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NOTES ON GENERALIZED DERIVATIONS
ON LIE IDEALS IN PRIME RINGS

Basudeb Dhara and Vincenzo De Filippis

Abstract. Let R be a prime ring, H a generalized derivation of R and
L a noncommutative Lie ideal of R. Suppose that usH(u)ut = 0 for all
u ∈ L, where s ≥ 0, t ≥ 0 are fixed integers. Then H(x) = 0 for all
x ∈ R unless char R = 2 and R satisfies S4, the standard identity in four
variables.

Let R be an associative ring with center Z(R). For x, y ∈ R, the commutator
xy− yx will be denoted by [x, y]. An additive mapping d from R to R is called
a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. A derivation d
is inner if there exists a ∈ R such that d(x) = [a, x] holds for all x ∈ R. An
additive subgroup L of R is said to be a Lie ideal of R if [u, r] ∈ L for all u ∈ L,
r ∈ R. The Lie ideal L is said to be noncommutative if [L,L] 6= 0. Hvala [8]
introduced the notion of generalized derivation in rings. An additive mapping
H from R to R is called a generalized derivation if there exists a derivation d
from R to R such that H(xy) = H(x)y +xd(y) holds for all x, y ∈ R. Thus the
generalized derivation covers both the concepts of derivation and left multiplier
mapping. The left multiplier mapping means an additive mapping F from R
to R satisfying F (xy) = F (x)y for all x, y ∈ R.

Throughout this paper R will always present a prime ring with center Z(R),
extended centroid C and U its Utumi quotient ring. It is well known that
if ρ is a right ideal of R such that un = 0 for all u ∈ ρ, where n is a fixed
positive integer, then ρ = 0 [7, Lemma 1.1]. In [2], Chang and Lin consider the
situation when d(u)un = 0 for all u ∈ ρ and und(u) = 0 for all u ∈ ρ, where ρ
is a nonzero right ideal of R. More precisely, they proved the following:

Let R be a prime ring, ρ a nonzero right ideal of R, d a derivation of R and
n a fixed positive integer. If d(u)un = 0 for all u ∈ ρ, then d(ρ)ρ = 0 and if
und(u) = 0 for all u ∈ ρ, then d = 0 unless R ∼= M2(F ), the 2×2 matrices over
a field F of two elements.
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Recently, for noncommutative Lie ideal L of R, Dhara and Sharma obtained
results [4] that if a ∈ R such that ausd(u)nut = 0 for all u ∈ L, where s(≥
0), t(≥ 0), n(≥ 1) are fixed integers, then either a = 0 or d(R) = 0 unless
char R = 2 and R satisfies S4, the standard identity in four variables.

From this line of investigation, our aim in this paper is to study the situation
when usH(u)ut = 0 for all u ∈ L, where L a noncommutative Lie ideal of R,
H a generalized derivation of R and s ≥ 0, t ≥ 0 are fixed integers.

Remark 1. It is well known that if L is a noncommutative Lie ideal of a prime
ring R and I is the ideal of R generated by [L,L], then I ⊆ L+L2 and [I, I] ⊆ L
(see [11, Lemma 2 (i),(ii)]).

Proof. To give its brief proof, let a, b ∈ L and r ∈ R. We have [a, b]r =
[ar, b] − a[r, b] ∈ L + L2. For s ∈ R, we get commuting both sides by s
that s[a, b]r = [a, b]rs + [[ar, b], s] − [a[r, b], s] ∈ L + L2, since [a[r, b], s] =
a[[r, b], s] + [a, s][r, b] ∈ L2. Thus I ⊆ L + L2. Now since [L2, I] ⊆ L holds true
by using the identity [xy, z] = [x, yz] + [y, zx] for x, y ∈ L and z ∈ I, we have
[I, I] ⊆ L. ¤
Remark 2. Let R be a prime ring and U be the Utumi quotient ring of R and
C = Z(U), the center of U (see [1] for more details). It is well known that any
derivation of R can be uniquely extended to a derivation of U . In [13, Theorem
3], Lee proved that every generalized derivation H on a dense right ideal of R
can be uniquely extended to a generalized derivation of U and assume the form
H(x) = ax + d(x) for all x ∈ U , for some a ∈ U and a derivation d of U .

