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1 Introduction

Gauge theories describing massless particles are naturally endowed with Lie algebras as the

background preserving part of gauge symmetries, namely the global symmetries. Inversely,

one may start with a proper Lie algebra as a global symmetry and then obtain the field

theory by gauging it. One of the simplest non-trivial examples would be Gravity where

the gauge symmetries — diffeomorphisms — give rise to the isometry algebras (Poincaré,

AdS or dS) as global symmetries. The Cartan formulation of Gravity makes use of the

inverse construction. Hence, in the study of massless higher-spin (HS) particles, it is also

of primary importance to investigate the underlying global symmetries — HS algebras.

Indeed, HS algebra is in the core of Vasiliev’s equations [1–3] and recent developments of

three-dimensional HS theories — see the review [4] and references therein.

HS algebra is, by definition, the Lie algebra of the global symmetries underlying a

theory involving HS spectrum. However, in this paper, we shall use a looser definition
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for the term HS algebra which will be specified later in the text. So far, only one HS

algebra is known to be fully consistent in each dimensions D ≥ 4. The four-dimensional

one [5] was considered by Fradkin and Vasiliev in the construction of HS cubic interac-

tions [6], and then used for the interacting theory — Vasiliev’s equations. Extensions to

five and seven dimensions have been studied respectively in [7, 8] and [9]. Finally, the

generalization to any dimensions of the algebra together with the equations was carried

out in [2, 3]. These constructions were based on oscillators — spinors for four and five

dimensions and vectors for any dimensions. It is important to note that this HS algebra

is also isomorphic to the conformal HS symmetries of the free massless scalar in D − 1

dimensions [10, 11]. Three-dimensional case is special: there is one-parameter family of

HS algebras hs[λ] [12–17] corresponding to the one-parameter family of backgrounds of the

3D interacting equations [18, 19].1 Besides the explicit construction through oscillators,

the aforementioned HS algebras can be also obtained as a quotient of universal enveloping

algebra (UEA) of the isometry algebra.2

In fact, HS algebra as a coset of UEA has a deep relation to the theory of minimal

representations. In 1974, Joseph [39] raised the question that what is the minimum number

of Heisenberg pairs which are needed to represent a Lie algebra. To attack this question,

he coined the notion of Joseph ideal which corresponds to the kernel of the aforementioned

representation — minimal representation. The coset of UEA by Joseph ideal is an infinite-

dimensional algebra including the original Lie algebra as subalgebra. Interestingly, HS

algebras mentioned in the above paragraph all fall into these coset Lie algebras. Much

progress has been made on the subject of minimal representations, see for example [40–

50] and references therein. In physics literature, the minimal representations of isometry

algebras are explored to a large extent by Gunaydin and collaborators [51–55].

In this paper, we first make a brief survey of the construction of HS algebras from

the point of view of minimal representations. This construction is technically not much

new compared to what was known in the HS literature, and we just attempt to make

a link between two rather disconnected literatures. As we mentioned we shall use the

term HS algebra loosely, as the symmetry algebra of the minimal representation of a finite-

dimensional Lie algebra. In this article, we shall focus on the classical Lie algebras, slN , soN
and sp2N . The original part of the present paper, in a strict sense, is the presentation of

the explicit structure constants of the HS algebras. In order to present them, let us first

introduce the relevant notations. Let Ta denote the generators of a Lie algebra, say g.

Then, the corresponding HS algebra, denoted by hs(g), can be given through an arbitrary

function of the element Aa in g∗, the dual space of g:

T (A) =

∞∑

n=0

1

n!
Ta1···an A

a1 · · · Aan . (1.1)

1Recently, the asymptotic symmetries of the hs[λ]⊕hs[λ] Chern-Simons theories are identified with the

W-algebras W∞[λ]⊕W∞[λ] [20–23].
2This view has been discussed in [24], and pursuing the same idea a class of mixed-symmetry HS algebras

has been considered in [25]. See also [26–32] for other discussions on HS algebras, and [33–36] and [37, 38]

for generalizations.
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The coefficients Ta1···an correspond to the generators of hs(g). To be more precise, Aa are

not arbitrary elements of g∗, but belong to its minimal orbit whose precise conditions will

be presented later. Due to such conditions, the generators Ta1···an have a smaller number

of independent components, and they can be obtained from the Taylor expansion of T (A).

Hence, the algebraic structure of hs(g) can be studied in terms of T (A):

• we first consider the bilinear form B(A) = Tr[T (A1)⋆T (A2) ] where ⋆ and Tr[ · ]
denote respectively the associative product and the trace operation of hs(g) whose

definitions will be provided later. This bilinear form serves as a HS generalization of

the Killing form.

• Then, we move to the trilinear form C(A) = Tr[T (A1)⋆T (A2)⋆T (A3) ] from which

the structure constant of the algebra, consisting of totally symmetric and antisym-

metric parts, can be obtained.

For the HS algebras associated with classical Lie algebras, we find

sp2N series:

B(U) =
1√

1 + 〈U1 U2〉
4

, C(U) =
1√

1 + 〈U1 U2〉+〈U2 U3〉+〈U3 U1〉+〈U1 U2 U3〉
4

. (1.2)

slN series:

B(V ) = 3F2

(
N

2
(1 + λ) ,

N

2
(1− λ) , 1 ;

N

2
,
N + 1

2
; −1

4
〈V1 V2〉

)
, (1.3)

C(V ) =
∞∑

k=0

k∑

ℓ=0

(−1)k
(
k

ℓ

)
(
N(1+λ)

2

)
2 k−ℓ

(
N(1−λ)

2

)
k+ℓ

(N)3k
×

×
[
〈V1 V2〉+ 〈V2 V3〉+ 〈V3 V1〉+ 〈V1 V2 V3〉

]k−ℓ

×
[
〈V1 V2〉+ 〈V2 V3〉+ 〈V3 V1〉 − 〈V3 V2 V1〉

]ℓ
. (1.4)

soN series:

B(W ) = 2F1

(
2 ,

N − 4

2
;
N − 1

2
; −1

8
〈W1W2〉

)
, (1.5)

C(W ) =

∞∑

m=0

∞∑

n=0

(−1)m

m!

1

n!

(
N−4
2

)
m+2n

(2)m+2n(
N−1
2

)
m+3n

8m+3n
×

×
[
〈W1W2〉+ 〈W2W3〉+ 〈W3W1〉+ 〈W1W2W3〉

]m

×
[
〈W1W2〉〈W2W3〉〈W3W1〉+ 2 〈W1W2W3〉2

]n
. (1.6)

Here, Ui, Vi and Wi are respectively elements of sp2N
∗, slN

∗ and soN
∗, and 〈 · 〉 is the matrix

trace. Various coincidence cases sp2 ≃ sl2, sp4 ≃ so5 and sl4 ≃ so6 can be explicitly checked

from the above formulas. Only slN series admits an one-parameter family of HS algebras,

and the appearance of ideals for particular values of λ is manifest from the expression of
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the bilinear form. It is worth to notice also that for sl2, we recover the 3D algebra hs[λ]

with a particularly simple form of structure constant, since the trilinear form (1.4) can be

considerably simplified.

The organization of the paper is as follows:

• in section 2, we review some generalities of HS algebras. First we show how they

appear from a field theory of massless HS particles, and then present their relation

to mathematical objects such as coadjoint orbits and minimal representations. We

provide the definition of HS algebras and their realizations in terms of oscillators.

• In section 4, we derive explicit expressions for structure constants — the invariant

bilinear and trilinear forms. For that, we introduce a trace for an element of HS

algebra, defined as the identity piece of the element. We make explicit the latter

definition showing that such trace can be given in fact through the gl1 and sp2

projectors previously introduced in [8, 56] and [57], respectively for sl4 and soD+1.

With such trace formulas, we explicitly evaluate the bilinear and trilinear forms

ending up with the results (1.2)–(1.6).

• In section 4, we discuss more about the HS algebras associated with slN . First,

we discuss the formation of ideals and associated finite-dimensional coset algebras,

which arise for particular values of λ. Then, we provide another description of these

HS algebras, based on reduced number of oscillators which are free from equivalence

relations. At the end of this section, we discuss in more details the sl2 case, that is

hs[λ]. Besides providing a relatively simple expression for the ⋆ product, we make

a concrete link between the description used in this paper and that of the deformed

oscillators.

• Finally, in section 5, we discuss some outlooks of the present work, while appendix A

includes some technical details.

2 HS algebras and minimal representations

In order to keep the current paper as self-complete as possible, we review the definition and

the construction of HS algebras collecting knowledge from the physics and mathematics

literature. Our focus is on providing the precise definition and role of HS algebras in physics

and introducing the notion of minimal representations.

