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Growth accounting breaks down economic growth into components associated with changes in factor inputs and
the Solow residual, which reflects technological progress and other elements. After a presentation of the standard
model, the analysis considers dual approaches to growth accounting (which considers changes in factor prices
rather than quantities), spillover effects and increasing returns, taxes, and multiple types of factor inputs. Later
sections place the growth-accounting exercise within the context of two recent strands of endogenous growth
theory—varieties-of-products models and quality-ladders models. Within these settings, the Solow residual can
be interpreted in terms of measures of the endogenously changing level of technology.
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Growth accounting provides a breakdown of observed economic growth into components
associated with changes in factor inputs and a residual that reflects technological progress
and other elements. Generally, the accounting exercise is viewed as a preliminary step
for the analysis of fundamental determinants of economic growth. The final step involves
the relations of factor growth rates, factor shares, and technological change (the residual)
to elements such as government policies, household preferences, natural resources, initial
levels of physical and human capital, and so on. The growth-accounting exercise can be
particularly useful if the fundamental determinants that matter for factor growth rates are
substantially independent from those that matter for technological change.

The basics of growth accounting were presented in Solow (1957), Kendrick (1961),
Denison (1962), and Jorgenson and Griliches (1967). Griliches (1997, pt. 1) provides an
overview of this intellectual history, with stress on the development of the Solow residual.
This article begins with a short presentation of these basics in the form of the standard,
primal model of growth accounting.

The analysis then turns to a number of issues that affect the interpretation of the Solow
residual as a measure of technological change. The topics covered include dual approaches
to growth accounting (which consider changes in factor prices rather than quantities),
spillover effects and increasing returns, taxes, and multiple types of factor inputs.

Later sections place the growth-accounting exercise within the context of two recent
strands of endogenous growth theory—varieties-of-products models and quality-ladders
models. Within these settings, the Solow residual can be interpreted in terms of measures
of the endogenously changing level of technology. This technology corresponds, in one
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case, to the number of types of intermediate products that have been invented and, in the
other case, to an index of the aggregate quality of intermediate inputs. The models can also
be used to assess and extend previous analyses in which the Solow residual is related to
outlays on research and development (R&D). These analyses often use the concept of an
R&D capital stock, and this stock has a clear meaning within the underlying theories.

1. Standard Primal Growth Accounting

Start with the neoclassical production function

Y = F(A, K , L), (1)

where A is the level of technology,K is the capital stock, andL is the quantity of la-
bor. Capital and labor can be disaggregated among types or qualities as in Jorgenson and
Griliches (1967).

As is well known, the growth rate of output can be partitioned into components associated
with factor accumulation and technological progress. Differentiation of equation (1) with
respect to time yields, after division byY and rearrangement of terms,

Ẏ/Y = g+
(

FK K

Y

)
· (K̇/K )+

(
FL L

Y

)
· (L̇/L), (2)

whereFK , FL are the factor (social) marginal products andg—the growth due to techno-
logical change—is given by

g ≡
(

FA A

Y

)
· (Ȧ/A). (3)

If the technology factor appears in a Hicks-neutral way, so thatF(A, K , L) = A · F̃(K , L),
theng = Ȧ/A.

The rate of technological progressg can be calculated from equation (2) as a residual,

g = Ẏ/Y −
(

FK K

Y

)
· (K̇/K )−

(
FL L

Y

)
· (L̇/L). (4)

However, equation (4) is impractical because it requires knowledge of the social marginal
products,FK andFL . Thus, in practice, the computations typically assume that the social
marginal products can be measured by observed factor prices.

If the factors are paid their social marginal products, so thatFK = R (the rental price
of capital) andFL = w (the wage rate), then the standard primal estimate of the rate of
technological progress follows from equation (4) as

ĝ = Ẏ/Y − sK · (K̇/K )− sL · (L̇/L), (5)

wheresK ≡ RK/Y andsL ≡ wL/Y are the respective shares of each factor payment in
total product. The valuêg is often described as an estimate of total factor productivity
(TFP) growth or the Solow residual.
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The conditionsK+sL = 1—orY = RK+wL—must hold if all of the income associated
with the gross domestic productY is attributed to one of the factors, restricted here to capital
and labor. In an international context, some net factor income may accrue to foreign-owned
factors, andRK + wL would include this net factor income. The equation of outputY
to total factor income is consistent with equality between the factor prices and marginal
products if the production function,F(·), exhibits constant returns to scale inK andL, so
that Y = FK K + FL L holds. UsingsK + sL = 1, equation (5) can also be rewritten in
intensive form as

ĝ = ẏ/y− sK · (k̇/k), (6)

wherey ≡ Y/L andk ≡ K/L are quantities per unit of labor.
Jorgenson and Griliches (1967) and Jorgenson, Gollop, and Fraumeni (1987) demonstrate

the importance of disaggregating the inputs by quality classes. For example,L can be viewed
as a vector that specifies the quantities of labor of various kinds, categorized by school at-
tainment, age, sex, and so on. In an extended version of equation (5), the growth rate of labor
quantity of typej , L̇ j /L j , is multiplied by the associated income sharesLj . As an example,
if the population’s average educational attainment is rising over time, then this procedure
attributes a portion of economic growth to the rise ofL j in categories—such as college-
educated workers—that receive relatively high wage rateswj . Failure to allow in this way
for improvements in labor quality tends to overestimate the Solow residualg in equation (5).

