solution methods can often be translated into,
or interpreted as, simple protocols that allow a collection of subsystems to coordinate their
actions to achieve global optimality.

In §1, we describe the simplest decomposition method, which is called primal decompo-
sition since the subsystems coordinate to choose the values of some primal variables. In §2
we describe dual decomposition, in which dual variables (prices) are manipulated to solve
the global problem. We explore general decomposition structures, and the associated de-
composition methods, in §4. In §5 and §6 we consider two more specific examples in more
detail.

2

1 Primal decomposition

We’ll consider the simplest possible case, an unconstrained optimization problem that splits
into two subproblems. (But note that the most impressive applications of decomposition
occur when the problem is split into many subproblems.) In our first example, we consider
an unconstrained minimization problem, of the form

minimize f(x) = f1(x1, y) + f2(x2, y) (1)

where the variable is x = (x1, x2, y). Although the dimensions don’t matter here, it’s useful
to think of x1 and x2 as having relatively high dimension, and y having relatively small
dimension. The objective is almost block separable in x1 and x2; indeed, if we fix the
subvector y, the problem becomes separable in x1 and x2, and therefore can be solved by
solving the two subproblems independently. For this reason, y is called the complicating
variable, because when it is fixed, the problem splits or decomposes. In other words, the
variable y complicates the problem. It is the variable that couples the two subproblems. We
can think of x1 (x2) as the private variable or local variable associated with the first (second)
subproblem, and y as the public variable or interface variable or boundary variable between
the two subproblems.

The observation that the problem becomes separable when y is fixed suggests a method
for solving the problem (1). Let φ1(y) denote the optimal value of the problem

minimizex1
f1(x1, y), (2)

and similarly, let φ2(y) denote the optimal value of the problem

minimizex2
f2(x2, y). (3)

(Note that if f1 and f2 are convex, so are φ1 and φ2.) We refer to (2) as subproblem 1, and
(3) as subproblem 2.

Then the original problem (1) is equivalent to the problem

minimizey φ1(y) + φ2(y). (4)

This problem is called the master problem. If the original problem is convex, so is the master
problem. The variables of the master problem are the complicating or coupling variables of
the original problem. The objective of the master problem is the sum of the optimal values
of the subproblems.

A decomposition method solves the problem (1) by solving the master problem, using an
iterative method such as the subgradient method. Each iteration requires solving the two
subproblems in order to evaluate φ1(y) and φ2(y) and their gradients or subgradients. This
can be done in parallel, but even if it is done sequentially, there will be substantial savings if
the computational complexity of the problems grows more than linearly with problem size.

Let’s see how to evaluate a subgradient of φ1 at y, assuming the problem is convex. We
first solve the associated subproblem, i.e., we find x̄1(y) that minimizes f1(x1, y). Thus,

3

there is a subgradient of f1 of the form (0, g1), and not surprisingly, g1 is a subgradient of φ1

at y. We can carry out the same procedure to find a subgradient g2 ∈ ∂φ2(y) Then g1 + g2
is a subgradient of φ1 + φ2 at y.

We can solve the master problem by a variety of methods, including bisection (if the di-
mension of y is one), gradient or quasi-Newton methods (if the functions are differentiable),
or subgradient, cutting-plane, or ellipsoid methods (if the functions are nondifferentiable).
This basic decomposition method is called primal decomposition because the master algo-
rithm manipulates (some of the) primal variables.

When we use a subgradient method to solve the master problem, we get a very simple
primal decomposition algorithm.

repeat

Solve the subproblems (possibly in parallel).
Find x̄1 that minimizes f1(x1, y), and a subgradient g1 ∈ ∂φ1(y).
Find x̄2 that minimizes f2(x2, y), and a subgradient g2 ∈ ∂φ2(y).

Update complicating variable.
y := y − αk(g1 + g2).

Here αk is a step length that can be chosen in any of the standard ways.
We can interpret this decomposition method as follows. We have two subproblems, with

private variables or local variables x1 and x2, respectively. We also have the complicating
variable y which appears in both subproblems. At each step of the master algorithm the
complicating variable is fixed, which allows the two subproblems to be solved independently.
From the two local solutions, we construct a subgradient for the master problem, and using
this, we update the complicating variable. Then we repeat the process.

When a subgradient method is used for the master problem, and φ1 and φ2 are differen-
tiable, the update has a very simple interpretation. We interpret g1 and g2 as the gradients
of the optimal value of the subproblems, with respect to the complicating variable y. The
update simply moves the complicating variable in a direction of improvement of the overall
objective.

The primal decomposition method works well when there are few complicating variables,
and we have some good or fast methods for solving the subproblems. For example, if one of
the subproblems is quadratic, we can solve it analytically; in this case the optimal value is
also quadratic, and given by a Schur complement of the local quadratic cost function. (But
this trick is so simple that most people would not call it decomposition.)

The basic primal decomposition method described above can be extended in several ways.
We can add separable constraints, i.e., constraints of the form x1 ∈ C1, x2 ∈ C2. In this case
(and also, in the case when dom fi is not all vectors) we have the possibility that φi(y) = ∞
(i.e., y 6∈ domφ) for some choices of y. In this case we find a cutting-plane that separates
y from domφ, to use in the master algorithm.

4

−1 −0.5 0 0.5 1
0.5

1

1.5

2

2.5

3

3.5

y

φ1(y)
φ2(y)
φ1(y) + φ2(y)

Figure 1: Objective function of master problem (i.e., φ1 + φ2) and decomposed
components (φ1 and φ2) as a function of y.

1.1 Simple example

We illustrate primal decomposition with a simple example, with a single (scalar) complicating
variable. The problem has the form (1), where f1 and f2 are piecewise-linear convex functions
of x1 and y, and x2 and y, respectively. For the particular problem instance we consider,
x1 ∈ R20, x2 ∈ R20, and f1 and f2 are each the maximum of 100 affine functions. Since the
complicating variable y is scalar, we can optimize over y using a bisection algorithm.

Figure 1 shows φ1, φ2, and φ1 + φ2 as a function of y. The optimal value of the problem
is p⋆ ≈ 1.71, achieved for y⋆ ≈ 0.14. Figure 2 shows the progress of a bisection method for
minimizing φ1(y) + φ2(y), with initial interval [−1, 1]. At each step, the two subproblems
are solved separately, using the current value of y.

5

1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

k

f
(x

(k
))
−
p
⋆

Figure 2: Suboptimality versus iteration number k for primal decomposition, with
master problem solved by bisection.

