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NOTES ON GLAISHER’S CONGRUENCES**

HONG Shaofang*

Abstract

Let p be an odd prime and let n ≥ 1, k ≥ 0 and r be integers. Denote by Bk the k-
th Bernoulli number. It is proved that (i) If r ≥ 1 is odd and suppose p ≥ r + 4, then
p−1∑
j=1

1
(np+j)r

≡ − (2n+1)r(r+1)
2(r+2)

Bp−r−2p2 (mod p3). (ii) If r ≥ 2 is even and suppose p ≥ r + 3,

then
p−1∑
j=1

1
(np+j)r

≡ r
r+1

Bp−r−1p (mod p2). (iii)
p−1∑
j=1

1
(np+j)p−2 ≡ −(2n + 1)p (mod p2). This

result generalizes the Glaisher’s congruence. As a corollary, a generalization of the Wolsten-
holme’s theorem is obtained.
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§1. Introduction

Several authors (see [2,pp.95-103]) have studied the sums
np∑
j=1

(j,p)=1

1

jr
(1.1)

modulo powers of the prime p, especially in the cases where r = 1 or n = 1. The well-known

Wolstenholme’s theorem (see [5]) asserts that if p ≥ 5 is prime, then

p−1∑
j=1

1

j
≡ 0 (modp2).

Define the Bernoulli numbers Bk(k = 0, 1, 2, · · · ) by the series

t

et − 1
=

∞∑
k=0

Bk
tk

k!
. (1.2)

Glaisher in 1900 found the following strengthened congruences.

Theorem A(see [3],[4], or [7]). Let r be an integer and let p be an odd prime.
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(i) If r ≥ 1 is odd and suppose p ≥ r + 4, then

p−1∑
j=1

1

jr
≡ −r(r + 1)

2(r + 2)
Bp−r−2p

2 (mod p3).

(ii) If r ≥ 2 is even and suppose p ≥ r + 3, then

p−1∑
j=1

1

jr
≡ r

r + 1
Bp−r−1p (mod p2).

(iii)

p−1∑
j=1

1

jp−2
≡ −p (mod p2).

Boyd[1] gave an explicit p-adic expansion of the sum (1.1) in the case r = 1. Recently,

Washington[8] obtained an explicit p-adic expansion of the sum (1.1) as a power series in n

and the coefficients are values of p-adic L functions (see Theorem B).

In the present paper we will generalize the Glaisher’s results by using the Washington’s

p-adic expansion of the sum (1.1).The main result in this paper is as follows:

Theorem 1.1. Let p be an odd prime and let n ≥ 0 and r be integers.

(i) If r ≥ 1 is odd and suppose p ≥ r + 4, then

p−1∑
j=1

1

(np+ j)r
≡ − (2n+ 1)r(r + 1)

2(r + 2)
Bp−r−2p

2 (mod p3).

(ii) If r ≥ 2 is even and suppose p ≥ r + 3, then

p−1∑
j=1

1

(np+ j)r
≡ r

r + 1
Bp−r−1p (mod p2).

(iii)

p−1∑
j=1

1

(np+ j)p−2
≡ −(2n+ 1)p (mod p2).

If let n = 0, then Theorem 1.1 becomes Theorem A.

§2. Preliminaries on P -adic L Functions

Let p be a prime and let Lp(s, χ) be the p-adic function attached to a character χ. In

this section we introduce some facts about p-adic-valued L functions.

Let ω be the p-adic-valued Teichmuller character, so ω(a) ≡ a (mod p) and ω(a)p = ω(a)

when p ≥ 3. If p † a, let ⟨a⟩ = a/ω(a). If x ∈ Zp(= the ring of the p-adic integers), let(
x
k

)
= (x)(x− 1) · · · (x− k + 1)/k!. When p is odd, or when p = 2 and ωt = 1, the p-adic L

function for the character ωt satisfies

Lp(s, ω
t) =

1

s− 1

1

p

p−1∑
a=0

ω(a)t⟨a⟩1−s
∞∑
j=0

(
1− s

j

)
(Bj)

(p
a

)j

for s ∈ Zp. This is a p-adic analytic function. In order to prove Theorem 1.1, we need the

following results.



No.1 HONG, S. F. NOTES ON GLAISHER’S CONGRUENCES 35

Lemma 2.1.[9] (i) If t is odd, then Lp(s, ω
t) is identically 0;

(ii) If t ̸≡ 0 (mod p− 1), then for all s ∈ Zp, Lp(s, ω
t) ∈ Zp;

(iii) If t ̸≡ 0 (mod p− 1), then for all s1, s2 ∈ Zp, we have

Lp(s1, ω
t) ≡ Lp(s2, ω

t) (mod p);

(iv) If 1 ≤ k ≡ t (mod p− 1), then

Lp(1− k, ωt) = −1− pk−1

k
Bk.