2.1 HS algebras as global HS symmetries

A HS algebra is the global-symmetry counterpart of HS gauge symmetry. The latter

depends on the description one chooses — frame-like, metric-like, etc. — whereas the global

symmetry does not depend on such a choice. In the following, we briefly introduce HS

algebra as the global symmetry of HS gauge fields in the metric-like description where the

field content is a (infinite) set of symmetric tensor fields ϕµ1···µs (with a certain multiplicity

for a given spin field). The gauge transformation has a form,

δε ϕµ1···µs = ∇̄(µ1
εµ2···µs) + tµ1···µs(ϕ, ε) +O

(
ϕ2
)
, (2.1)
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where ∇̄ is the (A)dS covariant derivative and tµ1···µs(ϕ, ε) is the interaction-part of trans-

formation which is bilinear in gauge fields and parameters, denoted by ϕ and ε respectively.3

To restrict ourselves to the global part of such symmetries, we impose the Killing equations:

0 =
[
δε ϕµ1···µs

]
ϕ=0

= ∇̄(µ1
εµ2···µs) . (2.2)

The space of the solutions ε̄µ1···µr — Killing tensors — defines the HS algebra as a vec-

tor space (see [60, 61] for related works). For more details, it is convenient to reiterate

the discussion using auxiliary variables in the ambient-space formulation. The Killing

equation (2.2) is then given by

U · ∂X E(X,U) = 0
[
X,U ∈ R

D+1
]
, (2.3)

where the ambient-space gauge parameter E is related to the intrinsic one by

E(X,U) =
∞∑

r=0

R r

r!
ē µ1
a1 (x)Ua1 · · · ē µr

ar (x)Uar εµ1···µr(x) , (2.4)

with R and x being the radial and (A)dS-intrinsic coordinate of the ambient space R
D+1,

and ē µ
a the (A)dS background vielbein. The relation (2.4) is equivalent to imposing the

tangentiality and homogeneity conditions on E as

X · ∂U E(X,U) = 0 = (X · ∂X − U · ∂U ) E(X,U) . (2.5)

In this ambient-space description, the solution Ē of the Killing equation reads simply

Ē(X,U) =

∞∑

r=0

1

2r (r!)2
Ēa1b1, ... ,arbr X

[a1 U b1] · · · X [ar U br] , (2.6)

and from the tracelessness of the gauge parameter, one can also conclude that the Killing

tensors are completely traceless:

∂ 2
U Ē(X,U) = 0 , ∂ 2

X Ē(X,U) = 0 , ∂U · ∂X Ē(X,U) = 0 . (2.7)

The generators of HS algebra are the duals of Ēa1b1, ... ,arbr and given by

(
Ma1b1, ... ,arbr

)
(X,U) = X [a1 U b1] · · · X [ar U br] +X · U Sa1b1, ... ,arbr

1

+ X2 Sa1b1, ... ,arbr
2 + U2 Sa1b1, ... ,arbr

3 , (2.8)

with arbitrary tensors Si due to the tracelessness of Ē: using such a freedom, one can choose

traceless Ma1b1, ... ,arbr . So far, we have not used any information coming from interactions

but just the field content, and we have determined only the vector-space structure of

3To be more precise, in Fronsdal’s formulation of HS fields [58, 59], the gauge fields and parameters are

subjected to trace conditions: ḡµ1µ2 ḡµ3µ4 ϕµ1···µs
= O

(

ϕ2
)

and ḡµν εµ1···µs−1
= O(ϕ), where ḡµν is the

(A)dS inverse metric.
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HS algebra: the basis elements have the symmetry of the rectangular two-row O(D + 1)

diagrams,

Ma1b1, ... ,arbr ∼
◦
, (2.9)

that satisfy

M ... ,aibi, ... ,ajbj , ... = M ... ,ajbj , ... ,aibi, ... , M (a1b1), ... = 0 = M [a1b1,a2]b2, ... ,

ηa1a2 M
a1b1,a2b2, ... = 0 . (2.10)

The Lie-algebra bracket [[ , ]] of HS algebra is inherited from that of the gauge algebra as

δ(0)

[[ε1,ε2]]
= δ(0)

ε1 δ(1)
ε2 − δ(0)

ε2 δ(1)
ε1 , (2.11)

where δ(0)
ε and δ(1)

ε are respectively the first and second terms of the gauge transforma-

tion (2.1). Hence, the bracket of HS algebra is entirely specified by the first-order in-

teracting terms tµ1···µs of the gauge transformations, and they are in turn fixed by the

cubic interaction terms of the Lagrangian — see [62] for a recent related discussion. It is

important to note that the global symmetries close at the level of δ(1):

δ(1)

ε̄1 δ(1)

ε̄2 − δ(1)

ε̄2 δ(1)

ε̄1 = δ(1)

[[ε̄1,ε̄2]]
+ (trivial part) , (2.12)

so that δ(1)

ε̄ provides the representation of HS algebra carried by the field content. Here,

(trivial part) means the transformations, either of the form of free gauge symmetry or

proportional to the free equations of motion. Moreover, this representation leaves the

quadratic action S(2) invariant: δ(1)

ε̄ S(2)[ϕ] = 0, so is endowed with an invariant scalar

product, which is positive definite if the free action S(2) is unitary. Hence, for a unitary HS

theory, the representation of HS algebra given by δ(1)

ε̄ is also unitary. This condition, known

as admissibility condition [63, 64], turns out to be quite tight for a quest of candidate HS

algebras.

Another condition on HS algebra is the requirement that its spin-two part reproduce

Gravity. This condition fixes certain brackets of HS algebra. First, the spin-two part gives

the isometry algebra soD+1:

[[Mab ,Mcd ]] = 2
(
ηa[cMd]b − ηb[cMd]a

)
, (2.13)

and other HS generators are subject to covariant transformation under isometry:

[[Ma1b1,...,arbr ,Mcd ]] = 2
r∑

k=1

ηak[cM...,d]bk,... − ηbk[cM...,d]ak,... . (2.14)

All in all, apart from the admissibility condition, any Lie algebra generated by Killing

tensors (2.9) which transform covariantly under the isometry algebra soD+1 is a candidate

HS algebra.
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2.2 UEA construction of HS algebras

As discussed in [24, 25], the generators of HS algebra subject to soD+1-covariant transfor-

mation can be constructed from the universal enveloping algebra (UEA) of soD+1. In the

following discussion, let us focus on the D ≥ 4 cases. The UEA is defined as the quotient

of the tensor algebra of soD+1 with the two-sided ideal generated by

Iabcd = Mab ⊗Mcd −Mcd ⊗Mab − [[Mab , Mcd ]] . (2.15)

Hence, the class representatives can be taken as GL(D + 1) tensors,

Ma1b1 ⊙ · · · ⊙Manbn :=
1

n!

∑

σ∈Sn

Maσ(1)bσ(1)
⊗ · · · ⊗Maσ(n)bσ(n)

,

which are generically reducible under index-permutation symmetries. When decomposed

into irreducible components, they contain Killing tensors Ma1b1, ... ,anbn as well as other

elements. At the quadratic level, the GL(D + 1) decomposition gives

M (a1
(b1 ⊙Ma2)

b2) ∼ , M[a1b1 ⊙Ma2b2] ∼ . (2.16)

The traceless part of M (a1
(b1⊙Ma2)

b2) gives a Killing tensor but its trace part and M[a1b1⊙
Ma2b2] are not Killing tensors. However, they generate an ideal called Joseph ideal which

we shall discuss more extensively in the next subsection. When the UEA is quotiented

by this ideal, the coset is spanned only by Killing tensors so satisfies the condition of HS

algebra. To summarize, the following two classes of the elements in soD+1 ⊙ soD+1:

Jab := M(a
c ⊙Mb)c −

ηab
D + 1

M cd ⊙Mcd ∼ ◦ , Jabcd := M[ab ⊙Mcd] ∼ , (2.17)

generate the Joseph ideal which contains all the non-Killing-tensor elements. This con-

struction fixes the values of all soD+1 Casimir operators, and in particular the quadratic

one is given by

C2 :=
1

2
Mab ⊙Mba = −(D + 1)(D − 3)

4
. (2.18)

In [25], the authors considered another ideal generated only by Jab — but not by Jabcd. In

such a case, the quadratic Casimir remains arbitrary while the other Casimirs are deter-

mined as functions of the former. Hence, one can further take the quotient with C2 − ν.

Then, the resulting coset algebra contains more generators than the original case, and ad-

ditional generators correspond to the Killing tensors of certain types of mixed-symmetry

fields. This algebra has one-parameter family with label ν, and it is denoted by hs(ν). In

D = 5 case, hs(ν) can be decomposed into two parts which are isomorphic to each other:

each part can be independently obtained from the ideal generated by the elements Jab and

J±λ
abcd, where the latter element is given by

Jλ
abcd := M[ab ⊙Mcd] − i

λ

6
ǫabcdef M

ef . (2.19)
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The generators of the resulting coset algebra are all given by Killing tensors like the λ = 0

case, and the quadratic Casimir is given by

C2 = ν = 3 (λ2 − 1) . (2.20)

Moreover, one can show that the algebra admits further ideals for any half-integer values

of λ with |λ| ≥ 1, and quotienting those ideals results in finite-dimensional algebras. Such

finite-dimensional HS algebras have been considered recently in [65] — see section 4.1 for

more details.

To conclude this section, let us also mention that the aforementioned HS algebra can

be obtained by quotienting directly the tensor algebra of soD+1 with the ideal generated

by the following elements:

Iλabcd = Ma[b ⊗Mcd] − ηa[bMcd] − i
λ

6
ǫabcdef M

ef , (2.21)

Iλab = Mc(a ⊗Mb)
c +

D − 3

2

(
1− λ2

)
ηab , (2.22)

where the λ 6= 0 cases are only for D = 5. From the above, it becomes more clear that

Killing tensors can be taken as class representatives. The existence of one-parameter family

forD = 5 is actually due to the fact that so6 is isomorphic to sl4. There, the elements (2.21)

and (2.22) can be combined into

Iλ
ac
bd = L[a

b ⊗ Lc]
d + δ

[a
(b L

c]
d) + λ δ

[a
[b L

c]
d] +

1

4

(
λ2 − 1

)
δ
[a
[b δ

c]
d] , (2.23)

where La
b are the generators of sl4 with a, b = 1, . . . , 4 and La

a = 0. In fact, these elements

generate an ideal in the UEA of slN for any N . In particular for sl2, the 3D HS algebra

hs[λ] can be obtained in this way. We will come back to this point later.