The treatment of capital quality is analogous. One important element here concerns the
distinction between short-lived and long-lived capital. For a given required rate of return
on capital, the rental priceRj is higher if the depreciation rate is higher (due to more
rapid physical deterioration or economic obsolescence). Hence, a shift from long-lived
capital (say, buildings) to short-lived capital (say machinery) would account for some part
of economic growth. Failure to allow for this rise in capital quality tends to overstate the
Solow residual in equation (5).

Table 1 summarizes estimates of TFP growth rates for various countries and time periods,
using this approach. For the main OECD countries, the TFP estimates for 1947 to 1973
ranged from 1.4 percent per year for the United States to 4.0 percent for Japan. The estimates
shown for 1960 to 1973 are roughly similar. However, the values shown for 1973 to 1989
reflect the well-known “productivity slowdown” and are much smaller than those for the
pre-1973 periods. The range of estimates for the main OECD countries in the post-1973
period is very narrow, going from 0.3 percent for Canada and the United States to 1.4 percent
for France.

Estimates for seven Latin American countries from 1940 to 1990 ranged between−0.6
percent per year for Peru to 1.4 percent for Chile.1 For four East Asian countries from 1966
to 1990 or 1991, the estimates varied from 0.2 percent for Singapore to 2.6 percent for
Taiwan. Because of the stellar growth performances of these East Asian countries, many
economists were surprised by the low TFP estimates for these cases. Some of these results
will be reexamined in a later section.

An important point about the TFP estimates displayed in Table 1 is that they represent
a direct implementation of equation (5)—extended to include multiple types of capital
and labor—and do not involve econometric estimation. The estimated Solow residualĝ
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Table 1.Estimates of TFP growth rates.

TFP Growth Rates

OECD Country 1947–1973 1960–1973 1973–1989

Canada 0.018 0.011 0.003
France 0.030 0.023 0.014
Germany 0.037 0.026 0.009
Italy 0.034 0.040 0.006
Japan 0.040 0.058 0.011
Netherlands 0.025 — —
United Kingdom 0.019 0.019 0.007
United States 0.014 0.008 0.003

Country TFP Growth Rate

Latin America, 1940–1990:

Argentina 0.005
Brazil 0.008
Chile 0.014
Colombia 0.008
Mexico 0.011
Peru −0.006
Venezuela 0.001

East Asia, 1966–1990:

Hong Konga 0.023
Singapore 0.002
South Korea 0.017
Taiwan 0.026

Notes: OECD estimates for 1947 to 1973 are from Christenson, Cum-
mings, and Jorgenson (1980). OECD estimates for 1960 to 1973 and
1973 to 1989 are from Dougherty and Jorgenson (1997, table 3). Latin
American estimates are from Elias (1990), updated with unpublished
noted from Victor Elias. East Asian estimates are from Young (1995,
tables V–VIII).
a. Hong Kong value is for 1966 to 1991.

is computed at each date by using time-series data onẎ/Y, K̇/K , L̇/L, sK , andsL .2 In
practice, researchers report an average of the computedĝ values for a designated time
period.

An alternative approach would be to regress the growth rate of outputẎ/Y on the growth
rates of inputsK̇/K and L̇/L in the form of equation (2). The intercept then measuresg,
and the coefficients on the factor growth rates measure( FK K

Y ) and( FL L
Y ), respectively. The

main advantage of this approach is that it dispenses with the assumption that the factor social
marginal products coincide with the observable factor prices—that is,FK = RandFL = w.

The disadvantages of the regression approach are several:

• The variablesK̇/K and L̇/L cannot usually be regarded as exogenous with respect to
variations ing. In particular, the factor growth rates would receive credit for correlated
variations in unobservable technological change.
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• If K̇/K andL̇/L are measured with error, then standard estimates of the coefficients of
these variables would deliver inconsistent estimates of( FK K

y ) and( FL L
Y ), respectively.

This problem is likely to be especially serious for the growth rate of capital input, where
the measured capital stock is unlikely to correspond well to the stock currently utilized
in production. This problem often leads to low estimates of the contribution of capital
accumulation to economic growth when high-frequency data are employed.

• The regression framework has to be extended from its usual form to allow for time
variations in factor shares and the TFP growth rate.

Given the drawbacks from the regression method, the usually preferred approach to TFP
estimation is the noneconometric one exemplified by the studies shown in Table 1.

2. Dual Approach to Growth Accounting

Hsieh (1998) recently exploited a dual approach to growth accounting, whereby the Solow
residual is computed from growth rates of factor prices rather than factor quantities. This
idea goes back at least to Jorgenson and Griliches (1967).

The dual approach can be derived readily from the equality between output and factor
incomes:

Y = RK + wL . (7)

Differentiation of both sides of equation (7) with respect to time leads, after division byY
and rearrangement of terms, to

Ẏ/Y = sK · (Ṙ/R+ K̇/K )+ sL · (ẇ/w + L̇/L),

wheresK andsL are again the factor income shares. If the terms involving the growth rates
of factor quantities are placed on the left-hand side of the equation, then the estimated TFP
growth rate is given by

ĝ = Ẏ/Y − sK · (K̇/K )− sL · (L̇/L) = sK · Ṙ/R+ sL · ẇ/w. (8)

Hence, the primal estimate of the TFP growth rate on the left-hand side of the equation—
based on filteringẎ/Y for the share-weighted growth in factor quantities—equals the
share-weighted growth of factor prices on the right-hand side of the equation. The latter,
dual estimate of the TFP growth rate uses the same factor-income sharessK andsL as the
primal estimate but considers changes in factor prices, rather than quantities.3

The intuition for the dual estimate on the right-hand side of equation (8) is that rising
factor prices (for factors of given quality) can be sustained only if output is increasing for
given inputs. Therefore, the appropriately weighted average of the growth of the factor
prices measures the extent of TFP growth.