6

2 Dual decomposition

We can apply decomposition to the problem (1) after introducing some new variables, and
working with the dual problem. We first express the problem as

minimize f(x) = f1(x1, y1) + f2(x2, y2)
subject to y1 = y2,

(5)

by introducing a new variable and equality constraint. We have introduced a local version of
the complicating variable y, along with a consistency constraint that requires the two local
versions to be equal. Note that the objective is now separable, with the variable partition
(x1, y1) and (x2, y2).

Now we form the dual problem. The Lagrangian is

L(x1, y1, x2, y2, ν) = f1(x1, y1) + f2(x2, y2) + νTy1 − νTy2,

which is separable. The dual function is

g(ν) = g1(ν) + g2(ν),

where
g1(ν) = inf

x1,y1

(

f1(x1, y1) + νTy1
)

, g2(ν) = inf
x2,y2

(

f2(x2, y2)− νTy2
)

.

Note that g1 and g2 can be evaluated completely independently, e.g., in parallel. Also note
that g1 and g2 can be expressed in terms of the conjugates of f1 and f2:

g1(ν) = −f ∗
1 (0,−ν), g2(ν) = −f ∗

2 (0, ν).

The dual problem is

maximize g1(ν) + g2(ν) = −f ∗
1 (0,−ν)− f ∗

2 (0, ν), (6)

with variable ν. This is the master problem in dual decomposition. The master algorithm
solves this problem using a subgradient, cutting-plane, or other method.

To evaluate a subgradient of −g1 (or −g2) is easy. We find x̄1 and ȳ1 that minimize
f1(x1, y1) + νTy1 over x1 and y1. Then a subgradient of −g1 at ν is given by −ȳ1. Similarly,
if x̄2 and ȳ2 minimize f2(x2, y2) − νTy2 over x2 and y2, then a subgradient of −g2 at ν is
given by ȳ2. Thus, a subgradient of the negative dual function −g is given by ȳ2 − ȳ1, which
is nothing more than the consistency constraint residual.

If we use a subgradient method to solve the master problem, the dual decomposition
algorithm has a very simple form.

repeat

Solve the subproblems (possibly in parallel).
Find x1 and y1 that minimize f1(x1, y1) + νTy1.
Find x2 and y2 that minimize f2(x2, y2)− νTy2.

Update dual variables (prices).
ν := ν − αk(y2 − y1).

7

Here αk is a step size which can be chosen several ways. If the dual function g is
differentiable, then we can choose a constant step size, provided it is small enough. Another
choice in this case is to carry out a line search on the dual objective. If the dual function is
nondifferentiable, we can use a diminishing nonsummable step size, such as αk = α/k.

At each step of the dual decomposition algorithm, we have a lower bound on p⋆, the
optimal value of the original problem, given by

p∗ ≥ g(ν) = f1(x1, y1) + νTy1 + f2(x2, y2)− νTy2.

where x1, y1, x2, y2 are the iterates. Generally, the iterates are not feasible for the original
problem, i.e., we have y2−y1 6= 0. (If they are feasible, we have maximized g.) A reasonable
guess of a feasible point can be constructed from this iterate as

(x1, ȳ), (x2, ȳ),

where ȳ = (y1 + y2)/2. In other words, we replace y1 and y2 (which are different) with their
average value. (The average is the projection of (y1, y2) onto the feasible set y1 = y2.) This
gives an upper bound on p⋆, given by

p⋆ ≤ f1(x1, ȳ) + f2(x2, ȳ).

A better feasible point can be found by replacing y1 and y2 with their average, and then solv-
ing the two subproblems (2) and (3) encountered in primal decomposition, i.e., by evaluating
φ1(ȳ) + φ2(ȳ). This gives the bound

p⋆ ≤ φ1(ȳ) + φ2(ȳ).

Dual decomposition has an interesting economic interpretation. We imagine two sepa-
rate economic units, each with its own private variables and cost function, but also with
some coupled variables. We can think of y1 as the amounts of some resources consumed
by the first unit, and y2 as the amounts of some resources generated by the second unit.
Then, the consistency condition y1 = y2 means that supply is equal to demand. In primal
decomposition, the master algorithm simply fixes the amount of resources to be transfered
from one unit to the other, and updates these fixed transfer amounts until the total cost is
minimized. In dual decomposition, we interpret ν as a set of prices for the resources. The
master algorithm sets the prices, not the actual amount of the transfer from one unit to the
other. Then, each unit independently operates in such a way that its cost, including the
cost of the resource transfer (or profit generated from it), is minimized. The dual decompo-
sition master algorithm adjusts the prices in order to bring the supply into consistency with
the demand. In economics, the master algorithm is called a price adjustment algorithm, or
tatonnement procedure.

There is one subtlety in dual decomposition. Even if we do find the optimal prices ν⋆,
there is the question of finding the optimal values of x1, x2, and y. When f1 and f2 are strictly
convex, the points found in evaluating g1 and g2 are guaranteed to converge to optimal, but
in general the situation can be more difficult. (For more on finding the primal solution

8

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

ν

g1(ν)
g2(ν)
g1(ν) + g2(ν)

Figure 3: Dual functions versus ν.

from the dual, see [BV04, §5.5.5].) There are also some standard tricks for regularizing the
subproblems that work very well in practice.

As in the primal decomposition method, we can encounter infinite values for the sub-
problems. In dual decomposition, we can have gi(ν) = −∞. This can occur for some values
of ν, if the functions fi grow only linearly in yi. In this case we generate a cutting-plane
that separates the current price vector from dom gi, and use this cutting-plane to update
the price vector.

2.1 Simple example

We illustrate dual decomposition with the same simple example used earlier. Figure 3 shows
g1, g2, and g1 + g2 as functions of ν. The optimal value of ν is ν⋆ ≈ −0.27. Figure 4 shows
the progress of a bisection method for maximizing g1(ν)+g2(ν), starting from initial interval
[−1, 1]. At each step, the two subproblems are solved separately, using the current price ν.
We also show two upper bounds on p⋆. The larger (worse) one is f1(x1, ȳ) + f2(x2, ȳ); the
smaller (better) one is φ1(ȳ) + φ2(ȳ) (obtained by solving the subproblems (2) and (3)).

9

0 5 10 15
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

k

better bound
worse bound
g(ν)

Figure 4: Convergence of dual function (lower bound), and simple and better upper
bounds.

