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Notes on EEG Resampling
by Natural Cubic Spline Interpolation

Marco Congedo, MA
Cem Özen, MS

Leslie Sherlin, BA

ABSTRACT. Resampling of digitized electroencephalographic data al-
lows changing the sampling rate with minimal distortion of the signal. 
Useful applications of the procedure include compatibility among diverse 
hardware and software and the customization of data analysis. The natural 
cubic spline interpolation procedure is introduced in a discursive fashion. 
A formal presentation is provided in the appendix.

KEYWORDS. Spline interpolation, cubic spline, natural spline, sample 
rate, EEG

Research and clinical practice in quantitative electroencephalogra-
phy (qEEG) requires expertise in diverse fields. On occasion the re-
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searcher or practitioner will have to face problems of a technical nature.
One of these problems is the resampling of a digitized signal. In this ar-
ticle we introduce the problem and the most popular procedure to solve
it, the natural cubic spline interpolation. While the article is introduc-
tory, the appendix treats the issue in a more formal way for the benefit
of the interested reader.

There are at least two situations in which the resampling of the EEG
is useful. One is to ensure compatibility among EEG data acquisition
devices and software for the comparison to EEG norms, better known as
normative databases. The other is to customize the data analysis, or re-
fine the frequency resolution. Unfortunately, in the EEG industry there
is no standard for the sampling rate and file format. As a result, it is usu-
ally difficult and sometimes impossible to share EEG data and to analyze
the data with diverse kinds of software. Virtually all data acquisition
machines have their own format for data files. Unless the manufacturer
provides the user with a file conversion for the ASCII format (the stan-
dard alphanumeric format), it is problematic to export the data to other
software. Another difficulty is the disagreement concerning the “sam-
pling rate” used. Currently the EEG signal is either acquired as an ana-
log signal and then digitized, or it is acquired in digital form. The
digitized EEG consists of equally spaced samples of the underlying sig-
nal. The number of samples per second is called the sample rate (SR). If
the sample rate is sufficiently high, then the loss of information deter-
mined by the sampling process is negligible. More specifically, follow-
ing the well-known Shannon’s sampling theorem (Lynn & Fuerst,
1989), when digitizing a signal we are able to capture frequencies up to
half the SR (folding frequency). The maximum frequency contained in
an analog signal is called Nyquist frequency, and the minimum sample
rate we need in order to represent this frequency in a digitized signal is
called the Nyquist rate (half the Nyquist frequency). For example, the
reason why the popular compact disc has a SR = 44,100 is because in
this way one can reconstitute a sound up to its 22,050 Hertz (Hz) com-
ponent, which is close enough to the highest human auditory threshold.
Some EEG data acquisition machines (e.g., Lexicor) support sample
rates that are multiples of 2 (e.g., 64, 128, 256 . . .) while others like
Cadwell and Neuroscan support sample rates that are multiples of 10
(e.g., 100, 200 . . .). To submit EEG data to a normative database the
sample rate has to be compatible with the sample rate used in the data-
base. The diversity of database standards sometimes prevents this pos-
sibility. EEG resampling consists of converting the SR of a signal while
leaving the signal intact. Resampling the EEG provides compatibility
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among data acquisition machines and software. For instance one can ac-
quire and analyze EGG data at the desired sample rate, resample, and
import the data into other software programs.