Lemma 1. Let R = Mk(F ), the ring of k × k matrices over a field F and
a, b ∈ R such that [x1, x2]s(a[x1, x2] + [x1, x2]b)[x1, x2]t = 0 for all x1, x2 ∈ R,
where s ≥ 0, t ≥ 0 are fixed integers. If char F = 2, then a = b and if
char R 6= 2, then a ∈ F · Ik, b ∈ F · Ik and a + b = 0.

Proof. Let a = (aij)k×k and b = (bij)k×k. Now in our assumption

[x1, x2]s(a[x1, x2] + [x1, x2]b)[x1, x2]t = 0,

we may assume that s and t both are even integers, because if they are not
even, we multiply [x1, x2] from left or right in both sides to make them even.
Now putting x1 = eij , x2 = eji for any i 6= j, we have

0 = [eij , eji]s(a[eij , eji] + [eij , eji]b)[eij , eji]t

= (eii + ejj)(a(eii − ejj) + (eii − ejj)b)(eii + ejj).

Left multiplying by eii, we get

0 = eii(a(eii − ejj) + (eii − ejj)b)(eii + ejj)
= aiieii − aijeij + biieii + bijeij

= (aii + bii)eii + (−aij + bij)eij

implying aii + bii = 0 and aij = bij for any i, j(i 6= j). This gives a − b

is diagonal. Let a − b =
∑k

i=1 wiieii. For some F -automorphism θ of R,
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(a − b)θ enjoys the same property as a − b does, namely, [x1, x2]s(aθ[x1, x2] +
[x1, x2]bθ)[x1, x2]t = 0 for all x1, x2 ∈ R. Hence aθ − bθ = (a − b)θ must be
diagonal. For each j 6= 1, we have (1 + e1j)(a − b)(1 − e1j) =

∑k
i=1 wiieii +

(wjj − w11)e1j diagonal. Therefore, wjj = w11 and so a − b is central that is
a−b ∈ F ·Ik. Clearly a−b = w11 ·Ik = (a11−b11) ·Ik = 2a11 ·Ik. If char F = 2,
then a = b. Let char F 6= 2. Then a = b+2a11 ·Ik. Now w11 = w22 = · · · = wkk

and aii + bii = 0 for i = 1, . . . , k together implies a11 = a22 = · · · = akk and
b11 = b22 = · · · = bkk. Therefore the identity becomes,

[x1, x2]s(b[x1, x2] + [x1, x2]b)[x1, x2]t + 2a11[x1, x2]s+t+1 = 0.

Now, putting x1 = eii, x2 = eij − eji (i 6= j), we obtain,

(eij + eji)s(b(eij + eji) + (eij + eji)b)(eij + eji)t + 2a11(eij + eji)s+t+1 = 0

which implies

(eii + ejj)(b(eij + eji) + (eij + eji)b)(eii + ejj) + 2a11(eij + eji) = 0.

Left multiplying by eii yields

biieij + bijeii + bjieii + bjjeij + 2a11eij = 0.

Since bii + bjj + 2a11 = 0, above relation implies that (bij + bji)eii = 0 and so
bij + bji = 0 for any i 6= j.

Now, putting x1 = eii, x2 = eij + eji (i 6= j), we obtain [x1, x2]n =
(−1)n/2(eii + ejj) if n is even and (−1)(n−1)/2(eij − eji) if n is odd. Thus
we have

(−1)s/2(eii + ejj)(b(eij − eji) + (eij − eji)b)(−1)t/2(eii + ejj)

+(−1)(s+t)/22a11(eij − eji) = 0.

Left multiplying by eii, we get

(−1)(s+t)/2{biieij − bijeii + bjieii + bjjeij + 2a11eij} = 0.

Again, since bii+bjj +2a11 = 0, we have (−bij +bji)eii = 0 and so −bij +bji = 0
for any i 6= j. Addition and subtraction of bij + bji = 0 and −bij + bji = 0
yields that bij = 0 = bji for any i 6= j. Therefore, b is central in R that is
b = b11 · Ik ∈ F · Ik and so a = b11 · Ik + 2a11 · Ik = a11 · Ik ∈ F · Ik. Thus the
identity becomes (a+b)[x1, x2]s+t+1 = 0 for all x1, x2 ∈ R. Since a+b ∈ F ·Ik,
either a + b = 0 or [x1, x2]s+t+1 = 0 for all x1, x2 ∈ R. But [x1, x2]s+t+1 = 0
gives contradiction by choosing x1 = e12 and x2 = e21. Thus a + b = 0. ¤