2.3 Minimal representations

In order to obtain HS algebra from the UEA, we quotient the UEA with an ideal corre-

sponding to the tensors which are not of the Killing-tensor type (2.9). This quotienting

procedure fixes all the Casimir operators as well as the underlying representation: the

ideal coincides with the kernel of such representations. Indeed, this reduction of generators

can be carried out by simply choosing the proper representation of the isometry algebra,

which is small enough to project all the generators except for Killing tensors. It turns out

that these representations are in fact the smallest ones, namely the minimal representa-

tions [39]. Here, for the self-completeness, we provide a brief introduction to the minimal

representations by mainly focusing on the case of the classical Lie algebras over C.

Let us first introduce the convention which we shall adopt in the following discussion:

• let us begin with sp2N which is generated by elements NAB:

N[AB] = 0 , A,B = 1, 2, . . . , 2N , (2.24)

with the commutation relation,

[[NAB , NCD ]] = ΩA(C ND)B +ΩB(C ND)A . (2.25)

– 8 –
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Here, ΩAB = −ΩBA is the symplectic matrix, with the inverse ΩAB:

ΩAB ΩBC = ΩCB ΩBA = δAC , (2.26)

which is used to lower the indices as VA = ΩAB V B.

Now, we move to slN and soN which we shall describe as subalgebras of sp2N . For that, it

is convenient to organize the sp2N indices A as

A = αa , α = ± , a = 1, 2, . . . , N , (2.27)

with which the symplectic matrix becomes

Ωαa βb = ǫαβ ηab , ǫ±∓ = ±1 . (2.28)

• The slN is generated by the traceless elements La
b := N−a

+b− 1
N δab N−c

+c with the

commutation relation,

[[La
b , Lc

d ]] = δcb L
a
d − δad L

c
b . (2.29)

• The soN is generated by the antisymmetric elements Mab := N−a+b − N−b+a with

the commutation relation (2.13).

The dual vector space of these Lie algebras are the spaces of matrices UAB, Va
b and W ab

with U [AB] = 0, Va
a = 0 and W (ab) = 0. It is convenient to introduce

N(U) =
1

2
NAB UAB , L(V ) = La

b Va
b , M(W ) =

1

2
MabW

ab , (2.30)

in terms of which the commutation relations of the algebras can be also given by

[[T (A1) , T (A2) ]] = T (A1A2 −A2A1) . (2.31)

Here, (T,A) are (N,U), (L, V ) or (M,W ), while the products of the dual matrices are given

by (U1 U2)
AB = U1

AC ΩCD U2
DB, (V1 V2)a

b = V1a
c V2c

b and (W1W2)
ab = W1

ac ηcdW2
db.

Now let us come back to the introduction to minimal representations for classical

Lie algebras. There are several different approaches to minimal representations.4 Here, we

follow the coadjoint orbit method where minimal representation is given as the quantization

of the minimal nilpotent orbit. The coadjoint action of a Lie group G on the dual space g∗

of its Lie algebra g is defined by

(Coadg A)(T ) = A
(
g−1 T g

)
, (2.32)

where g, T and A are arbitrary elements of G, g and g∗, respectively. Each orbit under

such actions — coadjoint orbit — is an even dimensional subspace of g∗ with G-invariant
symplectic form. While there exists a continuum of semi-simple orbits, the number of

nilpotent orbits is finite. The semi-simple orbits and the principal nilpotent orbit — the

unique dense orbit of the nilpotent orbits — are given by a set of equations involving the

4See e.g. [40–50] and references therein for general introduction to minimal representation.
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dual of Casimir operators. Hence, their dimension is dim g − rank g. The other nilpotent

orbits have smaller dimensions as they are defined by a larger number of polynomial equa-

tions. The nilpotent orbit with minimum dimension — apart from the trivial orbit {0}
— is also unique and called the minimal orbit Omin(g), which is what we are interested

in. The minimal orbits of classical Lie algebras are determined by the following quadratic

equations [48]:

Omin(sp2N ) : UA[B UD]C = 0 ,

Omin(slN ) : V[a
b Vc]

d = 0 , (2.33)

Omin(soN ) : W a[bW cd] = 0 = W abWb
c ,

and can be parameterized by

UAB = uA uB ,

Va
b = v+a v

b
− [v+ · v− = 0] , (2.34)

W ab = w
[a
+ w

b]
− [wα · wβ= 0] .

From the above, one can deduce the dimensions of these minimal orbits as

g dim g rank g dimOprin(g) dimOmin(g)

sp2N N(2N + 1) N 2N2 2N

slN N2 − 1 N − 1 N(N − 1) 2(N − 1)

soN
N(N−1)

2

⌊
N
2

⌋ ⌈N(N−2)
2

⌉
2(N − 3)

where ⌊x⌋ = max{m ∈ Z |m ≤ x} and ⌈x⌉ = min{n ∈ Z |n ≥ x}. The kernel of the

minimal representation in the UEA is the Joseph ideal J (g) (the characteristic variety of

the Joseph ideal is the closure of the minimal orbit Omin(g)). Joseph ideal is the ideal of

UEA generated by certain elements in g⊙ g. In the case of classical Lie algebras, one can

equivalently consider the ideals of the tensor algebra generated by the relations [48]:

J (sp2N ) : NA[B ⊗NC]D +
~

2

(
ΩA[B NC]D +ΩD[B NC]A − ΩBC NAD

)

+
~
2

2

(
ΩA[B ΩC]D − ΩBC ΩAD

)
∼ 0 ,

J (slN ) : L[a
b ⊗ Lc]

d + ~

(
δ
[a
(β L

c]
d) + λ δ

[a
[b L

c]
d]

)
+ ~

2 λ
2 − 1

4
δ
[a
[b δ

c]
d] ∼ 0 , (2.35)

J (soN ) : Ma[b ⊗Mcd] − ~ ηa[bMcd] ∼ 0 ∼ Mc(a ⊗Mb)
c − ~

2 N − 4

2
ηab ,

which are dual analogs of the ones (2.33) on g∗. Here, we have introduced the deformation

parameter ~—which are taken as ~ = 1 in the rest of the paper — in order to make manifest

that the above relations provide quantizations of the orbits given in (2.33). Inversely,

an irreducible representation of g associated with a coadjoint orbit can be obtained by

quantizing the orbit. Notice also that for the slN series, the quantization or equivalently

the minimal representation is not unique but is of one-parameter family labeled by λ. For

the sl4 case, the minimal representation has been studied also in [52].
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Let us note that the minimal representations are the irreducible representations with

the minimum non-zero Gelfand-Kirillov (GK) dimension [66]. The GK dimension of a

vector space can be understood roughly as the number of continuous variables necessary to

describe the vector space. In case of the minimal representation, it is half of the dimension

of minimal orbit. For one-particle Hilbert space, it corresponds to the dimension of the

space — not the spacetime — where the wave function lives. Several conclusions can be

drawn from this perspective:

• a particle in D ≥ 4 dimensions has GK dimension D − 1. Collecting finitely many

particles cannot increase the GK dimension, since it amounts to introducing some

finite-range discrete variables which label the particles. On the contrary, an infinite

collection of particles may have a bigger GK dimension: for example, Kaluza-Klein

compactification decomposes a particle in higher dimensions — therefore, of higher

GK dimension — into an infinite set of particles in lower dimensions.

• (A)dSD has isometry (a real form of) soD+1, whose minimal representation has GK

dimension D−2. Hence, a particle in (A)dSD cannot be minimal but a representation

associated with the next-to-minimal orbit of soD+1.

• The particles corresponding to conformal fields, namely singletons, in d dimensions

have GK dimension d − 1, the same as the minimal representation of the conformal

algebra sod+2. However, apart from the scalar, the other conformal-field representa-

tions require additional helicity labels. The spinor in d = 3 and helicity-h represen-

tations in d = 4 are exceptions as they have only one helicity component. Actually,

such representations underlie the D = 4 and D = 5 HS algebras, respectively: in the

former case the scalar and spinor singletons, namely Rac and Di, give the same HS

algebra, while in the latter case the helicity h is related to the λ deformation (2.19)

by h = λ.

• The Flato-Fronsdal theorem [67] — as well as its generalization [57] — corresponding

to the HS AdSd+1/CFTd duality can be also understood in this way. If the conformal

field theory on the boundary has a finite content of fields, then its GK dimension is

d − 1. The space of bilinear operators, which corresponds to the tensor product of

two singletons, has doubled GK dimension which can be viewed as

2(d− 1) = d+ (d− 2) . (2.36)

Here, d is the number of space variables of (A)dSd+1, and d− 2 is the GK dimension

corresponding to the helicity variables. For instance, in the scalar singleton case, the

corresponding dual (A)dSd+1 fields are massless symmetric fields of all integer spins.

The number of their helicity states up to spin s is ∼ sd−2, from which we can deduce

the corresponding GK dimension.