Another case in which EEG resampling is useful is when we want to
customize the data analysis process. It is well known that Fast Fourier
Transform (FFT) algorithms require data segment lengths (epic lengths)
to be a power of 2 in length (usually 128, 256, or 512 samples). The
Fourier coefficients allow estimates of amplitude or power of the signal
at equally spaced discrete frequencies. In the case of an EEG signal the
number of discrete frequencies is equal to the epoch length divided by
two. The frequency resolution for a given EEG file equals the sample
rate divided by the epoch length. For example, supposing the EEG file
was recorded at 128 samples per second, and that each epoch of the file
has 256 samples, the FFT will provide estimates at 256/2 = 128 discrete
frequencies and the frequency resolution would be 128/256 = 0.5. Thus,
the first estimation will be at 0.5 Hz; the second at 1 Hz; the third at 1.5,
and so on up to the folding frequency (64 Hz). The reader can verify that
there will be 128 discrete frequencies (Beauchamp, 1973; Brillinger,
1975). The frequency resolution can be adjusted by manipulating either
the epoch length (if the software allows) or the sample rate (by resampl-
ing). The frequency resolution increases with longer epochs and smaller
sample rates. Although a higher frequency resolution is undoubtedly
desirable, it is not possible to increase the frequency resolutions ad libi-
tum. The limits are dictated by the assumption of signal stationarity for
the FFT (DeLurgio, 1998) and by the sampling theorem. The assump-
tion of signal stationarity is less tenable for an FFT performed on longer
epochs. The SR, as reported above, cannot be smaller than the Nyquist
rate. Typically a frequency resolution of 0.5 (epoch length = 512 and
SR = 256) or 0.25 (epoch length = 512 and SR = 128) is the smallest res-
olution that can be reasonably achieved.

EEG resampling is simple in principle. The EEG is a continuous sig-
nal constituted by oscillation of potential differences over time. In plot-
ting the EEG, the abscissa is plotted as time and the ordinate plotted as
voltage. Digitized samples are a sequence of number pairs: one for the
time and the other for the voltage. Each sample is the instantaneous re-
cording of voltage at equally spaced time intervals. Samples are plotted
as points in two dimensional spaces. Connecting these points results in
the EEG as it is typically displayed by EEG software (Figure 1).

In order to resample the EEG we have to specify the new interval to
which a new set of x-coordinates corresponds and estimate the y-values
(voltage) for the new samples. This is usually obtained by interpolating
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the value of the function (signal) in the gap between known data-points
(original samples). Cubic Spline interpolation is a special case of cubic
polynomial interpolation. In addition to polynomial interpolation, spline
interpolation requires the first derivative of the underlying function to
be continuous at the known data-points. In other words, the interpolated
function will not reconstruct artificial spikes, but will assume the func-
tion to be smooth, an assumption that suits extra-cranial EEG data that
are to be processed by Fourier analysis (though it is not a good idea to
perform morphological analysis on resampled data). Cubic denotes a
polynomial model of the third order. The third order model is a suitable
compromise between precision and simplicity of computations. The
spline interpolation algorithm requires the second derivative at the two
end-points to be specified. Usually these are unknown. A common
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FIGURE 1. Two seconds of EEG as recorded digitally from occipital site O2 in a
26-year-old woman. The chart in the middle is the original recording (Sample
Rate = 128). Squares represent digital samples. The first and the third chart
show the result of natural cubic spline interpolation resampling. The first chart
shows the result of down sampling (from 128 SR to 100 SR). The third chart
shows the result of up sampling (from 128 to 200).



choice is to set the second derivative at the end points to zero. If so, the
procedure is called natural spline.

Figure 1 shows two seconds of data recorded with digital equipment
from occipital site O2 in a 26-year-old woman. The original recording
had a sampling rate of 128 and is displayed in the middle chart of Fig-
ure 1. The first chart in Figure 1 shows the same data after down sam-
pling from SR = 128 to SR = 100. The last chart shows the same data
after up sampling from SR = 128 to SR = 200. The signal is almost iden-
tical in the three charts, illustrating the little distortion introduced by the
resampling method.

A few final comments on EEG resampling: up sampling does not
pose any theoretical problem. However it is important to keep in mind
that up sampling cannot increase the Nyquist Frequency (see above)
since this is set during the data acquisition process and cannot be in-
creased off-line. Additionally, we have seen that, keeping the epoch
length fixed, up sampling reduces the frequency resolution. As such, up
sampling is seldom of interest. On the other hand, down sampling re-
quires care with the sampling theorem. For instance, if it is desired to
down sample to 64 samples per second, the signal first should be
low-pass filtered at 32 Hz to prevent aliasing. In this example we would
increase the frequency resolution, but we would lose all frequency com-
ponents above 32 Hz. As a final note, after resampling it is advisable to
remove the end points or even a few samples at the end of the signal, since
natural spline errors occur there more likely as compared to the middle
portion of the signal. For this reason it is important to resample the entire
EEG recording, and not to perform the process epoch-by-epoch.
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APPENDIX

Given the value of a function at a set of data points x1, x2, . . . , xN with
x1 < x2 < . . . xn�1 < xn, we are interested in estimating the value of the
function at an arbitrary point in the interval [x1, xn].