Lemma 2. Let R be a prime ring with extended centroid C and a, b ∈ R.
If [x1, x2]s(a[x1, x2] + [x1, x2]b)[x1, x2]t = 0 for all x1, x2 ∈ R, then either R
satisfies a nontrivial generalized polynomial identity (GPI) or a ∈ C, b ∈ C
and a + b = 0.
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Proof. Suppose on contrary that R does not satisfy any nontrivial GPI. Let
T = U ∗C C{X1, X2}, the free product of U and C{X1, X2}, the free C-algebra
in noncommuting indeterminates X1 and X2. Then, since [x1, x2]s(a[x1, x2] +
[x1, x2]b)[x1, x2]t is a GPI for R, we see that

[X1, X2]s(a[X1, X2] + [X1, X2]b)[X1, X2]t

is zero element in T = U ∗C C{X1, X2}. If a /∈ C, then a and 1 are linearly
independent over C. Thus,

[X1, X2]sa[X1, X2]t+1 = 0

and
[X1, X2]s+1b[X1, X2]t = 0

in T , which implies a = 0, a contradiction. Therefore, we conclude that a ∈ C
and hence

[X1, X2]s(a[X1, X2] + [X1, X2]b)[X1, X2]t = [X1, X2]s+1(a + b)[X1, X2]t

is zero element in T , again implying a + b = 0 that is b = −a ∈ C. ¤

Lemma 3. Let R be a prime ring with extended centroid C and a, b ∈ R.
Suppose that [x1, x2]s(a[x1, x2]+ [x1, x2]b)[x1, x2]t = 0 for all x1, x2 ∈ R. Then

(i) if char R 6= 2, a ∈ C, b ∈ C and a + b = 0;
(ii) if char R = 2, a = b ∈ C unless R satisfies S4.

Proof. By assumption, R satisfies generalized polynomial identity

f(x1, x2) = [x1, x2]s(a[x1, x2] + [x1, x2]b)[x1, x2]t.

If R does not satisfy any nontrivial GPI, by Lemma 2, a ∈ C, b ∈ C and
a + b = 0 which gives conclusion (i) and (ii). Next assume that R satisfies
a nontrivial GPI. Since R and U satisfy same generalized polynomial identity
(see [3]), U satisfies f(x1, x2). In case C is infinite, we have f(x1, x2) = 0
for all x1, x2 ∈ U ⊗C C, where C is the algebraic closure of C. Since both
U and U ⊗C C are prime and centrally closed [5], we may replace R by U
or U ⊗C C according to C finite or infinite. Thus we may assume that R is
centrally closed over C (i.e., RC = R) which is either finite or algebraically
closed and f(x1, x2) = 0 for all x1, x2 ∈ R. By Martindale’s theorem [15], R is
then a primitive ring having nonzero socle H with C as the associated division
ring. Hence by Jacobson’s theorem [9, p. 75], R is isomorphic to a dense ring of
linear transformations of a vector space V over C, and H consists of the linear
transformations in R of finite rank.

Let dimCV = k. Then the density of R on V implies that R ∼= Mk(C). If
char R 6= 2, then by Lemma 1, we have that, a ∈ C, b ∈ C and a+ b = 0 which
is conclusion (i). If char R = 2, then by Lemma 1, a = b and so R satisfies
the generalized identity f(x1, x2) = [x1, x2]s[a, [x1, x2]][x1, x2]t. Suppose that
dimCV ≥ 3. Then we show that for any v ∈ V , v and av are linearly C-
dependent. Suppose that v and av are linearly C-independent for some v ∈ V .
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Since dimCV ≥ 3, there exists w ∈ V such that v, av, w are linearly independent
over C. By density there exist x1, x2 ∈ R such that

x1v = 0, x1av = v, x1w = v

x2v = av, x2av = w, x2w = 0.

Then [x1, x2]v = (x1x2 + x2x1)v = v, [x1, x2]av = (x1x2 + x2x1)av = x1w +
x2v = v + av and so [a, [x1, x2]]v = v. Hence

0 = [x1, x2]s[a, [x1, x2]][x1, x2]tv = v,

a contradiction.
Thus v and av are linearly C-dependent. Hence for each v ∈ V , av = vαv

for some αv ∈ C. It is very easy to prove that αv is independent of the choice
of v ∈ V . Thus we can write av = vα for all v ∈ V and α ∈ C fixed.