• Finally, suppose we consider a D-dimensional field theory with a finite field content

which carries a representation of a global-symmetry Lie algebra g. Then, the GK
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dimension of the Hilbert space cannot be smaller than that of the minimal represen-

tation of g:

D − 1 ≥ 1

2
dim(Omin(g)) . (2.37)

Among classical Lie algebras, slN with N ≥ D + 1, soN with N ≥ D + 3 and sp2N

with N ≥ D are already excluded with this condition. Together with the requirement

that g contains the D-dimensional isometry algebra soD+1, one gets much stronger

restrictions: for instance, the only possible orthogonal algebras g are soD+1 itself and

soD+2.
5

2.4 HS algebras and reductive dual pairs

The HS algebra defined in section 2.2 is the symmetry (algebra) of the minimal representa-

tion of soN . Abusing this terminology to the other Lie algebras, let us consider HS algebra

associated with a Lie algebra g:

hs(g) = U(g)/J (g) , (2.38)

where U(g) and J (g) are respectively the UEA and Joseph ideal of g. As a vector space,

hs(g) corresponds to the space of polynomials in elements of Omin(g):

N(U) =

∞∑

n=0

N (n)(U) , L(V ) =

∞∑

n=0

L(n)(V ) , M(W ) =

∞∑

n=0

M (n)(W ) , (2.39)

with

N (n)(U) =
1

2n n!
NA1B1,...,AnBn U

A1B1 · · ·UAnBn , (2.40)

L(n)(V ) =
1

n!
La1 ··· an
b1 ··· bn Va1

b1 · · ·Van
bn , (2.41)

M (n)(W ) =
1

2n n!
Ma1b1,...,anbn W

a1b1 · · ·W anbn . (2.42)

Therefore, the expansion coefficients,

NA1B1,...,AnBn , La1 ··· an
b1 ··· bn , Ma1b1,...,anbn , (2.43)

are the generators of hs(sp2N ), hsλ(slN ) and hs(soN ), respectively. Due to the properties

of minimal orbits (2.33), these generators can be chosen to be traceless:

ΩA1A2 NA1B1,...,AnBn = 0 , δb1a1 L
a1 ··· an
b1 ··· bn = 0 , ηa1a2 Ma1b1,...,anbn = 0 . (2.44)

5In 3D, massless HS particles have GK dimension 1 corresponding to the would-be gauge mode on the

asymptotic boundary, and the global symmetry is rather the asymptotic symmetry than the bulk isometry

one. In case of slN ⊕ slN Chern-Simons theory, the asymptotic symmetry is given by WN ⊕ WN [21].

Interestingly, WN does not contain slN as subalgebra — at least, not manifestly. If it did, the GK dimension

of the Hilbert space would be bigger or equal to N − 1, which is not the case for N ≥ 3.

Let us note that in order to derive (2.37), we have required the Hilbert space to carry a representation

of the global symmetry. As we have seen in the 3D case, the presence of the asymptotic boundary may

provoke a deformation of global symmetry invalidating this condition. This phenomenon is in principle

possible in any odd D dimensions, so may provide a chance for a consistent HS theory with a finite field

content — see [65] for a recent attempt.
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We will use the symbol ⋆ for the product of hs(g), which is defined by ⋆ := ⊗/∼. Here,

∼ is the equivalence relation (2.35).

For a classical Lie algebra g, instead of using the explicit form of Joseph ideals, one

can rely on the reductive dual pairs to handle the algebraic structure of hs(g): see [7, 8]

and [2] for the sl4 and soD+1 cases, respectively, and for more generalities see e.g. [45, 49]

and references therein. A reductive dual pair in the symplectic group Sp2N is a pair of

subgroups,

(G1 , G2 ) ⊂ Sp2N , (2.45)

which are centralizers of each other. Then, there is a bijection between two irreducible

representations π1 and π2 of G1 and G2 so that for any π1 (or π2) there exists at most one

π2 (or π1). The minimal representations of slN and soN can be obtained from that of sp2N
by considering the dual pairs,

(G1 , G2 ) = (GL1 , GLN ) and (Sp2 , ON ) , (2.46)

respectively. For the former case, we take the representation of GL1 labeled by λ — so we

can see again that the minimal representation of slN has one-parameter family. For the

latter case, we take the trivial representation of Sp2. In the following, we review how one

can deal with the explicit structures of HS algebras using such dual pair correspondences.

hs(sp2N). Notice first that the minimal representation of sp2N is the metaplectic repre-

sentation described by oscillators yA:

NAB = yA yB , (2.47)

endowed with the Moyal ⋆ product,

(f ⋆ g)(y) = exp

(
1

2
ΩAB ∂yA ∂zB

)
f(y) g(z)

∣∣∣
z=y

. (2.48)

Hence, hs(sp2N ) is generated by polynomials of yA yB, that is, the space of all even-order

polynomials in yA:

NA1B1,...,AnBn = yA1 yB1 · · · yAn yBn , (2.49)

and the generating function N(U) (2.39) becomes a Gaussian,

N(U) = exp

(
1

2
yA UAB yB

)
. (2.50)

In this case, the product of hs(sp2N ) coincides with the Moyal product: ⋆ = ⋆.

hsλ(slN). We consider the gl1-center of hs(sp2N ), that is, the set of elements satisfying

[
y+ · y− , f(y)

]
⋆
=
(
y− · ∂y− − y+ · ∂y+

)
f(y) = 0 . (2.51)

The solution space is generated by

L̃a1 ··· an
b1 ··· bn = y a1

− y+b1 · · · y an
− y+bn , (2.52)
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whose traceless part can be identified with the generator La1 ··· an
b1 ··· bn of hsλ(slN ). It is conve-

nient for later use to generalize the definitions (2.39) and (2.41) to L̃a1 ··· an
b1 ··· bn getting

L̃
(
Ṽ
)
= exp

(
y− · Ṽ · y+

)
, (2.53)

where the matrix-variable Ṽ b
a satisfies

Ṽ[a
b Ṽc]

d = 0 ⇔ Ṽa
b = ṽ+a ṽ

b
− . (2.54)

This space is also endowed with the ⋆ product, and we will refer to this algebra as hs(glN ).

In order to get the HS algebra of slN , we take an irreducible representation of gl1, and this

amounts to quotienting hs(glN ) by the relation,

Kλ := y+ · y− − N

2
λ ∼ 0 . (2.55)

Let us make a brief remark here: consider, before taking the quotient by Kλ, the following

isomorphism:

ρλ : hs(glN ) → hsλ(glN ) ,

f(y) 7→ ρλ(f)(y) = e
λ
2
∂y+· ∂y− f(y) . (2.56)

Then, the image hsλ(glN ) admits a deformed ⋆ product,

(f ⋆λ g)(y) = ρλ
(
ρ−1
λ (f) ⋆ ρ−1

λ (g)
)
(y) (2.57)

= exp

[
1

2

(
∂y+ · ∂z− − ∂z+ · ∂y−

)
+

λ

2

(
∂y+ · ∂z− + ∂z+ · ∂y−

)]
f(y) g(z)

∣∣∣∣
z=y

.

The algebra hsλ(slN ) can be equivalently obtained by quotienting hsλ(glN ) by the relation,

ρλ(Kλ) = K0 ∼ 0 . (2.58)

Hence, although hsλ(glN ) are all equivalent for different λ, after quotienting, they be-

come distinct algebras hsλ(slN ). In the following, we shall use the description hsλ(slN ) =

hs(glN )/〈Kλ ∼ 0〉 for explicit computations.

An element of hsλ(slN ) is a class representative [[ a ]] for elements a ∈ hs(glN ), and the

product of hsλ(slN ) is defined by

[[ a ]]⋆ [[ b ]] := [[ a ⋆ b ]] . (2.59)

In order to get an explicit expression for the product⋆, we need to choose a class represen-

tative for a generic element of hs(glN ). We can do this for L̃(n), and for concreteness let us

consider L̃(2), which can be decomposed into L(n) with n = 0, 1, 2 as

L̃(2)

(
Ṽ
)
= L(2)

(
Ṽ
)
+

4

N + 2
y+·y− ṽ+· ṽ− L(1)

(
Ṽ
)
+

2

N(N + 1)
(y+·y−)2 (ṽ+· ṽ−)2 . (2.60)

From this example, one can notice that L̃(n) and L(n) do not belong to the same equivalence

class since the trace part of L̃(n≥2) cannot be written as Kλ ⋆ a for an element a ∈ hs(glN ).
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We can remove all the y+· y− terms in the traceless decomposition of L̃(n) using ⋆ product

and the relation (2.55). Since this procedure is unambiguous, it can be served to choose a

class representative. For n = 2 case, we get

L̃(2)

(
Ṽ
)
∼ L(2)

(
Ṽ
)
+

2Nλ

N + 2
ṽ+· ṽ− L(1)

(
Ṽ
)
+

Nλ2 + 1

2(N + 1)
( ṽ+· ṽ−)2 =

[[
L̃(2)

(
Ṽ
) ]]

. (2.61)

In general, the class representative of L̃(n) has the following form of series:

[[
L̃(n)

(
Ṽ
) ]]

=

n∑

m=0

s(n)
m

〈Ṽ 〉m
m!

L(n−m)

(
Ṽ
)
, (2.62)

where coefficients s(n)
m are fixed ones, in principle calculable, but their explicit expressions

are not necessary for our purpose. Let us comment that in the above series only the

structure 〈Ṽ 〉m can appear as the coefficient of L(n−m) since it is the unique m-th order

scalar in Ṽ due to the property (2.54).

hs(soN). Similarly to the slN case, we first consider the sp2 center of hs(sp2N ), that is,

the set of elements satisfying

[
yα · yβ , f(y)

]
⋆
=
(
yα · ∂yβ + yβ · ∂yα

)
f(y) = 0 . (2.63)

The solution space is again endowed with the ⋆ product, and we refer to this algebra as

h̃s(soN ). It is generated by

M̃a1b1 ··· anbn = 2n y[−a1 y+]b1 · · · y[−an y+]bn , (2.64)

and we identify its traceless part with the generators Ma1b1 ··· anbn of hs(soN ). Again gen-

eralizing the definitions (2.39) and (2.42) to M̃a1b1 ··· anbn , we get

M̃(W̃ ) = exp
(
y−a W̃

ab y+b

)
, (2.65)

with the matrix-variable W̃ satisfying

W̃ a[b W̃ cd] = 0 ⇔ W̃ ab = w̃
[a
+ w̃

b]
− . (2.66)

The HS algebra, hs(soN ), is the quotient of h̃s(soN ) by the relation,

Kαβ := yα · yβ ∼ 0 , (2.67)

which corresponds to taking the trivial representation of sp2. The class representative is

given, analogously to hsλ(slN ), by a series,

[[
M̃ (n)

(
W̃
) ]]

=

[n/2]∑

m=0

t(n)
m

〈W̃ 2〉m
m!

