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Abstract Hydrostatic pressure is one of the most elemen-
tary notions encountered in the fields of naval architecture
and marine engineering. Its presentation in textbooks is
not always clear, however, especially for floating bodies
in the presence of waves. This brief article aims to clarify
potential elements of confusion about hydrostatic pressure.
Atmospheric pressure is duly considered at the air–water
interface, and in the presence of waves, a consistent defi-
nition is possible that reconciles the points of view of naval
architects performing hydrostatic calculations and of hydro-
dynamicists using, for example, potential theory.

Keywords Ship hydrostatics · Ship hydrodynamics ·
Pressure

List of symbols

Variables

f Function of space (field)
F Force (N)
g Acceleration of gravity (m s−2)

M Moment (N m)
nz Vertical component of unit normal vector
p Pressure (Pa)
p0 Reference pressure, e.g. at air–water interface (Pa)
pd Dynamic pressure (Pa)
ph Hydrostatic pressure (Pa)
p̂d Alternate definition of dynamic pressure (Pa)
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p̂h Alternate definition of hydrostatic pressure (Pa)
r Radial coordinate (m)
x First horizontal coordinate (m)
y Second horizontal coordinate (m)
z Vertical coordinate measured upward, e.g. from

undisturbed air–water interface (m)

Greek letters

η Free surface elevation (m)
ϕ Velocity potential (m2 s−1)
ρ Density (kg m−3)

Subscripts

A Air
w Water

1 Introduction

As early as in the third century bc, the great mathemati-
cian and physicist Archimedes of Syracuse discovered the
fundamental relationship of hydrostatics known since as
Archimedes’ Principle (for a detailed historical account of
Archimedes’ contributions to the field of hydrostatics, see,
for example, Nowacki and Ferreiro 2011). From simple
axiomatic premises and thought experiments, Archimedes
was able to establish that the force exerted by a stagnant fluid
on an immersed body is vertical upward and equal in magni-
tude to the weight of the displaced fluid. Intuition certainly
supports this important discovery: instead of an immersed
body, it suffices to imagine a virtual test volume of fluid in
a thought experiment; since the test volume is in equilib-
rium and that only gravity and fluid forces are assumed to be

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40722-015-0035-1&domain=pdf


106 J. Ocean Eng. Mar. Energy (2016) 2:105–109

active, the fluid forces exerted on the virtual surface enclos-
ing the test volume must exactly balance the weight of fluid
inside. Such an explanation is attractive and essentially cor-
rect, but a rigorous proof of Archimedes’ Principle in the
most general context requires mathematical concepts that
would not be available until the advent of advanced calculus,
such as Gauss’ divergence theorem. Even with the powerful
analytical tools now at our disposal, there remain subtleties
involved, for example in the treatment of the air–water inter-
face for floating bodies. More details on hydrostatic pressure
in a stagnant fluid are provided in Sect. 2.

The situation is much more complex when the fluid is
not at rest. In particular, the presence of a surface-wave field
requires a hydrodynamic theory to be formulated. Fluid pres-
sure retains a ‘hydrostatic’ component ph in thismore general
context. Physically speaking, though, only total pressuremat-
ters and the consideration of ‘separate’ pressure components
is merely a matter of formal convenience. In mathematical
terms, the precise definition of ph in a hydrodynamic frame-
work could include any additive constant that (a) does not
depend upon the vertical coordinate and (b) vanishes in the
absence of fluid perturbation (waves). The common choice
is to set such a constant to zero, i.e. to effectively ‘port’
the calm-water hydrostatic formula for ph into the realm of
hydrodynamics. By doing so, however, one is left with a
function ph that does not satisfy the air–water boundary con-
dition as before. The consequences of this fact are examined
in Sect. 3, where hydrostatic pressure in the presence of a
wave field is considered.

2 Hydrostatic pressure in a stagnant fluid

The basic case of a stagnant fluid is first considered, where
only weight and pressure forces are deemed significant. An
(x, y, z) coordinate system is defined where the vertical z-
axis points upward. Here, the absolute pressure p is by
definition hydrostatic, i.e., p = ph. Calling ρ the local fluid
density and g the acceleration of gravity, a balance of vertical
forces on a fluid element yields the well-known result:

∂p

∂z
= −ρg (1)

The left-hand-side actually is an exact derivative since p is
also found to be independent of the horizontal coordinates.
In practical situations when fluid density is uniform, Eq. (1)
yields

p = p0 − ρgz (2)

At this stage, p0 is merely a constant of integration keyed to
a choice of origin for the z-axis.
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Fig. 1 Schematic diagram for the application of Gauss’ divergence
theorem to the hydrostatic pressure field surrounding a convex body
afloat in a stagnant fluid

For any function of space (field) f defined in a closed vol-
ume V bounded by the surface S, Gauss’ divergence theorem
states that

−
∫ ∫ ∫

V
∇ f dV =

∫ ∫
S
f �n dS, (3)

where the minus sign in the left-hand-side indicates that the
normal �n to S points inward, and ∇ f is the gradient of f .
When f = p, the right-hand-side represents the pressure
force exerted by the fluid on the body.