Lemma 2.2.[8] Assume p ≥ 5, p ≥ r, and k ≥ 3. If either r ̸= p − 3 or k ̸= 3, then

Lp(r + k, ω1−k−r)pk ≡ 0 (mod p3). In the case r = p − 3 and k = 3, we have Lp(p, 1)p
3 ≡

p2 (mod p3).

§3. Proof of the Main Result

In order to prove our main result, we need the following p-adic expansion of the sum (1.1)

as a power series in n.

Theorem B.[8] Let p be an odd prime and let n, r ≥ 1 be integers. Then
np∑
j=1

(j,p)=1

1

jr
= −

∞∑
k=1

(
−r

k

)
Lp(r + k, ω1−k−r)(pn)k.

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem A, we only need to consider the case n ≥ 1.In the

following let n ≥ 1. Clearly we have

p−1∑
j=1

1

(np+ j)r
=

(n+1)p∑
j=1

(j,p)=1

1

jr
−

np∑
j=1

(j,p)=1

1

jr
.

It then follows from Theorem B that
p−1∑
j=1

1

(np+ j)r
= −

∞∑
k=1

(
−r

k

)
Lp(r + k, ω1−k−r)(p(n+ 1))k

+
∞∑
k=1

(
−r

k

)
Lp(r + k, ω1−k−r)(pn)k

=
∞∑
k=1

(
−r

k

)
Lp(r + k, ω1−k−r)pk(nk − (n+ 1)k). (3.1)

(i) Let r ≥ 1 be odd and suppose p ≥ r+4. Since r ≤ p− 4, by Lemma 2.2 we have that

for k ≥ 3, Lp(r + k, ω1−k−r)pk ≡ 0 (mod p3). Note that r is odd. By Lemma 2.1(i) the

summand for k = 1 vanishes in Equation (3.1). Therefore
p−1∑
j=1

1

(np+ j)r
≡

(
−r

2

)
Lp(r + 2, ω−1−r)p2(n2 − (n+ 1)2))

≡ − (2n+ 1)r(r + 1)

2
Lp(r + 2, ω−1−r)p2 (mod p3). (3.2)

Using Lemma 2.1(iii)(note that 1 + r ̸≡ 0 (mod p− 1)), we have

Lp(r + 2, ω−1−r) ≡ Lp(r + 2− p+ 1, ω−1−r) (mod p). (3.3)
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By Lemma 2.1(iv) we have

Lp(r + 2− p+ 1, ω−1−r) = −1− pp−r−3

p− r − 2
Bp−r−2. (3.4)

It can be deduced from Equations (3.2)–(3.4) that

p−1∑
j=1

1

(np+ j)r
≡ (2n+ 1)r(r + 1)

2(p− r − 2)
(1− pp−r−3)Bp−r−2p

2 (mod p3).

Since 1
p−r−2 ≡ − 1

r+2 (mod p), we have that

p−1∑
j=1

1

(np+ j)r
≡ − (2n+ 1)r(r + 1)

2(r + 2)
(1− pp−r−3)Bp−r−2p

2

≡ − (2n+ 1)r(r + 1)

2(r + 2)
Bp−r−2p

2 (mod p3)

as desired.

(ii) Let r ≥ 2 be even and suppose p ≥ r + 3. By Lemma 2.2 we have that for k ≥
3, Lp(r + k, ω1−k−r)pk ≡ 0 (mod p2). Since r is even, by Lemma 2.1(i) the summand for

k = 2 vanishes in Equation (3.1). By Lemma 2.1(iii) and (iv), it follows from Equation (3.1)

that
p−1∑
j=1

1

(np+ j)r
≡

(
−r

1

)
Lp(r + 1, ω−r)p(n− (n+ 1))

≡ rLp(r + 1, ω−r)p

≡ rLp(r + 1− p+ 1, ω−r)p

≡ −r(1− pp−r−2)
Bp−r−1

p− r − 1
p

≡ r

r + 1
Bp−r−1p (mod p2).

(iii) Let r = p − 2. Then for k = 1, 1 − k − r is odd. Thus Lp(r + k, ω1−k−r) = 0. For

k ≥ 3, by Lemma 2.2 we have that Lp(r + k, ω1−k−r)pk ≡ 0 (mod p2). For k = 2, from

Lemma 2.2 we deduce that Lp(p, 1)p
2 ≡ p (mod p2). Then it follows from Equation (3.1)

that
p−1∑
j=1

1

(np+ j)p−2
≡

(
−p+ 2

2

)
Lp(p, 1)p

2(−2n− 1)

≡ − (2n+ 1)(p− 1)(p− 2)

2
p

≡ −(2n+ 1)p (mod p2).