It is important to recognize that the derivation of equation (8) uses only the condition
Y = RK + wL. No assumptions were made about the relations of factor prices to social
marginal products or about the form of the production function. IfY = RK + wL holds,
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Table 2.Primal and dual estimates of TFP growth rates.

Country Primal Estimate Dual Estimate

Hong Kong, 1966–1991 0.023 0.027
Singapore, 1972–1990 −0.007 0.022
South Korea, 1966–1990 0.017 0.015
Taiwan, 1966–1990 0.021 0.037

Notes: These estimates are from Hsieh (1998, table 1). The pri-
mal estimates are computed from data on growth rates of quan-
tities of factor inputs, using factor income shares as weights.
The dual estimates are computed from data on growth rates of
prices of factor inputs, using the same factor income shares
as weights. The lack of coincidence for the primal and dual
estimates of TFP growth rates is discussed in the text.

then the primal and dual estimates of TFP growth inevitably coincide. In some cases—
notably when factor prices deviate from social marginal products—the estimated valueĝ
from equation (8) would deviate from the true value,g. However, the error,g − ĝ, from
the dual approach will be the same as that from the primal approach.4

Hsieh (1998) used the dual approach—the right-hand side of equation (8)—to redo
Young’s (1995) estimates of TFP growth for the four East Asian countries included in
Table 1. Hsieh’s procedure uses an array of quality categories forL andK . The results,
shown along with primal estimates that are similar to Young’s findings, are in Table 2.
The most striking conclusion is that the estimate for Singapore changes from the primal
estimate of around zero to a dual estimate of 2.2 percent per year. The estimate for Taiwan
is also revised upward substantially, but those for Hong Kong and South Korea change
little. (Hsieh also observes that dual estimates for the United States are similar to primal
estimates.)

If the conditionY = RK+wL holds, then the discrepancy between the primal and dual
estimates of TFP has to reflect the use of different data in the two calculations. Hsieh’s
discussion brings out the general nature of this data discrepancy for Singapore. The Sin-
gaporean national accounts show remarkable growth ofK over time and—given the be-
havior of Y andwL—a correspondingly sharp decline in the rental priceR. However,
direct estimates of returns on capital in Singapore—based on observed returns on financial
markets—are relatively stable over time. If the path ofR implied by the observed rates of
return is accurate—and if information onY andwL is also viewed as reasonable—then
the implied path ofK exhibits much more moderate growth than that indicated by the
national-accounts data. Hsieh argues that the official statistics have, in fact, substantially
overstated the growth of the capital stock and, hence, that the reduced estimates of capital
growth implied by the observedR values are reasonable.

Hsieh’s dual estimate of TFP growth for Singapore—2.2 percent per year—is a weighted
average of the robust wage-rate growth (for given labor quality) and a small amount of rental-
price growth. However, Hsieh could just as well have computed a primal estimate of TFP
growth based on the time series forK that is implied by the observed and presumed accurate
time series forR. (With multiple types of capitalKj , this calculation would be applied to
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each type, given the estimated values of the rental pricesRj .) SinceY = RK + wL holds
here by construction, the primal estimate would coincide with the dual estimate. Thus, it is
not actually necessary ever to do the dual computation.

3. Problems with Growth Accounting

A key assumption in growth-accounting exercises is that factor prices coincide with social
marginal products. If this assumption is violated, then the estimated valueĝ calculated
from equation (5)—or the corresponding dual estimate from equation (8)—deviates from
the true contributiong of technical change to economic growth. The next sections illustrate
these problems for models with increasing returns and spillovers, for environments with
various kinds of taxes, and for settings with different types of factors.

3.1. An Increasing-Returns Model with Spillovers

A number of authors—including Griliches (1979), Romer (1986), and Lucas (1988)—have
constructed models of economic growth with increasing returns and spillovers. Romer’s
analysis is a generalization of Arrow’s (1962) learning-by-doing model, in which the effi-
ciency of production rises with cumulated experience. In a simple version of the Romer
model, the outputYi of firm i depends not only on the standard private inputsKi andLi

but also on the economywide capital stockK . The idea is that producers learn by investing
(a specific form of doing) to produce more efficiently. Moreover, this knowledge spills
over immediately from one firm to others so that each firm’s productivity depends on the
aggregate of learning, as reflected in the overall capital stock.

These ideas can be represented with a Cobb-Douglas production function as

Yi = AKα
i K βL1−α

i , (9)

where 0< α < 1 andβ ≥ 0. For givenK , this production function exhibits constant
returns to scale in the private inputsKi andLi . If β > 0, then the spillover effect is present.

In the Griliches (1979) version of the production function in equation (9),Ki represents
firm i ’s specific knowledge capital, whereasK (modeled as the sum of theKi ) is the aggre-
gate level of knowledge in an industry. Hence, the spillovers again represent the diffusion of
knowledge across firms. In the Lucas (1988) version,Ki is the firm’s employment of human
capital, andK is the aggregate (or possibly average) level of human capital in an industry
or country. In this case, the spillovers involve benefits from interactions with smart people.