M (n−2m)

(
W̃
)
. (2.68)

Remark that the structure 〈W̃ 2〉m in front of M (n−2m) is again the unique possibility due

to the property (2.66).
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3 Trace and structure constants of HS algebras

In this section, we shall derive explicit form of the structure constants of the previously

defined HS algebras associated with classical Lie algebras. Let us begin with recalling that

the structure constant Cab
c of HS algebra hs(g) is defined by

Ta ⋆Tb = Cab
c Tc , (3.1)

where Ta is one of the generators (2.43) of hs(g), and a, b, c are the collective indices.

A convenient way to address structure constant is by making use of trace of HS algebra,

defined as the identity piece of given element — see e.g. [57] for more details:

Tr [ c0 + ca Ta] = c0 . (3.2)

From the existence of the antiautomorphism T (n) 7→ (−1)n T (n), one can show that the

bilinear form,

Bab = Tr [Ta ⋆Tb ] , (3.3)

is symmetric and invariant. The trilinear form is simply related to the structure constant

and the bilinear form as

Cabc = Tr [Ta ⋆Tb⋆Tc ] = Cab
dBdc . (3.4)

In the notation introduced in the previous section, the trace is given simply by

Tr [T (A) ] = T (0) , (3.5)

while the bilinear and trilinear forms read

B(A1, A2) = Tr [T (A1)⋆T (A2) ] ,

C(A1, A2, A3) = Tr [T (A1)⋆T (A2)⋆T (A3) ] . (3.6)

In the following, for each of hs(sp2N ), hsλ(slN ) and hs(soN ), we shall work out the trace

and the bi-/trilinear forms. For hs(soN ) and hsλ(sl2) the bilinear forms have been obtained

respectively in [68] and [14]. Let us remark as well that the structure constants of hs(so5)

and hsλ(sl2) have been proposed respectively in [5] and [15–17].

Actually, in the case of hs(sp2N ), the algebraic structure is already explicit at the

level of ⋆ product since there is no quotienting process to perform. However, we decide

to treat the algebras hs(sp2N ), hsλ(slN ) and hs(soN ) in the equal footing, for the sake of

remarking the similar algebraic properties they possess and making manifest the relations

between them.

3.1 hs(sp2N)

Let us begin with hs(sp2N ), whose essential ingredients can be found e.g. in [69].

Trace. In this case, the trace defined as (3.5) is equivalent simply to

Tr [f(y)] = f(0) , (3.7)

for an element f(y) of the algebra hs(sp2N ).
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Structure constant. Let us consider the bilinear and trilinear forms (3.6). For that,

we need to first evaluate the product of generating functions (2.50) N(U1)⋆N(U2) and

N(U1)⋆N(U2)⋆N(U3). Since ⋆ = ⋆ for hs(sp2N ), we can rely on the composition prop-

erty of the ⋆ product. For the Gaussian functions of type,

G(S) = 1√
det
(
1+S
2

) exp

[
yA

(
S − 1

S + 1

)AB

yB

]
, (3.8)

the ⋆ product admits a manifestly associative form:

G(S1) ⋆ G(S2) = G(S1 S2) . (3.9)

The connection between G(S) and N(U) involves a Cayley transformation [69]:

C (U) =
2 + U

2− U
, C

−1(S) = 2
S − 1

S + 1
, (3.10)

and using the rule (3.9) and the trace formula (3.7), one gets the n-linear forms as

1√
G(n)(U1, . . . , Un)

:= Tr [N(U1) ⋆ · · · ⋆ N(Un) ] , (3.11)

where the function G(n) is given by

G(n)(U) =
det2N

(
1
2

∏n
k=1

2+Uk

2−Uk
+ 1

2

)

∏n
k=1 det2N

(
1
2

2+Uk

2−Uk
+ 1

2

) = det2N

[
1

2

n∏

k=1

(1 + Uk) +
1

2

]
. (3.12)

Here, for the second equality we have used the fact that U2
k = 0. The n = 2 case can be

obtained immediately using U1 U2 U1 = 〈U1 U2〉U1 as

G(2)(U1, U2) = 1 +
1

4
〈U1 U2 〉 . (3.13)

The n = 3 case requires more calculations — see section 3.4 — and the result reads

G(3)(U) = 1 +
1

4
Λ(U) , (3.14)

where Λ(U) is defined by

Λ(U) := 〈U1 U2 〉+ 〈U2 U3 〉+ 〈U3 U1 〉+ 〈U1 U2 U3 〉 . (3.15)

Notice that, due to UAB
i = UBA

i and ΩAB = −ΩBA, the following identity is satisfied:

〈U1 U2 U3 〉+ 〈U3 U2 U1 〉 = 0 . (3.16)

Finally, we obtain the bilinear and trilinear forms as

B(U) = Tr[N(U1)⋆N(U2)] =
1√

1 + 1
4 〈U1 U2〉

, (3.17)

C(U) = Tr[N(U1)⋆N(U2)⋆N(U3)] =
1√

1 + 1
4 Λ(U)

. (3.18)

Notice that these bilinear and trilinear forms are given by the same function 1/
√
1 + z, but

with different arguments.
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3.2 hsλ(slN)

Now we move to the hsλ(slN ) case, where we need to handle the gl1 coset.

Trace. In order to conveniently deal with the coset structure, we extend the definition

of the trace (3.5) to hs(glN ) supplementing it with the condition,

Tr (Kλ ⋆ a) = 0 , ∀a ∈ hs(glN ) , (3.19)

so that we get

Tr(a1 ⋆ · · · ⋆ an) = Tr(a1 ⋆ · · · ⋆ an) , ∀ai ∈ hsλ(slN ) . (3.20)

Since a1 ⋆ · · · ⋆ an belongs to hs(glN ), we would like to have a trace formula for a generic

element of hs(glN ). For that, we first consider the trace of the generating function L̃
(
Ṽ
)

introduced in (2.53). Using (2.62) and (3.5), we get

Tr
[
L̃
(
Ṽ
)]

= Tr
[
exp

(
y− · Ṽ · y+

)]
= s

(
〈Ṽ 〉

)
, s(z) =

∞∑

n=0

s(n)
n

zn

n!
. (3.21)

Hence, the trace of L̃(Ṽ ) is encoded in the function s(z), which requires the coefficients

s(n)
n . They can be obtained by taking the maximal trace of (2.62) as

s(n)
n =

n!

(N)n

[[
(y+ · y−)n

]]
, (3.22)

where (N)n = N(N + 1) · · · (N + n− 1) is the Pochhammer symbol. The sequence σn :=

[[ (y+ · y−)n]] can be obtained from the recurrence relation,

[[(
y+ · y− − 1

2
N λ

)
⋆ (y+ · y−)n

]]
= σn+1 −

N

2
λσn − n (N + n− 1)

4
σn−1 = 0 . (3.23)

Packing the σn as σ(z) =
∑∞

n=0 σn z
n/n!, the relation (3.23) becomes a differential equation:

[(
1 +

z

2

)(
1− z

2

)
∂z −

N

2

(z
2
+ λ

)]
σ(z) = 0 , (3.24)

whose solution can be easily obtained as

σ(z) =
(
1− z

2

)−P (
1 +

z

2

)−Q
, (3.25)

with

P := N
1 + λ

2
, Q := N

1− λ

2
. (3.26)

However, we need s(z) rather than σ(z), and the former can be obtained from the latter as

s(z) = (N − 1)

∫ 1

0
dw (1− w)N−2 σ(w z) . (3.27)
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Rewriting σ(z) in an integral form,

σ(z) =
Γ(P +Q)

Γ(P ) Γ(Q)

∫ 1

0
dx

xP−1 (1− x)Q−1

[
1 + z

2 (1− 2x)
]P+Q

, (3.28)

and evaluating the w-integral first in (3.27) with (3.28), we get

s(z) =
Γ(N)

Γ(P ) Γ(Q)

∫ 1

0
dx

xP−1 (1− x)Q−1

1 + (1− 2x) z
2

, (3.29)

where we used P +Q = N .

After obtaining the trace of the generating function L̃
(
Ṽ
)
, we can also compute the

trace of any Gaussian element of hs(glN ), that is, exp(y+·B · y−) with an arbitrary matrix

B. Using the identities,

exp(y− ·B · y+) = g(∂ṽ+ ·B · ∂ṽ−) exp
(
y− · Ṽ · y+

) ∣∣
ṽ=0

, (3.30)

g(∂ṽ+ ·B · ∂ṽ−)
1

1− c ṽ− · ṽ+

∣∣∣
ṽ=0

=
1

detN (1− cB)
, (3.31)

with g(z) =
∑∞

n=0 z
n/(n!)2, we get

Tr
[
exp(y− ·B · y+)

]
=

Γ(N)

Γ(P ) Γ(Q)

∫ 1

0
dx

xP−1 (1− x)Q−1

detN
[
1 + 1

2(1− 2x)B
] . (3.32)

From this, and using ⋆ product formula for Gaussian functions, one can deduce the trace

formula for a generic element f(y) in hs(glN ) as

Tr
[
f(y)

]
= (∆λ ⋆ f)(0) , (3.33)

where ∆λ is given by

∆λ(y) =
Γ(N)

Γ
(
N(1+λ)

2

)
Γ
(
N(1−λ)

2

)
∫ 1

0
dx x

N(1+λ)
2

−1 (1− x)
N(1−λ)

2
−1 e2(1−2x) y+· y− . (3.34)

Notice that ∆λ is nothing but the deformed version of the gl1 projector introduced in [8,

56].6 Hence, retrospectively, the formula (3.33) is very natural extension of the hs(sp2N )

trace (3.7) to hsλ(slN ).