Consider a body of volume Vw completely submerged in
water (density ρw). When Eq. (3) is applied in this case with
f = p, the vertical (non-zero) component of the hydrosta-
tic pressure force Fw is determined andArchimedes’ familiar
result is obtained: Fw = ρwgVw. For floating bodies, the sub-
merged volumeVw is bounded by not only thewetted area Sw,
as before, but also by the waterplane area S0. This suggests
a natural choice for the origin of the z-axis at the water sur-
face; accordingly, p0 is the atmospheric pressure (at ‘water
level’). Here, the divergence theorem yields

Fw = ρwgVw + p0S0 (4)

With p0 about an order of magnitude larger than ρwg, it
seems difficult or arbitrary to simply ignore the term arising
from pressure forces that would be exerted on S0 (in general,
S0 is not a physical boundary unless the body floats exactly
awash with the water surface). To resolve the issue, the dry
surface of the body SA also may be considered. With little
loss of generality, the body can be taken to be convex, with a
dry volume VA bounded by SA and S0. In this case, the total
volume is V = Vw + VA as illustrated in Fig. 1. As long as
the density of air ρA does not vary much, air pressure can be
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written as pA = p0 − ρAgz. The divergence theorem can be
applied to the dry volume to determine the vertical pressure
force FA exerted by air on the body:

FA = ρAgVA − p0S0 (5)

It follows that the overall vertical fluid force F is equal to

F = g(ρwVw + ρAVA) (6)

The moment exerted by fluid pressure forces about the origin
is

�M =
∫ ∫

S
�r × p�n dS

=
∫ ∫

Sw
�r × pw�n dS +

∫ ∫
SA

�r × pA�n dS,

where �r is the position vector. After expanding the cross
products and expressing the pressure via Eq. (2) in both
water and air, it is straightforward to show that, by apply-
ing Gauss’ divergence theorem, only integrands containing
znz contribute non-zero terms. More specifically, we obtain

�M = ρwg
∫ ∫

Sw

⎛
⎝−yz

xz
0

⎞
⎠nz dS + ρAg

∫ ∫
SA

⎛
⎝−yz

xz
0

⎞
⎠nz dS

Let Cw = (xw, yw, zw) and CA = (xA, yA, zA) be the vol-
ume centroids of Vw and VA, respectively. Applying Eq. (3)
with f = yz and f = xz leads to the following final form:

�M = g

⎛
⎝ ρwVwyw + ρAVAyA

−ρwVwxw − ρAVAxA
0

⎞
⎠ (7)

Because ρA � ρw, by nearly three orders of magnitude, the
terms arising from air pressure forces can be neglected in
Eqs. (6) and (7) as long as VA is not much larger than Vw.
Here, the traditional hydrostatic formulas for a floating body
are derived without making any assumption on p0, but by
invoking the fact that air density is much smaller than that
of water. As a matter of fact, p0 does not explicitly appear
in the above results. Also, the case of submerged bodies is
recovered if we set ρA = ρw in Eqs. (6) and (7).

With concave floating bodies, for which V = Vw − VA,
a similar approach can be followed. Such geometries are
perhaps more representative of ship hulls. Results are given
below but details are omitted:

F = g(ρwVw − ρAVA) (8)

�M = g

⎛
⎝ ρwVwyw − ρAVAyA

−ρwVwxw + ρAVAxA
0

⎞
⎠ (9)
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Fig. 2 Schematic diagram for the application of Gauss’ divergence
theorem to the hydrostatic pressure field surrounding a vertically dis-
placed body afloat in a stagnant fluid

In what follows, ρA � ρw is neglected, and since the
overall fluid forces on the body have been shown to be inde-
pendent of p0, p0 can also be set to 0.