Returning to the Romer interpretation of equation (9), each firm behaves competitively,
taking as given the economywide factor pricesR andw and the aggregate capital stockK .
Hence, private marginal products are equated to the factor prices, thereby yielding

R= αYi /Ki andw = (1− α) · Yi /Li . (10)

The factor-income shares are therefore given, as usual, by

sk = α andsL = 1− α. (11)
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In the equilibrium, each firm adopts the same capital-labor ratioki but the scale of each
firm is indeterminate. The production function from equation (9) can be rewritten as

Yi = Akαi kβLi L
β,

wherek ≡ K/L. The equilibrium conditionki = k then implies

Yi = Akα+βLi L
β,

which can be aggregated across firms to get

Y = Akα+βL1+β.

Finally, the conditionk ≡ K/L leads to the economywide production function

Y = AKα+βL1−α. (12)

This expression relates aggregate outputY to the aggregate inputsK andL. If β > 0, then
increasing returns to scale apply economywide.

The right-hand side of equation (12) shows that the correct way to do the growth accounting
with aggregate data is to compute

ĝ = Ȧ/A = Ẏ/Y − (α + β) · (K̇/K )− (1− α) · (L̇/L). (13)

Hence,sL = 1− α is the correct weight foṙL/L, but the coefficientsK = α understates
by β ≥ 0 the contribution ofK̇/K . This understatement arises because—with the as-
sumed investment-based spillovers of knowledge—the social marginal product of capital
(α+β) ·Y/K exceeds the private marginal productαY/K . (This private marginal product
does equal the factor priceR.) Note also that the weights on the factor-input growth rates in
equation (13) add to 1+β, which exceeds one ifβ > 0 because of the underlying increasing
returns to scale. The increasing returns arise because ideas about how to produce more effi-
ciently are fundamentally nonrival (and spill over freely and instantaneously across firms).

The interpretation ofK—the factor that receives a weight above its income share in
the growth accounting of equation (13)—depends on the underlying model. Griliches
(1979) identifiesK with knowledge-creating activities, such as R&D. Romer (1986) stresses
physical capital itself. Lucas (1988) emphasizes human capital in the form of education.
It is, of course, also possible to have spillover effects that are negative, such as traffic
congestion and environmental damage.

Implementation of the results from equation (13) is difficult because the proper weights
on the factor growth rates cannot be inferred from income shares; specifically, no direct
estimates are available for the coefficientβ. If one instead computes the standard Solow
residual within this model, then one gets

g̃ = Ȧ/A+ β · (K̇/K ) = Ẏ/Y − α · (K̇/K )− (1− α) · (L̇/L). (14)

Thus, the standard calculation includes the growth effect from spillovers and increasing
returns—β · (K̇/K )—along with the rate of exogenous technological progressȦ/A in the
Solow residual.
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It seems that the separation of the spillovers/increasing returns effect from exogenous
technological progress requires a regression approach. In this approach, the usual Solow
residualg̃ calculated from equation (14) could be regressed on the factor growth rateK̇/K
that was thought to carry the spillover effects. This method does, however, encounter the
usual econometric problems with respect to simultaneity.

3.2. Taxes

In most cases, taxes do not disturb the TFP calculations. Suppose, for example, that firms’
net revenues are taxed, wage and rental payments are tax-deductible expenses for firms, and
wage and rental incomes are taxed at the household level. In this case, competitive firms
equate the marginal product of laborFL to the wagew and the marginal product of capital
FK to the rental priceR. The conditionY = RK+wL also holds (with firms’ net revenue
and taxes equal to zero in equilibrium). Therefore, the formula forĝ in equation (5) remains
valid.

Suppose, instead, that firms acquire capital through equity finance, that wages and depre-
ciation δK are tax deductible for firms, and thatr is the required (gross-of-personal-tax)
rate of return on equity. A competitive firm still equates the marginal product of labor
to the wage ratew. The firm also equates the after-tax net marginal product of capital,
(1− τ) · (FK − δ), to r , whereτ is the marginal tax rate on the firm’s earnings. Therefore,
the marginal product of capital is given by

FK = r

1− τ + δ.

The growth-accounting formula in equation (4) implies, after substitution forFK andFL ,

g = Ẏ/Y −
[

r

(1− τ) ·
K

Y
+ δK

Y

]
· (K̇/K )− sL · (L̇/L). (15)

If taxes on firms’ earnings are proportional, so thatτ is the average as well as the marginal
tax rate, thenr K /(1− τ) is equal in equilibrium to firms’ earnings (net of depreciation but
gross of the earnings tax). Hence, the bracketed term in equation (15) equalssK , the income
share of capital, if capital income is measured by firms’ earnings (gross of earnings taxes)
plus depreciation. The usual formula for the TFP growth rate in equation (5) therefore
remains valid.

For a tax on output or sales, competitive firms satisfyFL = w/(1−τ)andFK = R/(1−τ),
whereR is again the rental price of capital andτ is the marginal tax rate on output. The
growth-accounting formula in equation (4) therefore implies, after substitution forFK

andFL ,

g = Ẏ/Y −
[

R

(1− τ) ·
K

Y

]
· (K̇/K )−

[
w

(1− τ) ·
L

Y

]
· (L̇/L). (16)



128 BARRO

If the tax on output is proportional, so that marginal and average tax rates coincide, the
total revenue collected isτY. OutputY equals factor incomes plus the amount collected by
the indirect tax:

Y = RK + wL + τY,

so that the total factor incomeRK+wL equals(1− τ) ·Y. Hence, the bracketed terms on
the right-hand side of equation (16) equalsK andsL , respectively. (Note that these shares
are expressed in relation to factor income rather than gross domestic product.) It follows
that the usual formula for the TFP growth rate given in equation (5) still holds.5

The standard growth-accounting formula works, for example, with a proportionate value-
added tax that attaches the same tax rate to value added by capital and labor inputs. However,
the usual formula would be inaccurate if different tax rates applied to the value added by each
factor. If firms pay the tax rateτK on RK and the rateτL onwL, then the growth-accounting
formula in equation (4) leads to

g = Ẏ/Y −
(

1+ τK

1+ τ
)
· sK · (K̇/K )−

(
1+ τL

1+ τ
)
· sL · (L̇/L), (17)

whereτ is the average of the tax rates, as given by

τ = sK τK + sLτL .