Structure constant. Let us come back to the relation (3.20). Since the ⋆ product can

be replaced with the ⋆ product inside of the trace, for the n-linear forms, it is sufficient

to compute a1 ⋆ · · · ⋆ an where ai are generating functions of hsλ(slN ) generators. The

generating function admits again a simple Gaussian form due to (2.34):

L(V ) = exp (y− · V · y+) . (3.35)

Hence, we need to compute

1

G(n)(ρ, V1, . . . , Vn)
:= e2ρ y+· y− ⋆ L(V1) ⋆ · · · ⋆ L(Vn)

∣∣∣
y=0

. (3.36)

6See also [70] for an attempt of a different formulation for the coset algebra.
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Here we introduced a ⋆ product of e2ρ y+· y− and evaluated at the end with y = 0, since this

is exactly the necessary information to compute the trace using (3.33). For the evaluation

of the ⋆ product in (3.36), we can simply use the rule of hs(sp2N ) with Uαa βb = ǫαβ V a
c η

cb

since slN is a subalgebra of sp2N . In this way, we obtain

G(n)(ρ, V ) =
detN

(
1
2

1+ρ
1−ρ

∏n
k=1

2+Vk

2−Vk
+ 1

2

)

detN

(
1
2

1+ρ
1−ρ + 1

2

)∏n
k=1 detN

(
1
2

2+Vk

2−Vk
+ 1

2

)

= detN

[
1 + ρ

2

n∏

k=1

(1 + Vk) +
1− ρ

2

]
, (3.37)

where we used the condition V 2 = 0 for the last equality. Again the evaluation of the

determinant for n = 2 is immediate and gives

G(2)(ρ, V ) = 1 +

(
1− ρ

2

)(
1 + ρ

2

)
〈V1 V2〉 . (3.38)

Using the trace formula (3.33), (3.34), we end up with the following expression of the

bilinear form:

B(V ) =
Γ(N)

Γ(P ) Γ(Q)

∫ 1

0
dx

xP−1 (1− x)Q−1

1 + x (1− x) 〈V1 V2〉

= 3F2

(
N

2
(1 + λ) ,

N

2
(1− λ) , 1 ;

N

2
,
N + 1

2
; −1

4
〈V1 V2〉

)
. (3.39)

In order to compute the trilinear form, we need to evaluate first G(3)(ρ, V ). After some

computations described in section 3.4, we get

G(3)(ρ, V ) = 1 +

(
1− ρ

2

)(
1 + ρ

2

)[
1− ρ

2
Λ+(V ) +

1 + ρ

2
Λ−(V )

]
, (3.40)

where Λ±(V ) are defined by

Λ+(V ) := 〈V1 V2〉+ 〈V2 V3〉+ 〈V3 V1〉+ 〈V1 V2 V3〉 ,
Λ−(V ) := 〈V1 V2〉+ 〈V2 V3〉+ 〈V3 V1〉 − 〈V3 V2 V1〉 . (3.41)

Again, using the trace formula (3.33), (3.34), we get the trilinear form as

C(V ) =
Γ(N)

Γ(P ) Γ(Q)

∫ 1

0
dx

xP−1 (1− x)Q−1

1 + x (1− x)
[
xΛ+(V ) + (1− x) Λ−(V )

] . (3.42)

The integral can be evaluated by expanding the denominator and one gets

C(V ) =
∞∑

k=0

k∑

ℓ=0

(−1)k
(
k

ℓ

)
(
N(1+λ)

2

)
2 k−ℓ

(
N(1−λ)

2

)
k+ℓ

(N)3k

[
Λ+(V )

]k−ℓ [
Λ−(V )

]ℓ
, (3.43)

which is a double series in Λ+(V ) and Λ−(V ). One can see that all the results are symmetric

in λ → −λ and this shows hs−λ(slN ) ≃ hsλ(slN ). Incidentally, let us recall that in 5D,

hs(ν) = hs+λ(sl4)⊕ hs−λ(sl4) with (2.20).
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3.3 hs(soN)

Finally, we consider hs(soN ), the most relevant case for physics, where we need to handle

the sp2 coset.

Trace. We begin again with the general definition (3.5) of the trace. As in the hsλ(slN )

case, we first consider the trace of the generating function M̃(W̃ ) (2.65) of h̃s(soN ):

Tr
[
M̃
(
W̃
)]

= Tr
[
exp
(
y− · W̃ · y+

)]
= t

(
〈W̃ 2〉

)
, t(z) =

∞∑

n=0

t(2n)
n

zn

n!
, (3.44)

which is given by the function t(z) that has the Taylor expansion coefficients t(2n)
n appearing

in (2.68). By taking the maximal trace of (2.68), we get the relation,

t(2n)
n

(
∂w̃+ · ∂w̃[−

∂w̃+]
· ∂w̃−

)n
(
w̃+ · w̃[− w̃+] · w̃−

)n

n!

=

[[ (
∂w̃+ · ∂w̃[−

∂w̃+]
· ∂w̃−

)n
(
y+ · w̃[− w̃+] · y−

)2n

(2n)!

]]
, (3.45)

whose simplification reads

t(2n)
n =

n!(
N
2

)
n

(
N−1
2

)
n

τn , τn :=

[[(y+ · y[− y+] · y−
4

)n ]]
. (3.46)

The sequence τn can be determined by setting up a recurrence relation using (2.67) as

[[
1

4
y[+· y[− ⋆ y+]· y−]

(y+ · y[− y+] · y−
4

)n ]]
= τn+1 −

1

8

(
3

2
+ n

)(
N

2
+ n

)
τn = 0 , (3.47)

and finally we obtain the coefficients t(2n)
n as

t(2n)
n =

n!
(
3
2

)
n

8n
(
N−1
2

)
n

. (3.48)

Coming back to the function t(z) in (3.44), we get a hypergeometric function which can

be represented by the following integral:

t(z) = 2F1

(
1 ,

3

2
;
N − 1

2
;
z

8

)
=

Γ
(
N−1
2

)

Γ
(
3
2

)
Γ
(
N−4
2

)
∫ 1

0
dx

x
1
2 (1− x)

N−6
2

1− x z
8

. (3.49)

Now let us move to the trace of a Gaussian element exp(y− · C · y+) of h̃s(soN ) given by

an arbitrary antisymmetric matrix C. Using the identities,

exp( y− · C · y+) = h
(
∂w̃+ · C · ∂w̃−

)
exp
(
y+ · w̃[− w̃+] · y−

) ∣∣∣
u=0

, (3.50)

h
(
∂w̃+ · C · ∂w̃−

) 1

1− c2

2 w̃+ · w̃[− w̃+] · w̃−

∣∣∣∣
w̃=0

=
1

detN (1− cC)
, (3.51)
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with h(z) =
∑∞

n=0(2 z)
n/[(n+ 1)!n!], we obtain its trace as

Tr
[
exp ( y− · C · y+)

]
=

Γ
(
N−1
2

)

Γ
(
3
2

)
Γ
(
N−4
2

)
∫ 1

0
dx

x
1
2 (1− x)

N−6
2

detN

(
1−

√
x
2 C

) . (3.52)

This formula can be also recast into more intuitive form as

Tr
[
f(y)

]
= (∆ ⋆ f)(0) , (3.53)

where ∆ corresponds this time to the sp2 projector,

∆(y) =
Γ
(
N−1
2

)

Γ
(
3
2

)
Γ
(
N−4
2

)
∫ 1

0
dxx

1
2 (1− x)

N−6
2 e−2

√
x y+· y− . (3.54)

Notice however the above expression of the projector ∆ differs from the original one given

in [57]. The latter, denoted here by ∆̃, has the form,

∆̃(y) =
Γ
(
N−1
2

)

Γ
(
1
2

)
Γ
(
N−2
2

)
∫ 1

−1
ds (1− s2)

N−4
2 cosh

(
s
√
2 yα · yβ yα · yβ

)
. (3.55)

A noticeable difference is that the expression (3.54) does not have a sp2-invariant form

involving only y+ · y− — not yα · yβ yα · yβ . However, as shown in appendix A, the two

expressions are equivalent in the sense of

(∆ ⋆ f)(0) =
(
∆̃ ⋆ f

)
(0) ∀f ∈ h̃s(soN ) . (3.56)

In the following, we shall use the expression (3.54) as it leads to simpler computations.