It should be noted that many common textbooks in naval
architecture state Archimedes’ Principle as a starting point
for the study of ship stability, without explicitly expressing
hydrostatic pressure and resolving hydrostatic forces applied
on submerged or floating bodies (e.g., Gillmer and Jonhson
1982; Lewis 1988; Zubaly 1996; Tupper 2004). Sometimes,
p0 is implicitly set to zero as in Newman (1977), where
atmospheric pressure is formally considered when deriv-
ing wave potentials (i.e., Equation (3), p. 239), but is later
omitted when dealing with body responses in waves (i.e.,
Equation (129), p. 289). Other authors recognize that p0 also
acts on the superstructure of a floating body; they either state
(Molin 2002) or demonstrate on a simple shape (Biran 2003)
that p0 does not result in any net force on the entire body
and can, therefore, be set to zero. Semyonov-Tyan-Shansky
(1966) stands out for providing an accurate derivation of
Eq. (8) in the practical case of thin concave floating bodies
similar to ship hulls (Vw = VA), leading to Equation (4.17),
p. 19.

When a floating body is displaced vertically over a dis-
tance Z (without disturbing the fluid), the vertical force
changes by an amount equal to δFw = ρwgδVw, where the
incremental (algebraic) submerged volume δVw is bounded
by surfaces S0, S1 and Sring, as illustrated in Fig. 2. Note that
if Z is small, the integral of the hydrostatic pressure forces
over Sring is of order Z2 and can be neglected; in this case, the
only non-zero contribution to the incremental vertical force
is equal to −ρwgS0Z , a well-known result for the hydrosta-
tic restoring force in the linearized analysis of the motion of
floating bodies. While those results are rather obvious, the
case of vertically displaced floating bodies in a stagnant fluid
was primarily considered to highlight the fact that the effect
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of a wave field on hydrostatic pressure is fundamentally dif-
ferent from the effect of body motion.

3 Hydrostatic pressure in the presence of a wave
field

We now turn our attention to cases when a wave field is
present. With little loss of generality, we focus on floating
bodies that are fixed in position, and it is also assumed that
the waves under consideration can be described by linear
potential theory. The linearized form of Euler’s integral pro-
vides an expression for the total fluid pressure (where p0 has
been set to zero):

p = −ρwgz − ρw
∂ϕ

∂t
(10)

Traditionally, the two terms in the right-hand side are defined
as the hydrostatic pressure ph and the dynamic pressure pd
(e.g., Newman 1977). This choice straightforwardly extends
the expression ph = −ρwgz that holds in a stagnant fluid.
On the free surface z = η, the pressure is equal to p0 = 0 and
this dynamic boundary condition yields a familiar linearized
expression for η:

η = −1

g

∂ϕ

∂t

∣∣∣∣
η≈0

(11)

Regarding hydrostatic pressure, an important point of
departure from the stagnant fluid case is that it does not satisfy
the boundary condition ph = 0 on the free surface. Instead,
we have ph(η) = −ρwgη, as well as pd(η) = ρwgη. If
the hydrostatic pressure force is estimated with Eq. (3) and
f = −ρwgz, as before, Archimedes’ familiar theorem does
not hold. We obtain an incremental vertical hydrostatic force
δFw equal to

δFw = ρwg

{∫ ∫
FS

ηnz dS + δVw

}
, (12)

where FS is the free surface extended inside the body. Pos-
sible issues with defining FS are not relevant in the present
context; in simpler cases where the Froude–Krylov approx-
imation can be made, there is no ambiguity since the total
wave potential is reduced to a function known everywhere
(incident wave potential). δVw = ∫∫

S0
η dS is the incremen-

tal (algebraic) submerged volume, as illustrated in Fig. 3.
Since the projection of a surface element dS from FS on S0
is −nzdS (with the normal pointing into the fluid), it follows
from Eq. (12) that δFw = 0. With the traditional definition
of hydrostatic pressure in the presence of a wave field, the
hydrostatic forces exerted on a floating body are independent
of this wave field; what this really means is that the dynamic

(z)

Vw+ Vw
ph = w g z

n

ph = 
Sring

w g
n

Fig. 3 Schematic diagram for the application of Gauss’ divergence
theorem to the hydrostatic pressure field surrounding a fixed floating
body in the presence of waves

effects of waves are manifest through the dynamic pressure
only.

The derivation of this result is not always clear. New-
man (1977), for example, attributes it to the smallness of the
integral of hydrostatic pressure forces along the thin strip
0 < z < η, which is of order η2 and, therefore, negligible
(Section 6.16, page 291). This strip corresponds to Sring in
Fig. 3. The very same argument, however, would lead to an
incorrect result if it were applied to the case of a vertically
displaced floating body in a stagnant fluid. It was verified
at the end of Sect. 2 that for a small vertical body displace-
ment Z , the integral of hydrostatic pressure forces along the
thin strip between 0 and Z (Sring in Fig. 2) is of order Z2

and, therefore, negligible as well. Yet, there is a first-order
change in the hydrostatic pressure forces, δFw = ρwgδVw.
The difference between those two situations is that ph satis-
fies different boundary conditions at the water surface. This
is why Gauss’ divergence theorem leads to different results.