10

3 Decomposition with constraints

So far, we’ve considered the case where two problems would be separable, except for some
complicating variables that appear in both subproblems. We can also consider the case
where the two subproblems are coupled via constraints that involve both sets of variables.
As a simple example, suppose our problem has the form

minimize f1(x1) + f2(x2)
subject to x1 ∈ C1, x2 ∈ C2

h1(x1) + h2(x2) � 0.
(7)

Here C1 and C2 are the feasible sets of the subproblems, presumably described by linear
equalities and convex inequalities. The functions h1 : Rn → Rp and h2 : Rn → Rp have
components that are convex. The subproblems are coupled via the p constraints that involve
both x1 and x2. We refer to these as complicating constraints (since without them, the
problems involving x1 and x2 can be solved separately).

3.1 Primal decomposition

To use primal decomposition, we can introduce a variable t ∈ Rp that represents the amount
of the resources allocated to the first subproblem. As a result, −t is allocated to the second
subproblem. The first subproblem becomes

minimize f1(x1)
subject to x1 ∈ C1, h1(x1) � t,

(8)

and the second subproblem becomes

minimize f2(x2)
subject to x2 ∈ C2, h2(x2) � −t.

(9)

Let φ1(t) and φ2(t) denote the optimal values of the subproblems (8) and (9), respectively.
Evidently the original problem (7) is equivalent to the master problem of minimizing φ(t) =
φ1(t)+φ2(t) over the allocation vector t. These subproblems can be solved separately, when
t is fixed.

Not surprisingly, we can find a subgradient for the optimal value of each subproblem from
an optimal dual variable associated with the coupling constraint. Let p(z) be the optimal
value of the convex optimization problem

minimize f(x)
subject to x ∈ X, h(x) � z,

and suppose z ∈ dom p. Let λ(z) be an optimal dual variable associated with the constraint
h(x) � z. Then, −λ(z) is a subgradient of p at z. To see this, we consider the value of p at

11

another point z̃:

p(z̃) = sup
λ�0

inf
x∈X

(

f(x) + λT (h(x)− z̃)
)

≥ inf
x∈X

(

f(x) + λ(z)T (h(x)− z̃)
)

= inf
x∈X

(

f(x) + λ(z)T (h(x)− z + z − z̃)
)

= inf
x∈X

(

f(x) + λ(z)T (h(x)− z)
)

+ λ(z)T (z − z̃)

= φ(z) + (−λ(z))T (z̃ − z).

This holds for all points z̃ ∈ dom p, so −λ(z) is a subgradient of p at z. (See [BV04, §5.6].)
Thus, to find a subgradient of φ, we solve the two subproblems, to find optimal x1 and

x2, as well as optimal dual variables λ1 and λ2 associated with the constraints h1(x1) � t and
h2(x2) � −t, respectively. Then we have λ2 −λ1 ∈ ∂φ(t). It is also possible that t 6∈ domφ.
In this case we can generate a cutting plane that separates t from domφ, for use in the
master algorithm.

Primal decomposition, using a subgradient master algorithm, has the following simple
form.

repeat

Solve the subproblems (possibly in parallel).
Solve (8), to find an optimal x1 and λ1.
Solve (9), to find an optimal x2 and λ2.

Update resource allocation.
t := t− αk(λ2 − λ1).

Here αk is an appropriate step size. At every step of this algorithm we have points that are
feasible for the original problem.

3.2 Dual decomposition

Dual decomposition for this example is straightforward. We form the partial Lagrangian,

L(x1, x2, λ) = f1(x1) + f2(x2) + λT (h1(x1) + h2(x2))

=
(

f1(x1) + λTh1(x1)
)

+
(

f2(x2) + λTh2(x2)
)

which is separable, so we can minimize over x1 and x2 separately, given the dual variable λ,
to find g(λ) = g1(λ) + g2(λ). For example, to find g1(λ), we solve the subproblem

minimize f1(x1) + λTh1(x1)
subject to x1 ∈ C1, (10)

and to find g2(λ), we solve the subproblem

minimize f2(x2) + λTh2(x2)
subject to x2 ∈ C2. (11)

12

A subgradient of −g1 at λ is, naturally, h1(x̄1), where x̄1 is any solution of subproblem (10).
To find a subgradient of g, the master problem objective, we solve both subproblems,

to get solutions x̄1 and x̄2, respectively. A subgradient of −g is then h1(x̄1) + h2(x̄2). The
master algorithm updates (the price vector) λ based on this subgradient.

If we use a projected subgradient method to update λ we get a very simple algorithm.

repeat

Solve the subproblems (possibly in parallel).
Solve (10) to find an optimal x̄1.
Solve (11) to find an optimal x̄2.

Update dual variables (prices).
λ := (λ+ αk(h1(x̄1) + h2(x̄2)))+.

At each step we have a lower bound on p⋆, given by

g(λ) = g1(λ) + g2(λ) = f1(x1) + λTh1(x1) + f2(x2) + λTh2(x2).

The iterates in the dual decomposition method need not be feasible, i.e., we can have h1(x1)+
h2(x2) 6� 0. At the cost of solving two additional subproblems, however, we can (often)
construct a feasible set of variables, which will give us an upper bound on p⋆. When h1(x1)+
h2(x2) 6� 0, we define

t = (h1(x1)− h2(x2))/2, (12)

and solve the primal subproblems (8) and (9). This is nothing more than projecting the
current (infeasible) resources used, h1(x1) and h2(x2), onto the set of feasible resource allo-
cations, which must sum to no more than 0. As in primal decomposition, it can happen that
t 6∈ domφ. But when t ∈ domφ, this method gives a feasible point, and an upper bound
on p⋆.

3.3 Simple example

We look at a simple example to illustrate decomposition with constraints. The problem is
a (strictly convex) QP with a pair of coupling resource constraints. It can be split into two
subproblems, with x1 ∈ R20, x2 ∈ R20. Each subproblem has 100 linear inequalities, and the
two subproblems share 2 complicating linear inequalities. The optimal value of the problem
is p⋆ ≈ −1.33.

Figure 5 shows the progress of primal decomposition for the problem, using a subgradient
method with step size αk = 0.1. Figure 6 shows the resources consumed by the first of the
two subproblems.

We use the same example to illustrate dual decomposition, using a subgradient method,
with step size αk = 0.5/k, to solve the master problem. Figure 7 shows the evolution of
the resource prices. At each step we generate a feasible point for the original problem using
the fixed resource allocation (12), and solving the primal subproblems (8) and (9). The
associated upper bound on p⋆, which we denote f̂ , and the lower bound obtained from the

13

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

k

f
(k
)
−
p
⋆

Figure 5: Suboptimality versus iteration number k for primal decomposition.