The proof is complete.

§4. Corollaries

In the present section, we give some corollaries of the main result.

Corollary 4.1. Let p be an odd prime and let n ≥ 0 and r ≥ 1 be integers. Suppose that

r is odd and p ≥ r + 4. Then the following congruences hold:
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(i)

p−1∑
j=1

1

(np+ j)r
≡ 0 (mod p2).

(ii)

p−1∑
j=1

1

(np+ j)r+1
≡ 0 (mod p).

(iii)

p−1∑
j=1

1

(np+ j)p−2
≡ 0 (mod p).

Proof. By the von Staudt-Clausen Theorem (see [6,9]), we have

Bp−r−2 +
∑

(l−1)|(p−r−2)

l prime

1

l
∈ Z. (4.1)

Since p ≥ r + 4, we have 1
l ∈ Zp for all 1 ≤ l ≤ p− r − 2. Then it follows from Equation

(4.1) that Bp−r−2 ∈ Zp. Note that p ≥ r + 4 implies 1
r+2 ∈ Zp. Thus the result follows

from Theorem 1.1. This completes the proof.

Remark 4.1. If let n = 0 and r = 1, then Corollary 4.1(i) reduces to the Wolstenholme’s

theorem (see [5]).

Lemma 4.1.[6] Let m be even and p a prime such that (p − 1) †m. Let Sm(p) = 1m +

2m + · · ·+ (p− 1)m. Then Sm(p) ≡ pBm (mod p2).

Corollary 4.2. Let p be an odd prime and let n ≥ 0 and r ≥ 1 be integers. Suppose that

r is odd and p ≥ r + 4. Then each of the following is true:

(i)
p−1∑
j=1

1
(np+j)r+1 ̸≡ 0 (mod p2);

(ii) If 2n ≡ −1 (mod p), then

p−1∑
j=1

1

(np+ j)r
≡ 0 (mod p3)

and
p−1∑
j=1

1

(np+ j)p−2
≡ 0 (mod p2);

(iii) If 2n ̸≡ −1 (mod p), then

p−1∑
j=1

1

(np+ j)r
̸≡ 0 (mod p3)

and
p−1∑
j=1

1

(np+ j)p−2
̸≡ 0 (mod p2).

Proof. We claim that Bp−r−2 ̸≡ 0 (mod p). Otherwise we have Bp−r−2 ≡ 0 (mod

p). Since r ≥ 1 and p ≥ r + 4, we have (p − 1) † (p − r − 2). By Lemma 4.1 we have
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pBp−r−2 ≡ Sp−r−2(p) (mod p2). Thus one deduces that

Sp−r−2(p) ≡ 0 (mod p2). (4.2)

On the other hand, we have

2p−r−2Sp−r−2(p) = 2p−r−2 + 4p−r−2 + · · ·+ (p− 1)p−r−2

+ (p+ 1)p−r−2 + (p+ 3)p−r−2 + · · ·+ (p+ (p− 2))p−r−2

≡ Sp−r−2(p) + p(p− r − 2)(1 + 3 + · · ·+ (p− 2))

≡ Sp−r−2(p) + p(p− r − 2)
(p− 1

2

)2

(mod p2). (4.3)

Thus Equations (4.2) and (4.3) imply that

p− r − 2 ≡ 0 (mod p). (4.4)

Since 2 ≤ p − r − 2 ≤ p − 3, Equation (4.4) does not hold and the assertion is true. Note

that r, r + 1, 1
2 and 1

r+2 ̸≡ 0 (mod p). Then the result follows from Theorem 1.1. The proof

is complete.

For a ρ-adic integer n ∈ Zp, let ordpn denote the integer m such that pm|n and pm+1 †n.
Combining Corollaries 4.1 and 4.2, we then have the following theorem.

Theorem 4.1. Let p be an odd prime and let n ≥ 0 and r ≥ 1 be integers. Suppose that

r is odd and p ≥ r + 4. Then each of the following is true:

(i) ordp

( p−1∑
j=1

1
(np+j)r+1

)
= 1;

(ii) If 2n ̸≡ −1 (mod p), then ordp

( p−1∑
j=1

1
(np+j)r

)
= 2 and ordp

( p−1∑
j=1

1
(np+j)p−2

)
= 1;

(iii) If 2n ≡ −1(mod p), then ordp

( p−1∑
j=1

1
(np+j)r

)
≥ 3 and ordp

( p−1∑
j=1

1
(np+j)p−2

)
≥ 2.

Remark 4.2. By Theorem 4.1, one can see that the Wolstenholme’s theorem is the best

possible in the sense of power divisibled by p.
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