Structure constant. In order to obtain the bilinear and trilinear forms, we need to

compute the ⋆ product of the generating function of HS generators, which admit again a

simple form:

M(W ) = exp (y− ·W · y+) , (3.57)

as a function of the minimal orbit element W (2.33). For the use of the trace for-

mula (3.53), (3.54), the Gaussian factor e2ρ y+· y− should be again inserted in the com-

putation, hence we consider

1

G(n)(ρ,W1, . . . ,Wn)
:= e2ρ y+· y− ⋆ M(W1) ⋆ · · · ⋆ M(Wn)

∣∣∣
y=0

. (3.58)

Since soN is a subalgebra of slN , we can use the formula (3.37) with the simple replacement

V ab = W ab ending up with

G(n)(ρ,W ) = detN

[
1 + ρ

2

n∏

k=1

(1 +Wk) +
1− ρ

2

]
. (3.59)

Again, the n = 2 case can be evaluated simply as

G(2)(ρ,W ) =

[
1 +

1− ρ2

8
〈W1W2〉

]2
, (3.60)
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and gives the following expression for the bilinear form:

B(W ) =
Γ
(
N−1
2

)

Γ
(
3
2

)
Γ
(
N−4
2

)
∫ 1

0
dx

(1− x)
1
2 x

N−6
2

(
1 + x

8 〈W1W2〉
)2

= 2F1

(
2 ,

N − 4

2
;
N − 1

2
; −1

8
〈W1W2〉

)
, (3.61)

which has been obtained in [68] in a different notation. The n = 3 case requires more

involved computations — see section 3.4 — and we get in the end

G(3)(ρ,W ) =

[
1 +

1− ρ2

8
Λ(W )

]2
− ρ2

(
1− ρ2

)2

32
Σ(W ) , (3.62)

where Λ(W ) and Σ(W ) are given by

Λ(W ) := 〈W1W2〉+ 〈W2W3〉+ 〈W3W1〉+ 〈W1W2W3〉 , (3.63)

Σ(W ) :=
〈
(W1W(2W3))

2
〉
=

1

2
〈W1W2W3〉2 +

1

4
〈W1W2〉〈W2W3〉〈W3W1〉 . (3.64)

Finally, the trilinear form is given by

C(W ) =
Γ
(
N−1
2

)

Γ
(
3
2

)
Γ
(
N−4
2

)
∫ 1

0
dx

(1− x)
1
2 x

N−6
2

(
1 + x

8 Λ(W )
)2 − (1−x)x2

32 Σ(W )
, (3.65)

and the integral can be evaluated, by expanding the denominator, as

C(W ) =
∞∑

m=0

∞∑

n=0

(
N−4
2

)
m+2n

(2)m+2n(
N−1
2

)
m+3n

8m+3n

[−Λ(W )]m

m!

[4 Σ(W )]n

n!
. (3.66)

With this, we have completed the computations of the bilinear and trilinear forms

of the HS algebras associated with classical Lie algebras. In the next subsections, we

provide an important element left out in the previous computations — the evaluation of

determinant — and examine certain consistency conditions for our results.

3.4 Evaluation of determinant

In the previous sections 3.1, 3.2 and 3.3, we faced the evaluation of the determinant,

G(n)(ρ,A) = det

[
1 + ρ

2

n∏

i=1

(1 +Ai) +
1− ρ

2

]
, (3.67)

for the computations of the n-linear forms. Here, the matrices Ai are in the minimal

coadjoint orbit, so either Ui, Vi or Wi depending on whether we consider sp2N , slN or soN .

Because the minimal orbit matrices Ai admit the parameterizations (2.34), they enjoy the

following property:

〈Ai1 · · · Aip〉 = 〈 Āi1 · · · Āip〉 , (3.68)

where (Āi)jk = δij Ajk, and Aij are given by

Uij = ΩAB (ui)
A (uj)

B , Vij = (vi)+ · (vj)− , (Wij)αβ =
1

2
(wi)α · (wj)β . (3.69)
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Hence, the 2N × 2N or N ×N matrices Ai can be replaced by the n× n ones Āi. Notice

that only for the soN case, the components Aij are again 2 × 2 matrices. After some

computations, one can show that this determinant can be recast into

G(n)(ρ,A) = det

[
1 +

1− ρ

2
Up(A) +

1 + ρ

2
Lo(A)

]
, (3.70)

in terms of upper and lower triangular matrices Up(A) and Lo(A) with components,

[
Up(A)

]
ij
= δi<j Aij ,

[
Lo(A)

]
ij
= δi>j Aij . (3.71)

This expression makes simple the evaluation of the determinant. Focusing on the n = 3

case, we get

G(3)(ρ,A) = det

[
1 +

(
1− ρ

2

)(
1 + ρ

2

) {
A12A21 +A23A32 +A31A13

+
1− ρ

2
A12A23A31 −

1 + ρ

2
A13A32A21

}]
. (3.72)

For sp2N and slN , this is the end of the computation, and using

Aij Aji = 〈AiAj〉 , Aij Ajk Aki = 〈AiAj Ak〉 , (3.73)

we obtain the results (3.14) and (3.40). For soN , one still needs to evaluate the determinant

of 2× 2 matrix, and a straightforward computation gives (3.62).

3.5 Isomorphisms between HS algebras

Let us conclude this section by examining the HS algebras associated with isomorphic

classical Lie algebras. These can be considered as consistency checks for our result.

sl2 ≃ sp2 case. To begin with, we consider the case sl2 ≃ sp2. The bilinear and trilinear

forms of hs(sp2) are both given by the function 1/
√
1 + z but with different arguments

— see (3.18). In the case of slN , they are given in general by different functions, but for

N = 2 due to the identity,

〈V1 V2 V3〉 = −〈V3 V2 V1〉 , (3.74)

they do admit expressions through the same function. In particular, this function coincides

to that of sp2N when the deformation parameter is λ = 1/2:

3F2

(
N

2
(1 + λ) ,

N

2
(1− λ) , 1 ;

N

2
,
N + 1

2
; −z

)
=

1√
1 + z

[
N=2, λ=

1

2

]
. (3.75)

Hence, this shows the isomorphism hs 1
2
(sl2) ≃ hs(sp2).
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so5 ≃ sp4 case. Let us move to the cases involving soN . For that, let us first note that

Σ(W ) in (3.64) can be also written as

Σ(W ) = −45 (W1)
a1

[a1 (W2)
a2

a2 (W3)
a3

a3 (W1)
a4

a4 (W2)
a5

a5 (W3)
a6

a6] , (3.76)

therefore vanishes for N smaller than 6. Consequently, in such cases the bilinear and

trilinear forms are both given by the same function. In particular, for N = 5, this function

coincides with that of sp4:

2F1

(
2 ,

N − 4

2
;
N − 1

2
; −z

)
=

1√
1 + z

[
N = 5

]
. (3.77)

This demonstrates the isomorphism hs(so5) ≃ hs(sp4).

so6 ≃ sl4 case. The bilinear form and the trilinear form of hs(so6) are given by different

functions, and both of them have to coincide with those of hs(sl4). In order to check these,

we need first to establish the link so6 ≃ sl4 using the chiral spinor representation Σab as

Mab = −Lα
β (Σab)

β
α , Vα

β = −1

2
Wab

(
Σab
)β

α . (3.78)

From this, we get the relation between the arguments of the bilinear forms (3.61), (3.39):

〈W1W2 〉 = 2 〈V1 V2 〉 , (3.79)

and the function appearing in the bilinear form of hs(so6) coincides with that of hsλ(sl4)

when λ = 0:

2F1

(
2 ,

N − 4

2
;
N − 1

2
; −z

)
= 3F2

(
N ′

2
(1 + λ) ,

N ′

2
(1− λ) , 1 ;

N ′

2
,
N ′ + 1

2
; −z

)

[
N = 6, N ′ = 4, λ = 0

]
. (3.80)

For the trilinear forms, we have the following relations between the arguments of the

trilinear forms (3.65) and (3.42):

Λ(W ) = Λ+(V ) + Λ−(V ) , Σ(W ) =
1

2

(
Λ+(V )− Λ−(V )

)2
, (3.81)

and the coincidence of the trilinear forms can be shown thanks to the identity:

∫ 1

0
dx

(1− x)
1
2

(1 + x z)2 − (1− x)x2 ω2
=

∫ 1

0
dx

4x (1− x)

1 + 4x (1− x)
[
z + (2x− 1)ω

] , (3.82)

which can be proven by expanding both integrands in z and ω and evaluating the integrals.

This demonstrates the isomorphism hs(so6) ≃ hs0(sl4).

4 More on hsλ(slN)

Differently from hs(sp2N ) and hs(soN ), the HS algebra hsλ(slN ) has one-parameter family.

This gives rise to an interesting consequence: for certain values of λ, the algebra develops

an ideal, with a finite-dimensional algebra as the corresponding coset one. This is what

happens to the 3D algebra hs[λ] ≃ hsλ(sl2), and to the 5D algebra hsλ(sl4). In this section

we look into these points more closely.
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4.1 Ideals and finite-dimensional HS algebras

From the expression (3.39) of the bilinear form, one can notice that the hypergeometric

function 3F2 becomes a polynomial when N(1±λ)/2 takes negative integer values. In such

a case,

N(1± λ) = −2M [M ∈ N ] , (4.1)

the invariant bilinear form becomes degenerate for the generators L(n) with n > M implying

that they form an ideal. This ideal itself can be considered as a HS algebra although it

does not contain the generators corresponding to the fields of spin s ≤ M + 1 — however,

if needed, one can simply include the spin-two generators to this algebra with standard

commutation relations analogous to (2.14).

On the other hand, one can also consider the coset of the original algebra by this ideal.

The resulting algebra is then composed of a finite number of generators,

La1···an
b1···bn [n = 0, 1, . . . ,M ] , (4.2)

therefore the associated spins are bounded by M + 1. All these generators can be packed

into the traceful generators (2.52),

L̃a1···aM
b1···bM , (4.3)

in terms of which one can easily realize that this algebra is isomorphic to

gl(N+M−1
M ) , (4.4)

where
(
N+M−1

M

)
corresponds simply to the number of possible values that the symmetrized

indices (a1, . . . , aM ) can take. For theN = 4 case of sl4 ≃ so6, the 5D finite-dimensional HS

algebras have been obtained in [65] making use of the decomposition of sl(M+3
M ) generators

into traceless tensors of sl4.