If, for example,τK > τL , then equation (17) indicates that the weight onK̇/K should be
raised relative to that oṅL/L to computeg accurately.

3.3. Multiple Types of Factors

Suppose now that the production function is

Y = F(A, K1, K2, L1, L2). (18)

One interpretation of equation (18) is thatK1 andK2 represent different types or qualities
of capital goods, whereasL1 andL2 represent different types or qualities of labor. Then the
usual growth-accounting exercise goes through in the manner of Jorgenson and Griliches
(1967) if each type of factor is weighted by its income share. That is,K̇1/K1 is weighted
by R1K1/Y, and so on. The usual Solow residual generated from this procedure accurately
measures the contribution of technological progress to growthg, as long as all factors are
paid their social marginal products.

Problems arise if the factor categories cannot be distinguished in the data, for example, if
K̇1/K1 andK̇2/K2 are each associated with the overall capital share,(R1K1 + R2K2)/Y.
One source of this kind of problem is that newer, and typically better, types of capital goods
might be aggregated with the older types. Similarly, different categories of labor may be
aggregated in the data.

Another interpretation of equation (18) is thatK1 andL1 represent factor employments
in sector 1—say, urban manufacturing—whereasK2 and L2 represent employments in
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sector 2—say, rural agriculture. Changes may occur over time in sectoral composition, for
example, as a shift from agriculture to industry. Such shifts cause no trouble for the growth
accounting if the various growth rates of factor quantities—distinguished by their sector of
location—are weighted by their income shares. However, errors occur if capital or labor
is aggregated across sectors and if the growth of these aggregates is weighted by overall
income shares of capital or labor, respectively.

To illustrate, suppose that the TFP growth rate is incorrectly estimated as

g̃ = Ẏ/Y −
(

R1K1+ R2K2

Y

)
· (K̇/K )−

(
w1L1+ w2L2

Y

)
· (L̇/L), (19)

whereK = K1 + K2 and L = L1 + L2. This estimate compares with the appropriate
formula,

ĝ = Ẏ/Y −
(

R1K1

Y

)
· (K̇1/K1)−

(
R2K2

Y

)
· (K̇2/K2)−

(
w1L1

Y

)
· (L̇1/L1)

−
(
w2L2

Y

)
· (L̇2/L2). (20)

Equation (20) correctly estimates the contribution to growth from exogenous technological
progress—that is,̂g = g—if all factors are paid their social marginal products.

The expression for̃g in equation (19) can be shown from algebraic manipulation to relate
to the true TFP growth, as estimated accurately by equation (20), in accordance with

g̃− ĝ =
(

K1

K

)
·
(

K2

K

)
· K

Y
· (R1− R2) ·

(
K̇1

K1
− K̇2

K2

)
+
(

L1

L

)
·
(

L2

L

)
· L

Y
· (w1− w2) ·

(
L̇1

L1
− L̇2

L2

)
. (21)

Hence, ifR1 6= R2 andK̇1/K1 6= K̇2/K2 or if w1 6= w2 andL̇1/L1 6= L̇2/L2, theng̃ 6= ĝ.
Specifically, ifR1 > R2, thenK̇1/K1 > K̇2/K2 leads tog̃ > ĝ and similarly for labor.

With the interpretation of the factor types as quality classes, the result is that measured
TFP growth overstates true TFP growth if the composition of factors is shifting over time
toward types of higher quality (and such shifts are not allowed for in the estimation). This
problem is the one emphasized and resolved subject to data limitations by Jorgenson and
Griliches (1967).

One sectoral interpretation of the results involves the migration of labor from rural to
urban areas. The urban wage ratew1 may exceed the rural wage ratew2 for various
reasons, including minimum-wage legislation and requirements of union membership for
the city jobs. In this case, a shift of labor from the rural to the urban sector represents a
gain in economywide productivity. The term involving labor in equation (21) reflects the
economic growth generated by this change in the sectoral composition of labor, for a given
growth rate of aggregate laborL̇/L. This type of growth effect, applied to movements
of labor from low-productivity agriculture to high-productivity industry, was discussed by
Kuznets (1961, p. 61), who derived an expression analogous to equation (21).
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From the perspective of growth accounting, the terms that involve sectoral shifts should
appear somewhere in the calculations. If the changes in labor quantities in each sector are
weighted by labor-income shares for each type of labor, then the growth contribution from
the sectoral changes appears in the part accounted for by changes in factor quantities in
equation (20). If the weighting is done instead in the manner of equation (19), then the
contribution appears in the estimated TFP growth rate.

4. TFP Growth and R&D

Growth accounting is often viewed as a first step in explaining the TFP growth rateg as
estimated in equation (5). For example, the research program summarized by Griliches
(1973) focuses on R&D spending as a determinant of the TFP growth rate.6 Recent theories
of endogenous growth have implications for the modeling of the relationship between
technological change and R&D outlays. The following sections explore these relationships
for models that involve increases in the number of types of products and improvements in
the quality of existing products.