Other respected textbooks in thefield of ocean engineering
incorrectly treat hydrostatic pressure effects in the presence
of a wave field, and such a lapse is more serious than the
loose derivation of a correct result. In a generally well-
written and clear treatise on wave mechanics, McCormick
(1973) addresses heaving forces on floating structures in
waves (Chapter 4). The hydrostatic restoring force due to the
body motion alone, as well as wave-induced effects from the
dynamic pressure pd (under the Froude–Krylov hypothesis),
is correctly described. In addition, however, another term is
proposed: this “second wave-induced force is the change in
the hydrostatic restoring force due to the passage of a wave”
and leads to Equation (4.29); in the present notation, this
corresponds to an additional vertical force precisely equal
to ρwgδVw = ρwg

∫∫
S0

η dS. Unfortunately, it represents a
spurious contribution from the hydrostatic pressure that is at
least as large as the Froude–Krylov force determined from
the dynamic pressure; the two terms would be equal in the
long-wave (shallow draft) limit when the product of the wave
number and the body draft tends to zero. Hence, the inclusion
of the spurious component amounts to an overestimation of
wave forces by, roughly, a factor of two. The same approach
can be traced in subsequent publications, e.g. McCormick
(2007), e.g. in Equations (4.25, 4.26).
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One could define hydrostatic and dynamic pressure terms
p̂h and p̂d that would individually satisfy the free surface
boundary condition p = 0. It suffices to write

{
p̂h = −ρg(z − η)

p̂d = −ρ
(

∂ϕ
∂t + gη

) (13)

This would allow Archimedes principle to be valid in the
presence of waves, but it would neither simplify the overall
analysis nor alter the overall result (i.e., a determination of
the total forces exerted on a body). Note that since the wave
elevation η depends on the horizontal coordinates x and y,
using the definition of hydrostatic pressure shown in Eq. (13)
would yield non-zero hydrostatic horizontal forces.

In closing, we should comment on the fact that naval
architects implicitly use the hydrostatic pressure definition
p̂h when estimating wave-induced primary structural loads
(e.g., Lewis 1988). The practice consists in estimating sec-
tional buoyancy loads along a ship with the wave profile
fixed in time (‘frozen’). To consider ‘extreme’ scenarios, the
wavelength is taken to be equal to the ship length, with either
a trough (sagging condition) or a crest (hogging condition)
midship. Interestingly, the quasi-static loads thus derived are
good approximations of the total pressure-induced loads (for
a given wave phase and under a Froude–Krylov hypothesis)
since the wave under consideration is long enough (or, in
relative terms, the draft of the ship shallow enough) to have
p̂d ≈ 0.

4 Conclusions

While it has been recognized that students generally strug-
gle with the concept of hydrostatic pressure (Loverude et al.
2010), this brief article reviewed its application in the context
of marine engineering. The basic case of objects immersed
in, or floating on a stagnant fluid was first considered. The
formulas embodied in Archimedes’ principle and used to
determine hydrostatic pressure forces and moments can sim-
ply be derived with Gauss’ divergence theorem. For floating
bodies, it was shown that no assumption is needed regard-
ing the pressure p0 at the water–air interface (atmospheric
pressure). With air regarded as a second fluid, overall fluid
forces can be derived where the presence of p0 is elimi-
nated; traditional textbook formulas can then be recovered
by invoking the relative smallness of air density. Next, the
case of a vertically displaced body in a stagnant fluid was
addressed to confirm that a change in vertical hydrostatic
forces occurs (first-order term for small displacements) even
though pressure forces along the additional wetted surface

are negligible (second-order). Finally, fixed floating objects
in the presence of waves were analyzed, where the total
pressure is traditionally split into additive terms, labeled
hydrostatic and dynamic, which do not individually satisfy
the dynamic free surface condition. As a result, Archimedes’
principle does not hold for this (pseudo) hydrostatic field.
Instead, it was shown that no change in vertical hydrosta-
tic forces occurs even though passing waves locally modify
body submergence. It was found that this point is not well
explained in textbooks, or that sometimes, a spurious ‘wave-
induced hydrostatic’ term is even proposed. In the latter case,
the error committed would be large, with a relative over-
estimation of wave-induced forces as large as a factor of
two. Finally, definitions of hydrostatic and dynamic pressure
terms were proposed such that Archimedes’ principle would
be applicable to the hydrostatic pressure field, even though
this would merely be a matter of formalism (or preference).
It was argued that quasi-static ship load (primary strength)
calculations performed by naval architects implicitly use the
‘alternate’ definition of hydrostatic pressure, and that ‘hydro-
static’ forces thus estimated actually reflect the effect of total
pressure.
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