Now, let r ∈ R, v ∈ V . Since av = vα,

[a, r]v = (ar)v + (ra)v = a(rv) + r(av) = (rv)α + r(vα) = 0

that is [a, r]V = 0. Hence [a, r] = 0 for all r ∈ R, implying a ∈ C. Now, if
dimCV = 2, then R ∼= M2(C) that is R satisfies S4. Thus we obtain a = b ∈ C
unless R satisfies S4, which is conclusion (ii).

If dimCV = ∞, then for any e2 = e ∈ H = soc(R) we have eRe ∼= Mt(C)
with t =dimCV e. Assume that either a /∈ C or b /∈ C. Then one of them does
not centralize the nonzero ideal H = soc(R). Hence there exist h1, h2 ∈ H
such that either [a, h1] 6= 0 or [b, h2] 6= 0. By Litoff’s theorem [6], there exists
idempotent e ∈ H such that ah1, h1a, bh2, h2b, h1, h2 ∈ eRe. We have eRe ∼=
Mk(C) with k =dimCV e. Since R satisfies generalized identity f(ex1e, ex2e) =
[ex1e, ex2e]s(a[ex1e, ex2e]+[ex1e, ex2e]b)[ex1e, ex2e]t, the subring eRe satisfies
f(x1, x2) = [x1, x2]s(eae[x1, x2]+ [x1, x2]ebe)[x1, x2]t. Then by the above finite
dimensional case, eae, ebe are central elements of eRe. Thus ah1 = (eae)h1 =
h1eae = h1a and bh2 = (ebe)h2 = h2(ebe) = h2b, a contradiction.

Thus we conclude that a, b ∈ C. Then we have that R satisfies

f(x1, x2) = (a + b)[x1, x2]s+t+1

implying a + b = 0. In case char R = 2, a = b ∈ C. Thus we get conclusion (i)
and (ii). ¤

Theorem 1. Let R be a prime ring, H a generalized derivation of R and L
a noncommutative Lie ideal of R. Suppose that usH(u)ut = 0 for all u ∈ L,
where s ≥ 0, t ≥ 0 are fixed integers. Then H(x) = 0 for all x ∈ R unless
char R = 2 and R satisfies S4, the standard identity in four variables.

Proof. Since L is noncommutative, by Remark 1, there exists a nonzero ideal
I of R such that [I, I] ⊆ L. Hence without loss of generality we may assume
L = [I, I]. By our assumption we have

[x1, x2]sH([x1, x2])[x1, x2]t = 0
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for all x1, x2 ∈ I. Since I and U satisfy the same differential identities [14], we
may assume that

[x1, x2]sH([x1, x2])[x1, x2]t = 0
for all x ∈ U . As we have already remarked in Remark 2, we may assume that
for all x ∈ U , H(x) = bx+ d(x) for some a ∈ U and a derivation d of U . Hence
U satisfies

[x1, x2]s(b[x1, x2] + d([x1, x2]))[x1, x2]t = 0.

Assume first that d is inner derivation of U , i.e., there exists p ∈ U such that
d(x) = [p, x] for all x ∈ U . Then

[x1, x2]s(b[x1, x2] + [p, [x1, x2]])[x1, x2]t = 0

for all x1, x2 ∈ U that is

[x1, x2]s((b + p)[x1, x2]− [x1, x2]p)[x1, x2]t = 0

for all x1, x2 ∈ U . By Lemma 3, if char R 6= 2, b+p ∈ C, p ∈ C and b+p−p = 0
implying that b = 0. Hence H(x) = 0 for all x ∈ U and so for all x ∈ R. Now
if char R = 2, by Lemma 3, b + p = −p ∈ C implying b = 0 unless R satisfies
S4. Hence H(x) = 0 for all x ∈ U and so for all x ∈ R unless R satisfies S4.

If d is not Q-inner, then by Kharchenko’s theorem [10]

[x1, x2]s(b[x1, x2] + [x3, x2] + [x1, x4])[x1, x2]t = 0

for all x1, x2, x3, x4 ∈ U . In particular U satisfies its blended component

[x1, x2]s([x3, x2] + [x1, x4])[x1, x2]t.

This is a polynomial identity and hence there exists a field F such that U ⊆
Mk(F ) with k > 1 and U and Mk(F ) satisfy the same polynomial identity [12,
Lemma 1]. But by choosing x1 = x3 = e12, x2 = e21, x4 = 0, we get

0 = [x1, x2]s([x3, x2] + [x1, x4])[x1, x2]t =
(

e11 + (−1)s+t+1e22

)
,

which is a contradiction. ¤
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