4.1. Varieties Models

The product-varieties framework was applied to technological change by Romer (1990)
and Grossman and Helpman (1991, ch. 3). In a simple formulation, outputY is given from
a Spence (1976)/Dixit and Stiglitz (1977) production function as

Y = AL1−α
N∑

j=1

xαj , (22)

whereA is an exogenous technology factor,L is labor input,xj is the quantity employed
of intermediate input of typej , N is the number of varieties of intermediate products that
are currently known and used, and 0< α < 1. In some versions of this model,xj is treated
for simplicity as nondurable. However, durability of the intermediates can be admitted, in
which casexj represents the service flow from thej th type of capital good.

The output streamY can be consumed, used as intermediate inputs to production (on a
one-for-one basis for each type of input), or allocated to R&D. In particular, in this model,
measured output is gross not only of outlay on intermediates but also of R&D expenditures.

In the formulation considered in Barro and Sala-i-Martin (1995, ch. 6), each of thej
types of non durables is priced (by the monopoly holder of the rights to the production
of intermediates of typej ) at the monopoly level, which turns out to be 1/α > 1. In
equilibrium, each intermediate is employed at the same level,x. Hence, equation (22) can
be expressed as

Y = AL1−αN1−αXα, (23)

whereX = N x is the total quantity of intermediate inputs. For the case of durable inputs,
X corresponds to the flow of services from the aggregate capital stock.



NOTES ON GROWTH ACCOUNTING 131

Technological progress occurs through R&D outlays that raiseN over time. Hence, the
variableN represents the current state of the endogenously determined technology. In this
model, the leading technology—that is, the one that employs allN varieties that have been
discovered—is used by all producers. Therefore, this specification fits best for general-
purpose technologies (David, 1991; Bresnahan and Trajtenberg, 1995), which have broad
application in the economy.

Competitive producers of outputY equate the marginal product of labor to the wage rate,
so that

w = (1− α) · (Y/L).

Hence, the share of labor income is, as usual,

sL = wL/Y = 1− α. (24)

Competitive producers also equate the marginal product of each type of intermediate input
to the (monopoly) price of intermediates 1/α. This condition can be expressed as

1/α = α · (Y/X).

Therefore, the share of income expended on theN intermediates is

sx = (1/α) · (X/Y) = α. (25)

For durable inputs, the flow(1/α) · (X/Y) would correspond to the monopoly rentals
charged for capital services.

The growth rate of output can be computed from equation (23) as7

Ẏ/Y = Ȧ/A+ (1− α) · (Ṅ/N)+ sL · (L̇/L)+ sx · (Ẋ/X), (26)

where the formulas forsL andsx from equations (24) and (25) were used.8 Therefore, the
usual approach for computing the TFP growth-rate yields, in this model,

ĝ = Ẏ/Y − sL · (L̇/L)− sx · (Ẋ/X) = Ȧ/A+ (1− α) · (Ṅ/N). (27)

Hence, despite the monopoly pricing of the intermediate inputs, the Solow residual correctly
measures the sum of the contributions to productivity growth from exogenous technological
changeȦ/A and endogenous expansion of varietiesṄ/N.

Note from equation (27) that the endogenous-growth part of the Solow residual reflects
only the fraction 1− α of the growth rate of the number of varieties,Ṅ/N. The remaining
part,α · (Ṅ/N), is picked up as part of the termsx · (Ẋ/X) = α · (Ṅ/N + ẋ/x) on the
left-hand side of equation (27). For a fixed quantityx of intermediates of each type, the
discovery of new types of products at the rateṄ/N induces an increase in the aggregate
of intermediates at the same rate. The contribution of this expansion of intermediates to
growth—which involves the coefficientα, the income share of payments to intermediates—
is attributed to growth of factor inputs, rather than to the underlying technological progress.
In effect, part of the technological advance from discoveries of new types of intermediate
goods is embodied in the intermediates that use the new technology.
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In the simplest varieties model,̇N is proportional to the amount of output devoted to
R&D, Ṅ = (1/η) · (R& D), whereη is a cost parameter that represents the amount of
R&D required to achieve a unit increase inN. (In the present framework, this R&D cost is
assumed to be constant.) Hence, the growth rate ofN is given by

Ṅ/N = (R& D)/ηN.

The termηN is the capitalized value of all past R&D outlays—the numberN multiplied
by the reproduction costη for each invention. Therefore, the measured TFP growth rate in
equation (27) satisfies

ĝ = Ȧ/A+ (1− α) · (current R&D flow)/(market value of past R&D). (28)

In the varieties model, the chosen quantityx is proportional toL, so that the valueY/L
computed from equation (23) is proportional toN. Since the denominator of the final term
on the right-hand side of equation (28) equalsηN, this final term ends up proportional to
the ratio of R&D to per worker output,Y/L. Thus,ĝ in equation (28) can be expressed
as a linear function of the ratio(R&D)/(Y/L). This result is similar to specifications used
by Griliches (1973) and Coe and Helpman (1995), among others, except that R&D outlays
enter in the varieties model in relation to per worker outputY/L rather that the level of
outputY. The source of the difference is that knowledge of the varieties of productsN is
nonrival in the varieties framework. For this reason, the model features a scale benefit from
increases inL. (If R&D, Y, andL all rise in the same proportion, theng increases.)