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k

Figure 6: First subsystem resource allocation versus iteration number k for primal
decomposition.

14

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

k

Figure 7: Resource prices versus iteration number k.

dual function g(λ), are plotted in figure 8. The gap between the best upper and lower bounds
is seen to be very small after just 5 iterations or so. Figure 9 shows the actual suboptimality
of f̂ , and the gap between the upper and lower bounds.

3.4 Coupling constraints and coupling variables

Except for the details of computing the relevant subgradients, primal and dual decomposition
for problems with coupling variables and coupling constraints seem quite similar. In fact, we
can readily transform each into the other. For example, we can start with the problem with
coupling constraints (7), and introduce new variables y1 and y2, that bound the subsystem
coupling constraint functions, to obtain

minimize f1(x1) + f2(x2)
subject to x1 ∈ C1, h1(x1) � y1

x2 ∈ C2, h2(x2) � −y2
y1 = y2.

(13)

We now have a problem of the form (5), i.e., a problem that is separable, except for a
consistency constraint, that requires two (vector) variables of the subproblems to be equal.

Any problem that can be decomposed into two subproblems that are coupled by some
common variables, or equality or inequality constraints, can be put in this standard form, i.e.,
two subproblems that are independent except for one consistency constraint, that requires a
subvariable of one to be equal to a subvariable of the other. Primal or dual decomposition is
then readily applied; only the details of computing the needed subgradients for the master
problem vary from problem to problem.

15

0 5 10 15 20 25 30
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

k

g(λ)

f̂

Figure 8: Upper and lower bounds versus iteration number k, for dual decomposi-
tion algorithm.

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k

p⋆ − g(λ)

f̂ − g(λ)

Figure 9: Gap between upper bound and p⋆, and gap between upper bound and
lower bound (i.e., g(λ)) versus iteration number k, for dual decomposition algorithm.

16

1 2

Figure 10: Simplest decomposition structure.

1 2 3

Figure 11: Chain structure, with three subsystems and two coupling constraints.

4 More general decomposition structures

So far we have studied the case where there are two subsystems that are coupled by shared
variables, or coupling constraints. Clearly we can have more than one subproblem, with
various subsets of them coupled in various ways. For example, the variables might be par-
titioned into subvectors, some of which are local (i.e., appear in one subproblem only) and
some of which are complicating (i.e., appear in more than one subproblem). This decom-
position structure can be represented by a hypergraph. The nodes are associated with the
subproblems, which involve local variables, objective terms, and local constraints. The hy-
peredges or nets are associated with complicating variables or constraints. If a hyperedge
is adjacent to only two nodes, we call it a link. A link corresponds to a shared variable or
constraint between the two subproblems represented by the nodes. The simplest possible
decomposition structure consists of two subsystems and some coupling between them, as
shown in figure 10. In this figure the subsystems are shown as the boxes labeled 1 and 2;
the coupling between them is shown as the link connecting the boxes.

Figure 11 shows another simple decomposition structure with three subsystems, labeled
1, 2, and 3. This problem consists of three subproblems, with some coupling between sub-
problems 1 and 2, and some coupling between subproblems 2 and 3. Adopting the canonical
form for coupling, i.e., as consistency constraints, we can write the associated problem as

minimize f1(x1, y1) + f2(x2, y2, y3) + f3(x3, y4)
subject to (x1, y1) ∈ C1, (x2, y2, y3) ∈ C2, (x3, y4) ∈ C3

y1 = y2, y3 = y4.

Subsystem 1 has private or local variable x1, and public or interface variable y1. Subsystem 2
has local variable x2, and interface variables y2 and y3. Subsystem 3 has local variable x3, and
interface variable y4. This decomposition structure has two edges: the first edge corresponds
to the consistency constraint y1 = y2, and the second edge corresponds to the consistency
constraint y3 = y4.

17

1 2

3 4 5

c1

c2

c3 c4

Figure 12: A more complex decomposition structure with 5 subsystems and 4
coupling constraints.

A more complex decomposition structure is shown in figure 12. This consists of 5 sub-
systems and 4 coupling constraints. Coupling constraint c1, for example, requires that three
public variables of subsystem 1, 2, and 3 should all be equal.

We will give the details later, but we describe, roughly, how primal and dual decompo-
sition works in the more general setting with complex decomposition structure. In primal
decomposition, each hyperedge or net has a single variable associated with it. Each subsys-
tem is optimized separately, using the public variable values (asserted) on the nets. Each
subsystem produces a subgradient associated with each net it is adjacent to. These are
combined to update the variable value on the net, hopefully in such a way that convergence
to (global) optimality occurs.

In dual decomposition, each subsystem has its own private copy of the public variables
on the nets it is adjacent to, as well as an associated price vector. The subsystems use these
prices to optimize their local variables, including the local copies of public variables. The
public variables on each net are then compared, and the prices are updated, hopefully in
a way that brings the local copies of public variables into consistency (and therefore also
optimality).

4.1 General examples

Before introducing some formal notation for decomposition structures, we informally describe
a few general examples.

In an optimal control problem, the state at time t is the complicating variable between the
past (i.e., variables associated with time before t) and the future (variables associated with
time after t). In other words, if you fix the state in a dynamical system, the past and future
have nothing to do with each other. (That’s exactly what it means to be a state.) In terms
of a decomposition graph, we have nodes associated with the system at times t = 1, . . . , T ;

18

each node is coupled to the node before and after, by the state equations. Thus, the optimal
control problem decomposition structure is represented by a simple linear chain.

Decomposition structure arises in many applications in network optimization. For exam-
ple, we can partition a network into subnetworks, that interact only via common flows, or
their boundary connections. We can partition a multi-commodity flow problem into a set of
single-commodity flow problems coupled by shared resources. the capacities of the links. In
a flow control problem, we can view each flow in a network as a subsystem; these flows are
coupled by sharing the capacities of the links.

In some image processing problems, variables associated with pixels are only coupled to
the variables associated with some of their neighbors. In this case, any strip with a width
exceeding the interaction distance between pixels, and which disconnects the image plane
can be taken as a set of complicating variables. You can solve an image restoration problem,
then, by fixing a strip (say, down the middle), and then (in parallel) solving the left and
right image problems. (This can clearly be done recursively as well.)