The interpolation scheme must use appropriate functional forms to
mimic the function in a plausible way. There are many different classes
of functional forms, however not all of them have continuous deriva-
tives. When the continuity of derivatives are important, spline interpola-
tion is usually a good choice since by construction they have the
desired continuity.

The number of data points minus one is called the order of interpola-
tion. Increasing the order does not usually increase the accuracy espe-
cially in the case of a widely used class of interpolating functions, the
class of polynomials. This is largely due to the fact that added points
cause superfluous wiggles between the tabulated values. One can al-
ternatively use a local interpolation scheme using a finite number of
nearest-neighbor points, but the price of this approach is having discon-
tinuous derivatives. Now imagine that we have the tabulated points x1,
x2, . . . and so on in the increasing order, and we are interpolating “lo-
cally” first in the region x1 < x < x2. As x varies from x1 to x2, the function
and its derivatives will vary smoothly. As x increases beyond x2, we
want to interpolate in the region x2 < x < x3. Since now we have a differ-
ent set of interpolation points, we have a different approximating poly-
nomial. This is why this scheme suffers from a discontinuous change in
the derivatives.

If the continuity of derivatives is a concern, once can use the spline
interpolation scheme. The requirement that the first derivatives across
boundaries between interpolation intervals be continuous, makes the
spline interpolation more than a “local” interpolation technique. In other
words, the nonlocality serves to guarantee global smoothness in the in-
terpolated function up to some order of derivative.

Below we are going to give a simple outline of the cubic spline inter-
polation scheme.

Given a tabulated function f(xi), i = 1, 2, . . . , N, let us consider a par-
ticular interval xj < x < xj+1. Now let us define the cubic interpolating
function p(x) as:

p(x) = aj (x � xj )3 + bj (x � xj )2 + cj (x � xj ) + dj (1)

Now assume for a moment that, in addition to the tabulated values
f(xi), we also know the tabulated values of the function’s second deriva-
tive f �(xi).
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For avoiding cumbersome notation, let us introduce:

pj = p(xj ); hj = xj+1 � xj; fj = f(xj ) (2)

The approximating polynomial should give exact results at the tabu-
lated points, i.e., the end points of the interval:

pj = fj = dj; pj+1 = ajhj
3 + bjhj

2 + cjhj + pj (3)

The first and second derivatives of the polynomial are:

p�(x) = 3aj (x � xj )2 + 2bj (x � xj ) + cj (4)

and

p�(x) = 6aj (x � xj ) + 2bj (5)

The coefficients aj and bj in Equation (1) can be expressed in terms of
the second derivative of the polynomial by writing Equation (5) at the
points x = xj and x = xj+1:

p x p b b
p

j j j j
j
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�
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Using Equation (5) the coefficient cj can now be written as:

c
p p

h

h p h p
j

j j

j

j j j j=
−

−
++ +1 1 2

6

� �

(8)

Once the coefficients aj, bj, cj and dj are determined one can con-
struct the interpolating function, Equation (1), and its derivative, Equa-
tion (4). The second derivatives f j

� can be determined with the use of
Equation (4) by substituting the coefficients. We have n�1 interpolation
intervals, hence n�2 boundary points. Enforcing the continuity of the p�
at the boundary points yields n�2 equations. We need two more equa-
tions to obtain a unique solution for n unknown f j

� ’s. These two are
given by applying Equation (4) at the boundary points. All these linear
equations can be put into a matrix form, which turns out to be tri-
diagonal:
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(9)

Equation (9) defines the cubic spline interpolation problem. Note that
the array in the right hand side of the equation has the first and last reg-
isters dependent on the first derivatives. If they are not known, they are
usually chosen as zero. Splines obtained this way are called the natural
splines.

For a more detailed yet practical discussion of the material, readers
can consult Press et al. (1996) and DeVries (1994).
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