The empirical literature described by Griliches (1973) uses a regression approach to assess
the effect of an R&D variable on the TFP growth rate. Thus, as in regression approaches
to growth accounting, the analysis can be confounded by reverse-causation problems. In
this case, the difficulty is that R&D spending would respond to exogenous changes in
productivity growth—the variablėA/A in equation (28)—so that the estimated coefficient
on the R&D variable would proxy partly for exogenous technological progress. Satisfactory
instrumental variables to avoid this problem may not be available. Possible instruments
include measures of government policies toward R&D, including research subsidies, legal
provisions such as the patent system, and the tax treatment of R&D expenditures.

Within the theory that underlies equation (28), it might be possible to extend the usual
growth-accounting procedure to assess the contribution from R&D. That is, a modified
Solow residual could be computed that subtracts from the growth rate of output,Ẏ/Y, not
only the contributions from the growth of factor inputssL · (L̇/L)+ sx · (Ẋ/X) but also the
term(1−α) ·(current R&D flow)/(market value of past R&D). However, the computation
of this term entails knowledge not only of the labor share 1− α and the current flow of
R&D spending, but, in addition, the measure of the cumulated stock (or capitalized value)
of past R&D.

It should also be recalled that the underlying model contains a number of restrictive as-
sumptions. First, the R&D outlays appear directly in the measure of gross output. Second,
the technological changėN/N applies uniformly across the economy. Third, no techno-
logical forgetting applies.
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4.2. Quality-Ladders Models

The other prominent model of technological change in the recent endogenous-growth liter-
ature is the quality-ladders formulation due to Aghion and Howitt (1992) and Grossman and
Helpman (1991, ch. 4). In this framework, technological progress consists of improvements
in the quality of intermediate inputs (or, equivalently, reductions in the cost of providing
inputs of given quality). The number of varieties of products is usually assumed to be fixed
in this setting, although changes in this number could again be admitted.

One simple specification, explored in Barro and Sala-i-Martin (1995, ch. 7), uses the
production function

Y = AL1−α
N∑

j=1

(qκj xj κj )
α, (29)

where A is the exogenous level of technology,L is labor input, 0< α < 1, andN is
the fixed number of varieties of intermediates. The parameterq > 1 is the proportionate
spacing between rungs on a given quality ladder. Technological progress occurs through
R&D outlays that allow movements up the quality ladder, one step at a time. The variable
κj is the highest quality-ladder position currently achieved in sectorJ. The variablexj κj is
the quantity employed of thej th type of nondurable intermediate.

The key element of the quality-ladders framework is that different quality grades of inter-
mediate inputs within a given sector are modeled as perfect substitutes. Higher-ranked
inputs are simply better than lower-ranked ones. For this reason, lower-quality inter-
mediates of typej (at the rungsκj − 1, κj − 2, . . . ) are driven out of the market in
equilibrium. This technological obsolescence—or creative destruction—distinguishes the
quality-ladders model from the varieties framework. In that framework—explored in the
previous section—no technological obsolescence occurred, and new varieties of products
worked along side the old ones to produce goods. (To some extent, this result depended on
the additive separability of the quantitiesxj in equation (22).)

Units ofxj κj are again priced at the monopoly level, 1/α > 1, in each sector. Given the way
that the quantitiesxj κj are determined (to equate the marginal product of each intermediate
to the monopoly price), the production function in equation (29) can be rewritten as

Y = AL1−αXαQ1−α, (30)

whereX ≡∑N
j=1 xj κj is the total spending on intermediates andQ is an aggregate quality

index, given by

Q ≡
N∑

j=1

qκj α/(1−α). (31)

Equation (30) implies that the standard growth-accounting approach would yield in this
model

ĝ = Ẏ/Y − sL · (L̇/L)− sx · (Ẋ/X) = Ȧ/A+ (1− α) · (Q̇/Q), (32)
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wheresL = wL/Y andsx = (1/α) · (X/Y). Therefore, in this model, the Solow residual
measures the sum of exogenous technological progressȦ/A and the growth rate of overall
quality Q̇/Q weighted by the labor share 1−α.9 This result is similar to equation (27) from
the varieties model, except that the measure of technological change isQ̇/Q rather than
Ṅ/N. Again, a portion of the contribution from technological change (the partα · Q̇/Q)
is embodied in the growth of inputs(Ẋ/X), and only the remainder appears in the Solow
residual.

Some new results arise from the relation ofQ̇/Q to R&D expenditures. In the ver-
sion of the quality-ladders model explored in Barro and Sala-i-Martin (1995, ch. 7),Q̇ is
proportional to aggregate R&D spending. The growth rate ofQ can be expressed as

Q̇/Q = c · (current R&D flow)/(market value of past R&D), (33)

where 0< c < 1 is a constant. In contrast to the varieties model, the constantc is
less than one because of the obsolescence of the old types of intermediates in the sectors
that experience quality enhancements. The constantc is higher the larger the ratio of the
productivity of a newly discovered grade of intermediate input to the productivity of the next
lowest grade, which just became obsolete. If this ratio is higher, then creative destruction
is more creation than destruction and, hence, the contribution of the current R&D flow
to the overall quality index,Q, is attenuated to a lesser extent. In the model, the key
determinant of the productivity ratio is the parameterq, the proportionate spacing between
quality grades.10 A higher value ofq implies a higher value ofc.