Decomposition structure arises in hierarchical design. Suppose we are designing (via
convex optimization) a large circuit (say) that consists of some subcircuits. Each subcircuit
has many private variables, and a few variables that interact with other subcircuits. For
example, the device dimensions inside each subcircuit might be local or private variables;
the shared variables correspond to electrical connections between the subcircuits (e.g., the
load presented to one subcircuit from another) or objectives or constraint that couple them
(e.g., a total power or area limit). At each step of algorithm in primal decomposition, we
fix the coupling variables, and then design the subcircuits (separately) to meet these fixed
specifications on their boundaries. We then update the coupling variables in such a way that
the total cost (say, power) eventually is minimized. In dual decomposition, we allow each
subcircuit to choose its own values for its boundary variables, but add an extra cost, based
on prices, to account for its effects on the overall circuit. These prices are updated to bring
the design into consistency.

4.2 Framework for decomposition structures

In this section we describe decomposition with a general structure in more detail. We have K
subsystems. Subsystem i has private variables xi ∈ Rni , public variables yi ∈ Rpi , objective
function fi : R

ni × Rpi , and local constraint set Ci ⊆ Rni × Rpi . The overall objective is
∑K

i=1 fi(xi, yi), and the local constraints are (xi, yi) ∈ Ci.
These subsystems are coupled through constraints that require various subsets of the

components of the public variables to be equal. (Each of these subsets corresponds to a
hyperedge or net in the decomposition structure.) To describe this we collect all the public
variables together into one vector variable y = (y1, . . . , yK) ∈ Rp, where p = p1 + · · · + pK
is the total number of (scalar) public variables. We use the notation (y)i to denote the ith
(scalar) component of y, for i = 1, . . . , p (in order to distinguish it from yi, which refers to
the portion of y associated with subsystem i).

We suppose there are N nets, and we introduce a vector z ∈ RN that gives the common
values of the public variables on the nets. We can express the coupling constraints as y = Ez,

19

where E ∈ Rp×N is the matrix with

Eij =

{

1 (y)i is in net j
0 otherwise.

The matrix E specifies the netlist, or set of hyperedges, for the decomposition structure. We
will let Ei ∈ Rpi×N denote the partitioning of the rows of E into blocks associated with the
different subsystems, so that yi = Eiz. The matrix Ei is a 0-1 matrix that maps the vector
of net variables into the public variables of subsystem i.

Our problem then has the form

minimize
∑K

i=1 fi(xi, yi)
subject to (xi, yi) ∈ Ci, i = 1, . . . , K

yi = Eiz, i = 1, . . . , K,
(14)

with variables xi, yi, and z. We refer to z as the vector of (primal) net variables.

4.3 Primal decomposition

In primal decomposition, at each iteration we fix the vector z of net variables, and we fix the
public variables as yi = Eiz. The problem is now separable; each subsystem can (separately)
find optimal values for its local variables xi. Let φi(yi) denote the optimal value of the
subproblem

minimize fi(xi, yi)
subject to (xi, yi) ∈ Ci, (15)

with variable xi, as a function of yi. The original problem (14) is equivalent to the primal
master problem

minimize φ(z) =
∑K

i=1 φi(Eiz),

with variable z. To find a subgradient of φ, we find gi ∈ ∂φi(yi) (which can be done
separately). We then have

g =
K
∑

i=1

ET
i gi ∈ ∂φ(z).

This formula has a simple interpretation: To find a subgradient for the net variable zi, we
collect and sum the subgradients over all components of the public variables adjacent to
net i.

If the master problem is solved using a subgradient method, we have the following algo-
rithm.

repeat

Distribute net variables to subsystems.
yi := Eiz, i = 1, . . . , K.

Optimize subsystems (separately).
Solve subproblems (15) to find optimal xi, and gi ∈ ∂φi(yi), i = 1, . . . , K.

20

Collect and sum subgradients for each net.
g :=

∑K
i=1 E

T
i gi.

Update net variables.
z := z − αkg.

Here αk is an appropriate step size. This algorithm is decentralized: at each step, the actions
taken involve only the subsystems, which act independently of each other, or the nets, which
act independently of each other. The only communication is between subsystems and the
nets they are adjacent to. There is no communication between (or, to anthropomorphize a
bit, any awareness of) different subsystems, or different nets.

4.4 Dual decomposition

We form the partial Lagrangian of problem (14),

L(x, y, z, ν) =
K
∑

i=1

fi(xi, yi) + νT (y − Ez)

=
K
∑

i=1

(

fi(xi, yi) + νT
i yi

)

− νTEz,

where ν ∈ Rp is the Lagrange multiplier associated with y = Ez, and νi is the subvector
of ν associated with the ith subsystem. To find the dual function we first minimize over z,
which results in the condition ETν = 0 for g(ν) > −∞. This condition states that for each
net, the sum of the Lagrange multipliers over the net is zero. We define gi(νi) as the optimal
value of the subproblem

minimize fi(xi, yi) + νT
i yi

subject to (xi, yi) ∈ Ci, (16)

as a function of νi. A subgradient of −gi at νi is just −yi, an optimal value of yi in the
subproblem (16).

The dual of the original problem (14) is

maximize g(ν) =
∑K

i=1 gi(νi)
subject to ETν = 0,

with variable ν.
We can solve this dual decomposition master problem using a projected subgradient

method. Projection onto the feasible set {ν | ETν = 0}, which consists of vectors whose
sum over each net is zero, is easy to work out. The projection is given by multiplication by
I − E(ETE)−1ET , which has a particularly simple form, since

ETE = diag(d1, . . . , dN),

where di is the degree of net i, i.e., the number of subsystems adjacent to net i. For u ∈ Rp,
(ETE)−1Eu gives the average, over each net, of the entries in the vector u. The vector

21

(ETE)−1Eu is the vector obtained by replacing each entry of u with its average over its
associated net. Finally, projection of u onto the feasible set is obtained by subtracting from
each entry the average of other values in the associated net.

Dual decomposition, with a subgradient method for the master problem, gives the fol-
lowing algorithm.

given initial price vector ν that satisfies ETν = 0 (e.g., ν = 0).

repeat

Optimize subsystems (separately).
Solve subproblems (16) to obtain xi, yi.

Compute average value of public variables over each net.
ẑ := (ETE)−1ETy.

Update prices on public variables.
ν := ν + αk(y − Eẑ).

Here αk is an appropriate step size. This algorithm, like the primal decomposition algo-
rithm, is decentralized: At each step, the actions taken involve only the subsystems, acting
independently of each other, or the nets, acting independently of each other.