So far, we have only considered complex Lie algebras, but for these finite-dimensional

algebras, it would be also interesting to find the corresponding real form induced by that

of slN . We consider here only a particular case su(N1, N2), a real form of slN1+N2 , since

it is the most relevant in physics: su(1, 1) ≃ sl(2,R) ≃ so(1, 2) and su(2, 2) ≃ so(4, 2). To

deal with su(N1, N2), we simply divide the indices into two groups â, b̂ = 1, . . . , N1 and

ǎ, b̌ = 1, . . . , N2. Then, the reality conditions of su(N1, N2) read

(
Lâ
b̂

)†
= Lb̂

â ,
(
Lǎ
b̌

)†
= Lb̌

ǎ ,
(
Lâ
b̌

)†
= −Lb̌

â . (4.5)

From the above, one can deduce

(
L̃
â1··· âkǎk+1··· ǎM
b̂1··· b̂ℓb̌ℓ+1··· b̌M

)†
= (−1)k+ℓ L̃

b̂1··· b̂ℓb̌ℓ+1··· b̌M
â1··· âkǎk+1··· ǎM . (4.6)

This reality condition can be also understood in terms of the oscillators as

(
y±â

)†
= −y∓â ,

(
y±ǎ

)†
= y∓ǎ . (4.7)
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Hence, the real HS algebra associated with su(N1, N2) is

u
(
Neven , Nodd

)
, 7 (4.8)

where

Neven/odd =
∑

0≤ even/odd k≤M

(
N1 + k − 1

k

)(
N2 +M − k − 1

M − k

)
. (4.9)

For su(1, 1) we get

u

(
M

2
+ 1 ,

M

2

)
[ even M ] , u

(
M + 1

2
,
M + 1

2

)
[ odd M ] , (4.10)

and, for su(2, 2) we get

u

(
(M + 2)(M2 + 4M + 6)

12
,
M(M + 2)(M + 4)

12

)
[ even M ] ,

u

(
(M + 1)(M + 2)(M + 3)

12
,
(M + 1)(M + 2)(M + 3)

12

)
[ odd M ] . (4.11)

We arrive to these real forms when we repeat all the constructions of the present paper in

the real vector space starting from su(N1, N2). However, let us note that there is no reason

to give preference to these real forms.

4.2 Reduced set of oscillators

In section 2.4, the algebras hsλ(slN ) and hs(soN ) are constructed as cosets making use of

N sets of oscillators which are subject to certain equivalence relations. In fact, in the case

of hsλ(slN ), there exists yet another description where all the generators can be given by

certain polynomials of N − 1 sets of oscillators [39]. Since these oscillators are not subject

to any condition, it is sufficient to know how slN is represented by them: they are simply

given by

LN
j = y+j , Li

j = y−
i y+j −

λ

N
δij , Li

N = − y−
i
(
y−

j y+j − λ
)
, (4.12)

with i, j = 1, . . . , N −1. Then, the HS generators are given by all possible ⋆ polynomials of

slN generators in the above representation — which is again the minimal representation.

4.3 N = 2 case: the 3D HS algebra

The N = 2 case is of particular interest since hsλ(sl2) coincides with the 3D HS algebra

hs[λ]. The latter algebra, also known as Aq(2; ν) [14], has been investigated by many

authors — see [71, 72] for recent works. In this subsection, we show how the known

structures of hs[λ] can be derived from the results obtained in this paper for hsλ(slN ).

7The u(1) part of u(Neven,Nodd) corresponds to the center of the algebra. It might be interpreted as the

spin-one generator.
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Lone-star product. The associative product of hs[λ], namely Lone-star product [16],

has been derived in the Vs
n basis, which is proportional in our case to

L1 ··· 1︸︷︷︸
p

2 ··· 2︸︷︷︸
q

[ p+ q = 2(s− 1) , p− q = n ] , (4.13)

with La1···a2n := Lb1···bn
a1···an ǫb1an+1 · · · ǫbna2n . The precise expression for such product is quite

lengthy and we refer to [15–17]. Instead, we show how this ⋆ product can be obtained in

a relatively simple form from the bilinear and trilinear forms (3.39), (3.42). In the N = 2

case, such forms are simplified using (3.74) into8

B(V ) = 2F1

(
1 + λ , 1− λ ;

3

2
; −1

4
〈V1 V2〉

)
, (4.15)

C(V ) = 2F1

(
1 + λ , 1− λ ;

3

2
; −1

4
Λ(V )

)
. (4.16)

Let us mention that the bilinear form (4.15) has been initially obtained in [14] making use

of the deformed oscillators. From (4.15) and (4.16), we can derive the explicit expression

of the ⋆ product for the generating elements:

L(V1)⋆L(V2)=
∞∑

n=0

2F1

(
n+1+λ, n+1−λ;n+

3

2
;−1

4
〈V1 V2〉

)
L(n)(V1+V2+V1 V2) . (4.17)

From this, one can extract the contribution of each generators to the ⋆ product.

Deformed oscillators. Another convenient description of hs[λ] is the deformed oscil-

lators — see e.g. [14]. In the following, we provide a link of the description presented in

section 2.4 to the deformed oscillator one. Let us first notice that the former description

hsλ(slN ) requires N sets of oscillators (y+a, y−a) — two sets for N = 2. On the other hand,

in the latter description through deformed oscillators, one needs only one pair of oscillators.

Despite of this discrepancy, one can establish an explicit link between two descriptions by

introducing a single set matrix-valued oscillators out of two sets of usual oscillators as

ŷa := 2

(
0 y+a

y−c ǫca 0

)
. (4.18)

Then, we can define the product between two such oscillators as the matrix product,

ŷa ŷb := 2

(
0 y+a

y−c ǫca 0

)
⋆ 2

(
0 y+b

y−d ǫdb 0

)
, (4.19)

where the multiplications of matrix entities are with respect to the ⋆ product. The com-

mutator of such product is readily calculated and gives

[
ŷa , ŷb

]
= 2 ǫab

(
1̂ + ν̂ k̂

)
, (4.20)

8Moreover, the hypergeometric function admits another simple expression,

2F1

(

1 + λ , 1− λ ;
3

2
; − z

)

=
sinh

(

2λ sinh−1(
√
z)
)

2λ
√
1 + z

√
z

=

(√
1 + z +

√
z
)2λ −

(√
1 + z −√

z
)2λ

4λ
√
1 + z

√
z

. (4.14)
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where k̂ and ν̂ are defined by

k̂ :=

(
1 0

0 −1

)
, ν̂ := 2λ 1̂ + k̂ , (4.21)

so satisfy

k̂2 = 1 ,
{
k̂ , ŷa

}
= 0 ,

[
ν̂ , ŷa

]
= 0 ,

[
ν̂ , k̂

]
= 0 . (4.22)

Notice that the equations (4.20) and (4.22) are the defining relations of the deformed

oscillators, and one can see that ν̂ is a constant diagonal matrix:

ν̂ =

(
2λ+ 1 0

0 2λ− 1

)
, (4.23)

and can be treated as a constant number ν̂ = 2λ± 1 in the ± eigenspace of k̂.

5 Outlook

Finally, let us conclude the present paper with a few remarks:

• first of all, the results obtained here may be applied to the construction of n-point

correlation functions of the Vasiliev theory, along the line of [73–75]: the necessary

ingredients there are the trace formula and the boundary-to-bulk propagator in the

unfolded formulation. The former is provided in this paper, while the latter has been

investigated in [76].

• In this paper, we considered the HS algebras associated only with symmetric tensor

fields. However in higher dimensions, there exist many other massless fields of the

mixed-symmetry tensor type, and their understanding is important for the generaliza-

tion of the currently understood version of HS theory to wider context. In this respect,

it would be interesting to generalize our results to the cases of mixed-symmetry HS

algebras. In particular, examining possibilities to interpret the works [57] and [25]

within this picture would be tempting.

• Another direction of generalizing HS gauge theory and the corresponding global sym-

metry is the study of partially-massless HS fields. Actually these have been already

explored by a number of authors: see [33–35] for the mathematics literature and [36]

for the physics one. Again, it would be interesting to reformulate such results in the

language presented in this paper, in particular by making use of a certain reductive

dual pair correspondence.

We are currently investigating the latter two issues, and hope to report on them in the

near future.
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A Two representations of the trace projector

In [57], the sp2 projector has been determined in the form of (3.55). In order to see its

equivalence to the other form (3.54), we begin with the following transformation:

cosh

(
s
√
2Kαβ Kαβ

)
= T

[
e2ω

2 Kαβ Kαβ
]
(s) , (A.1)

where the linear map T is defined by

T
[
ω2n
]
(s) =

n!

(2n)!
s2n . (A.2)

Then, using the following identity:

e2ω
2 Kαβ Kαβ

=

∫
d3~z

(2π)3/2
e−

1
2
~z 2

cosh
(√

2ω zαβ Kαβ

)
, (A.3)

with z±± = ±z1 + i z2, and z±∓ = z3, we get cosh function with Kαβ-linear argument. It

can be shown by a straightforward computation that
(
cosh

(√
2ω zαβ Kαβ

)
⋆ f
)
(0) =

(
cosh

(
2
√
2ω |~z | y+ · y−

)
⋆ f
)
(0) , (A.4)

which allows us to replace the sp2 element Kαβ by y+· y− in (A.3). The next steps are the

zαβ-integral and the T -transformation: first, the zαβ-integral gives

∫
d3~z

(2π)3/2
e−

1
2
~z 2

cosh
(
2
√
2ω |~z | y+ · y−

)
=

∞∑

n=0

(2n+ 1)!

n!
ω2n (2 y+ · y−)2n

(2n)!
, (A.5)

whose T -transformation reads

∞∑

n=0

(2n+ 1) s2n
(√

2 y+ · y−
)2n

(2n)!
. (A.6)

Finally, evaluating the s-integral (3.55), we get

(∆̃ ⋆ f)(0) =
∞∑

n=0

(
3
2

)
n(

N−1
2

)
n

(
(2 y+ · y−)2n

(2n)!
⋆ f

)
(0) . (A.7)

On the other hand, it is straightforward to obtain the above expression starting from

∆ (3.54): first we expand ∆ in y+·y− (again only even powers contribute to the trace) and

then evaluate the x-integral of (3.54).
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