The quality index,Q, can be viewed as a measure of the R&D capital stock. How-
ever, it is incorrect in this model to follow the common practice by which this stock is
constructed. In the usual perpetual-inventory approach, the change in the R&D capital
stock equals current R&D spending—the counterpart to gross investment—less deprecia-
tion on the existing R&D capital stock. The last term, often modeled as a constant fraction
of the existing stock, is thought to correspond to obsolescence of old technologies. In
the quality-ladders framework, the correct procedure is to discount current R&D expendi-
ture by the factorc < 1 to allow for the contemporaneous obsolescence of lower quality
intermediate inputs. Then this discounted R&D spending enters one-to-one as the net in-
vestment flow that changes the R&D capital stock (that is, the quality index,Q). The
depreciation rate on this stock is zero, because no technological forgetting takes place in
the model.

The growth-accounting formula can be written from equations (32) and (33) as

ĝ = Ȧ/A+ c · (1− α) · (current R&D flow)/(market value of past R&D). (34)

This result parallels equation (28), except for the presence of the coefficientc < 1. Thus,
in the quality-ladders model, the contribution of the variable(current R&D flow)/(market
value of past R&D) to TFP growth is less than one-to-one partly because of the multi-
plication by the labor share 1− α and partly because of the obsolescence coefficientc.
Since the coefficientc would not be directly observable, a nonregression approach to as-
sessing the growth effects from R&D seems not to be feasible within the quality-ladders
framework.
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As in the varieties model, the market value of past R&D is proportional to output per
worker,Y/L. Hence,g can again be expressed (from equation (34)) as a linear function
of the ratio(R&D/(Y/L). The effect of R&D on the TFP growth rate can therefore be
assessed from a regression approach using this form of an R&D variable. In principle, the
results could be used to estimate the obsolescence coefficientc. However, this approach
requires satisfactory instruments for the R&D variable. Possible candidates again include
government policies with respect to R&D, including subsidies, legal provisions, and tax
rules.

5. Conclusions

Standard growth-accounting exercises generate a Solow residual, which is typically viewed
as a measure of technological progress. Recent theories of endogenous growth allow for
a sharper perspective on this residual. Specifically, the residual can be clearly interpreted
within settings that allow for increasing returns and spillovers or in models in which techno-
logical progress is generated by purposeful research. These interpretations provide guidance
for explaining the residual in terms of R&D outlays, public policies, and other factors.

Two general conclusions are that standard growth-accounting exercises provide useful
information within the context of modern theories of endogenous growth and that the recent
theories can be used to extend the usefulness of traditional growth accounting. Hence, the
older and newer approaches to economic growth are complementary.
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Notes

1. The estimated TFP growth rates in Latin America are particularly low—typically negative—from 1980 to
1990. The negative values are hard to understand as technical regress in the sense of literal forgetting of
technology, but they may represent declining efficiency of market organization due to policy or other changes.

2. With discrete data, the growth rates are typically measured, following Th¨ornqvist (1936), as log differences
between the levels at datest + 1 andt , and the factor shares are arithmetic averages for datest + 1 andt .
Diewert (1976) shows that the Th¨ornqvist procedure is exact if the production function takes the trans-log
form, which was introduced by Christensen, Jorgenson, and Lau (1973).

3. This derivation was suggested to me by Susanto Basu. The approach was used earlier by Jorgenson and
Griliches (1967, pp. 251–253), who also extend equation (8) to allow for changes over time in the relative
prices of multiple outputs. In this case,Ẏ/Y becomes a share-weighted average of output growth rates, and
the right-hand side of the dual accounting expression subtracts off the share-weighted average of the growth
rates of the output prices. This last term is zero in the present context (with a fixed relative price of a single
form of output).
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4. This equivalence does not generally hold if the factor-income sharessK andsL are replaced by the marginal-
product weights( FK K

Y ) and( FL L
Y ). If these marginal-product weights are used, then the primal estimateĝ

calculated from equation (4) correctly measures the TFP growth rateg. The corresponding dual estimate is(
FK K

Y

)
· (Ṙ/R)+

(
FL L

Y

)
· (ẇ/w).

It is possible to show that this estimate equals the primal one if the ratios of the factor prices to social marginal
products—R/FK andw/FL—do not vary over time. (It is not necessary for these ratios to equal unity.)
However, the practical significance of these results is unclear becauseFK and FL would not generally be
observable.

5. The analysis is more complicated if firms are subject to nonproportional tax schedules (with respect to output
or earnings). If marginal tax rates on firms are increasing, there is effectively a penalty on large firms.
Hence, in the present setup with constant returns to scale, firms would be of infinitesimal size in equilibrium.
Nonproportional tax schedules can be admitted in models in which the establishment of a firm requires a fixed
cost and in which span of control or other considerations eventually create diminishing returns to firm size.

6. Earlier contributors to this literature include Terleckyj (1958), Minasian (1962), Griliches (1964), and Mans-
field (1965).

7. The underlying model of changingN assumeṡA/A = L̇/L = 0. However, equation (26) is valid as long as
the marginal products ofL and each of thexj are equated to their factor prices.

8. This approach treatsN as a continuous variable. Probably it is best to think ofN as a metaphor for the overall
state of the technology, rather than literally the number of intermediate products that have been discovered.

9. This analysis treatsQ as a continuous variable. In fact,Q moves discretely over time corresponding to
the effects of the discrete changes in theκj in equation (31). The continuous formulation is a reasonable
approximation if the number of sectors is large and the stochastic changes in the variousκj have a substantial
amount of independence.

10. The relation isc = 1− q−α/(1−α), whereq > 1 is the spacing between steps on the quality ladder.
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