We note that ẑ, computed in the second step, gives a reasonable guess for z⋆, the optimal
net variables. If we solve the primal subproblems (15), using yi = Eiẑ, we obtain a feasible
point, and an associated upper bound on the optimal value.

The vector y − Ez = (I − E(ETE)−1ET)y, computed in the last step, is the projection
of the current values of the public variables onto the set of feasible, or consistent values of
public variables, i.e., those that are the same over each net. The norm of this vector gives
a measure of the inconsistency of the current values of the public variables.

4.5 Example

Our example has the structure shown in figure 12. Each of the local variables has dimension
10, and all 9 public variables are scalar, so all together there are 50 private variables, 9 public
variables, and 5 linear equality constraints. (The hyperedge labeled c1 requires that three
public variables be equal, so we count it as two linear equality constraints.) Each subsystem
has an objective term that is a convex quadratic function plus a piecewise-linear function.
There are no local constraints. The optimal value of the problem is p⋆ ≈ 11.1.

We use dual decomposition with fixed step size α = 0.5. At each step, we compute two
feasible points. The simple one is (x, ŷ), with ŷ = Eẑ. The more costly, but better, point is
(x̂, ŷ) where x̂ is found by solving the primal decomposition subproblems using ŷ. Figure 13
shows g(ν), and the objectove for the two feasible points, f(x, ŷ) and f(x̂, ŷ), versus iteration
number. Figure 14 shows ‖y − Eẑ‖, the norm of the consistency constraint residual, versus
iteration number.

22

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

k

g(ν)

f(x̂, ŷ)
f(x, ŷ)

Figure 13: Upper and lower bounds versus iteration number k, for dual decompo-
sition algorithm.

0 2 4 6 8 10
10

−4

10
−3

10
−2

10
−1

10
0

10
1

k

‖y
−
E
z
‖

Figure 14: Norm of the consistency constraint residual, ‖y−Ez‖, versus iteration
number k, for dual decomposition algorithm.

23

5 Rate control

There are n flows in a network, each of which passes over a fixed route, i.e., some subset of
m links. Each flow has a nonnegative flow rate or rate, which we denote f1, . . . , fn. With
flow j we associate a utility function Uj : R → R, which is strictly concave and increasing,
with domUj ⊆ R+. The utility derived by a flow rate fj is given by Uj(fj). The total utility
associated with all the flows is then U(f) = U1(f1) + · · ·+ Un(fn).

The total traffic on a link in the network, denoted t1, . . . , tm, is the sum of the rates of all
flows that pass over that link. We can express the link traffic compactly using the routing
or link-route matrix R ∈ Rm×n, defined as

Rij =

{

1 flow j passes over link i
0 otherwise,

as t = Rf . Each link in the network has a (positive) capacity c1, . . . , cm. The traffic on a
link cannot exceed its capacity, i.e., we have Rf � c.

The flow rate control problem is to choose the rates to maximize total utility, subject to
the link capacity constraints:

maximize U(f)
subject to Rf � c,

(17)

with variable f ∈ Rn. This is evidently a convex optimization problem.
We can decompose the rate control problem in several ways. For example, we can view

each flow as a separate subsystem, and each link capacity constraint as a complicating
constraint that involves the flows that pass over it.

5.1 Dual decomposition

The Lagrangian (for the problem of minimizing −U) is

L(f, λ) = −
n
∑

j=1

Uj(fj) + λT (Rf − c),

and the dual function is given by

g(λ) = inf
f





n
∑

j=1

−Uj(fj) + λT (Rf − c)





= −λT c+
n
∑

j=1

inf
fj
(−Uj(fj) + (rTj λ)fj)

= −λT c−
n
∑

j=1

(−Uj)
∗(rTj λ),

where rj is the jth column of R. The number rTj λ is the sum of the Lagrange multipliers
associated with the links along route j.

24

The dual problem is

maximize −λT c−∑n
j=1(−Uj)

∗(−rTj λ)
subject to λ � 0.

(18)

A subgradient of −g is given by Rf̄ − c, where f̄j is a solution of the subproblem

minimize −Uj(fj) + (rTj λ)fj,

with variable fj. (The constraint fj ≥ 0 is implicit here.)
Using a projected subgradient method to solve the dual problem, we obtain the following

algorithm.

given initial link price vector λ ≻ 0 (e.g., λ = 1).

repeat

Sum link prices along each route.
Calculate Λj = rTj λ.

Optimize flows (separately) using flow prices.
fj := argmax (Uj(fj)− Λjfj).

Calculate link capacity margins.
s := c−Rf .

Update link prices.
λ := (λ− αks)+.

Here αk is an appropriate stepsize.
This algorithm is completely decentralized: Each flow is updated based on information

obtained from the links it passes over, and each link price is updated based only on the flows
that pass over it. The algorithm is also completely natural. We can imagine that a flow is
charged a price λl (per unit of flow) for passing over link i. The total charge for the flow is
then Λjfj. This charge is subtracted from its utility, and the maximum net utility flow rate
chosen. The links update their prices depending on their capacity margin s = c − t, where
t = Rf is the link traffic. If the margin is positive, the link price is decreased (but not below
zero). If the margin is negative, which means the link capacity constraint is violated, the
link price is increased.

The flows at each step of the algorithm can violate the capacity constraints. We can
generate a set of feasible flows by fixing an allocation of each link capacity to each flow that
passes through it, and then optimizing the flows. Let η ∈ Rm be the factors by which the
link traffic exceeds link capacity, i.e., ηi = ti/ci, where t = Rf is the traffic. If ηi ≤ 1, link i
is operating under capacity; if ηi > 1, link i is operating over capacity. Define f feas as

f feas
j =

fj
max{ηi | flow j passes over link i} , j = 1, . . . , n. (19)

This flow vector will be feasible. Roughly speaking, each flow is backed off by the maximum
over capacity factor over its route. (If all links on a route are under-utilized, this scheme
will actually increase the flow.)

25

0 20 40 60 80 100
−22

−21

−20

−19

−18

−17

−16

k

U(f feas)
−g(λ)

Figure 15: Upper bound −g(λ) and lower bound U(f feas) on optimal utility, versus
iteration k.

5.2 Example

We consider an example with n = 10 flows and m = 12 links. The number of links per
flow is either 3 or 4, and the number of flows per link is around 3. The link capacities
are chosen randomly, uniformly distributed on [0.1, 1]. We use a log utility function, i.e.,
Uj(fj) = log fj. (This can be argued to achieve fairness among the flows.) The optimal flow,
as a function of price, is

argmax (Uj(fj)− Λjfj) = 1/Λj.

We initialize the link prices at λ = 1, and use a constant stepsize αk = 3. (The dual function
g is differentiable, so a small enough constant step size with result in convergence.)

Figure 15 shows the evolution of the dual decomposition method. The upper plot shows
the bound −g(λ) on the optimal utility. The bottom plot shows the utility achieved by
the feasible flow found from (19). Figure 16 shows the evolution of the maximum capacity
violation, i.e., maxi(Rf − c)i.

26

0 20 40 60 80 100
10

−2

10
−1

10
0

m
ax

i(
R
f
−

c)
i

k

Figure 16: Maximum capacity violation versus iteration k.

27

6 Single commodity network flow

We consider a connected directed graph or network with n edges and p nodes. We let xj

denote the flow or traffic on arc j, with xj > 0 meaning flow in the direction of the arc, and
xj < 0 meaning flow in the direction opposite the arc. There is also a given external source
(or sink) flow si that enters (if si > 0) or leaves (if si < 0) node i. The flow must satisfy
a conservation equation, which states that at each node, the total flow entering and leaving
the node, including the external sources and sinks, is zero. This conservation equation can
be expressed as Ax+ s = 0 where A ∈ Rp×n is the node incidence matrix of the graph,

Aij =











1 arc j enters i
−1 arc j leaves node i
0 otherwise.

Thus, each column of A describes a link; it has exactly two nonzero entries (one equal to 1
and the other equal to −1) indicating the end and start nodes of the link respectively. Each
row of A describes all links incident to a node: the +1 entries indicate incoming links and
the −1 entries indicate outgoing links.

The flow conservation equation Ax + s = 0 is inconsistent unless 1T s = 0, which we
assume is the case. (In other words, the total of the source flows must equal the total
of the sink flows.) The flow conservation equations Ax + s = 0 are also redundant, since
1TA = 0. To obtain an independent set of equations we can delete any one equation, to
obtain Ãx + s̃ = 0, where Ã ∈ R(p−1)×n is the reduced node incidence matrix of the graph
(i.e., the node incidence matrix with one row removed) and s̃ ∈ Rp−1 is reduced source
vector (i.e., s with the associated entry removed).

We will take traffic flows x as the variables, and the sources and network topology as
given. We introduce the separable objective function

φ(x) =
n
∑

j=1

φj(xj),

where φj : R → R is the flow cost function for arc j. We assume that the flow cost functions
are strictly convex. We can impose other limits on the flow variables, e.g., the condition
xj ≥ 0 that flows must be in the direction of the arcs, by restricting the domain of the arc
cost functions.

The problem of choosing the minimum cost flow that satisfies the flow conservation
requirement is formulated as

minimize
∑n

j=1 φj(xj)
subject to Ax+ s = 0.

(20)

This problem is also called the single commodity network flow problem.
The single commodity network flow problem is convex, and readily solved by standard

methods, such as Newton’s method (when φj are twice differentiable). Using dual decompo-
sition, however, we obtain a decentralized method for solving the problem.

28

6.1 Dual decomposition

The Lagrangian is

L(x, ν) = φ(x) + νT (Ax+ s)

= νT s+
n
∑

j=1

(

φj(xj) + (aTj ν)xj

)

,

where aj is the jth column of A. We use the notation ∆νj to denote aTj ν, since it is the
difference of the dual variable between the ending node and starting node of arc j. We will
see that the dual variables νi can be interpreted as potentials on the network; ∆νj is the
potential difference appearing across arc j.

The dual function is

g(ν) = inf
x
L(x, ν)

= νT s+
n
∑

j=1

inf
xj

(φj(xj) + (∆νj)xj)

= νT s−
n
∑

j=1

φ∗
j(−∆νj),

where φ∗
j is the conjugate function of φj, i.e.,

φ∗
j(y) = sup

x
(yxj − φj(xj)) .

The dual problem is the unconstrained convex problem

maximize g(ν),

with variable ν ∈ Rp. It is easy to show that only differences in the potentials matter; we
have g(ν) = g(ν + c1) for any c ∈ R. We can, without loss of generality, fix one of the dual
variables to be zero.

There is no duality gap; the optimal values of the primal and dual problems are the same.
Moreover, we can recover the primal solution from the dual solution. Since we assume the flow
cost functions φj are strictly convex, for each y there is a unique maximizer of yxj − φj(xj).
We will denote this maximizer as x∗

j(y). If φj is differentiable, then x∗
j(y) = (φ′

j)
−1(y), the

inverse of the derivative function. We can solve the network flow problem via the dual, as
follows. We first solve the dual by maximizing g(ν) over ν to obtain the optimal dual variable
(or potentials) ν⋆. Then the optimal solution of the network flow problem is given by

x⋆
j = x∗

j(−∆ν⋆
j).

Thus, the optimal flow on link j is a function of the optimal potential difference across it.
In particular, the optimal flow can be determined locally; we only need to know the optimal
potential values at the two adjacent nodes to find the optimal flow on the arc.

29

A subgradient for the negative dual function −g is

−(Ax∗(∆ν) + s) ∈ ∂(−g)(ν).

This is exactly the negative of the flow conservation residual. The ith component of the
residual,

aTi x
∗(∆ν) + si,

is sometimes called the flow surplus at node i, since it is the difference between the total
incoming and total outgoing flow at node i. Using a subgradient method to solve the dual,
we obtain the following algorithm.

given initial potential vector ν.

repeat

Determine link flows from potential differences.
xj := x∗

j(−∆νj), j = 1, . . . , n.
Compute flow surplus at each node.
Si := aTi x+ si, i = 1, . . . , p.

Update node potentials.
νi := νi + αkSi, i = 1, . . . , p.

Here αk > 0 is an appropriate step length.
The method proceeds as follows. Given the current value of the potentials, a flow is

calculated. This is local; to find xj we only need to know the two potential values at the
ends of arc j. We then compute the flow surplus at each node. Again, this is local; to find
the flow surplus at node i, we only need to know the flows on the arcs that enter or leave
node i. Finally, we update the potentials based on the current flow surpluses. The update
is very simple: we increase the potential at a node with a positive flow surplus (recall that
flow surplus is −gi at node i), which (we hope) will result in reduced flow into the node.
Provided the step length αk can be computed locally, the algorithm is distributed; the arcs
and nodes only need information relating to their adjacent flows and potentials. There is no
need to know the global topology of the network, or any other nonlocal information, such as
what the flow cost functions are.

At each step of the dual subgradient method, g(ν) is a lower bound on p⋆, the optimal
value of the single-commodity network flow problem. (Note, however, that computing this
lower bound requires collecting information from all arcs in the network.) The iterates are
generally infeasible, i.e., we have Ax + s 6= 0. The flow convervation constraint Ax + s = 0
is satisfied only in the limit as the algorithm converges.

There are methods to construct a feasible flow from x, an infeasible iterate of the dual
subgradient method. Projecting onto the feasible set, defined by Ax + s = 0, can be done
efficiently but is not decentralized.

6.2 Analogy with electrical networks

There is a nice analogy between the single commodity network flow problem and electrical
networks. We consider an electrical network with topology determined by A. The variable

30

xj is the current flow in branch j (with positive indicating flow in the reference direction,
negative indicating current flow in the opposite direction). The source si is an external
current injected at node i. Naturally, the sum of the external currents must be zero. The
flow conservation equation Ax+ s = 0 is Khirchhoff’s current law (KCL).

The dual variables correspond to the node potentials in the circuit. We can arbitrarily
choose one node as the ground or datum node, and measure potentials with respect to that
node. The potential difference ∆νj is precisely the voltage appearing across the jth branch
of the circuit. Each branch in the circuit contains a nonlinear resistor, with current-voltage
characteristic Ij = x∗

j(−Vj).
It follows that the optimal flow is given by the current in the branches, with the topology

determined by A, external current s, and current-voltage characteristics related to the flow
cost functions. The node potentials correspond to the optimal dual variables. (It has been
suggested to solve optimal flow equations using analog circuits.)

The subgradient algorithm gives us an iterative way to find the currents and voltages in
such a circuit. The method updates the node potentials in the circuit. For a given set of node
potentials we calculate the branch currents from the branch current-voltage characteristics.
Then we calculate the KCL residual, i.e., the excess current at each node, and update the
potentials based on these mismatches. In particular, we increase the node potential at each
node which has too much current flowing into it, and decrease the potential at each node
which has too little current flowing into it. (For constant step size, the subgradient method
corresponds roughly to putting a capacitor to ground at each node.)

6.3 Example

We now consider a more specific example, with flow cost function

φj(xj) =
xj

cj − xj

, domφj = [0, cj),

where cj > 0 are given link capacities. The domain restrictions mean that each flow is
nonnegative, and must be less than the capacity of the link. This function gives the ex-
pected queuing delay in an M/M/1 queue, with exponential arrival times with rate xj and
exponential service time with rate cj.

The conjugate of this function is

φ∗
j(y) =

{

(
√
cjy − 1)2 y > 1/cj

0 y ≤ 1/cj .

The function and its conjugate are plotted in figure 17, for c = 1.
From the conjugate we can work out the function x∗

j(−∆νj):

x∗
j = argmin

0≤z<cj

(φj(z) + ∆νjz) =

{

cj −
√

cj/∆νj ∆νj > 1/cj
0 ∆νj ≤ 1/cj.

(21)

31

0 0.5 1
0

2

4

6

8

x

φ
(x
)

−2 0 2 4 6

0

0.5

1

1.5

2

y

φ
∗
(y
)

Figure 17: The queueing delay cost function φ(x) (left) and its conjugate func-
tion φ∗(y) (right), for capacity c = 1.

−5 0 5 10
−0.5

0

0.5

1

∆νj

x
∗ j

Figure 18: The function x∗j (−∆νj), for cj = 1. This can be interpreted as the
current-voltage characteristic of a nonlinear resistor with diode-like characteristic.

32

1

2

3

4

51

2

3

4

5

6

7

Figure 19: A network with 5 nodes and 7 arcs.

This function (which corresponds to the current-voltage characteristic of a nonlinear resistor
in the analogous electrical network) is shown in figure 18. Note that it has a diode-like
characteristic: current flows only in the reference direction.

Our problem instance has the network shown in figure 19, with p = 5 nodes and n = 7
arcs. Its incidence matrix is

A =

















−1 −1 0 0 0 0 0
1 0 −1 −1 0 0 0
0 1 1 0 −1 −1 0
0 0 0 1 1 0 −1
0 0 0 0 0 1 1

















.

Each link has capacity cj = 1, and the source vector is

s = (0.2, 0.6, 0, 0,−0.8).

The optimal flows are plotted in figure 20.
We use the subgradient method to solve the dual problem, with initial dual variables

νi = 0 for i = 1, . . . , p. At each step of the subgradient method, we fix the value of νp and
only update the dual variables at the remaining p − 1 nodes. We use a constant step size
rule since the dual function is differentiable. The algorithm is guaranteed to converge for
small enough step sizes.

Figure 21 shows the value of the dual function at each iteration, for three different fixed
step sizes, and figure 22 shows the corresponding primal residual ‖Ax+s‖2 (which is precisely
the norm of the subgradient). The plots suggests that for α = 3, the algorithm does not
converge to the optimal point. For α = 1, the algorithm converges rather well; for example,
the primal residual reduces to 4.6×10−3 after 100 iterations. Figure 23 shows the convergence
of the dual variables for α = 1.

33

4.74

4.90

3.18

2.45

0−0.16

1.56

1.72

2.45

0.72

3.18

2.45

Figure 20: Optimal flows plotted as width of the arrows, and optimal dual variables
(potentials). The potential difference ∆νj is shown next to each link.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

k

g
(ν

(k
))

α = 0.3
α = 1
α = 3

Figure 21: Dual function value versus iteration number k, for the subgradient
method with the fixed step size rule.

34

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k

‖A
x
(k
)
+
s‖

2

α = 0.3
α = 1
α = 3

Figure 22: The primal residual ‖Ax + s‖2 versus iteration number k, in the sub-
gradient method with the fixed step size.

0 20 40 60 80 100
0

1

2

3

4

5

k

ν
(k
)

ν1
ν2
ν3
ν4

Figure 23: Dual variables ν(k) versus iteration number k, with fixed step size rule
α = 1. Note that ν5 is fixed to zero.

35

References

[Ber99] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[CLCD07] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as optimiza-
tion decomposition: A mathematical theory of network architectures. Proceedings
of the IEEE, January 2007. To appear.

[DW60] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Oper-
ations Research, 8:101–111, 1960.

[KMT97] F. Kelly, A. Maulloo, and D. Tan. Rate control for communication networks:
Shadow prices, proportional fairness and stability. Journal of the Operational
Research Society, 49:237–252, 1997.

36

