
NOTES ON ‘INFINITESIMAL DERIVATIVE
OF THE BOTT CLASS

AND THE SCHWARZIAN DERIVATIVES’

TARO ASUKE

Abstract. The derivatives of the Bott class and those of the
Godbillon–Vey class with respect to infinitesimal deformations of
foliations, called infinitesimal derivatives, are known to be repre-
sented by a formula in the projective Schwarzian derivatives of
holonomies [3], [1]. It is recently shown that these infinitesimal
derivatives are represented by means of coefficients of transverse
Thomas–Whitehead projective connections [2]. We will show that
the formula can be also deduced from the latter representation.

Introduction

Given infinitesimal deformations of foliations, we can define the deriva-

tives of secondary characteristic classes for foliations with respect to

them. We call such derivatives infinitesimal derivatives for short. In-

finitesimal derivatives of the Bott class for transversely holomorphic

foliations, and those of the Godbillon–Vey class for real foliations are

known to be represented by a formula in the projective Schwarzian

derivatives of holonomies (Maszczyk [3] for q = 1 and [1] for general q,

where q denotes the (complex) codimension of foliations). Both of the

proofs consist of honest calculations so that their meanings are difficult

to see. It is recently shown that these infinitesimal derivatives can be

represented by means of coefficients of transverse Thomas–Whitehead

projective connections [2]. We will show that the formula can be also

deduced from the latter representation. This shows that the formula is
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2 TARO ASUKE

indeed derived from transverse projective structures of foliations which

are possibly non-holonomy invariant.

1. Definitions

We largely follow the notations in [2]. In particular, local coordinates

in the transversal direction will be (y1, . . . , yq) instead of (z1, . . . , zq)

in [1]. On the other hand, when we need notions related with Čech–

de Rham complexes, we modify notations in accordance with [1]. For

example, the product of a Čech–de Rham (r, s)-cochain a and a Čech–

de Rham (t, u)-cochain b is denoted by a ∪ b and is defined by (a ∪
b)i0,...,ir+t = (−1)stai0,...,it ∧ bit,...,ir+t . We will assume that foliations are

transversely holomorphic of complex codimension q, and deal with the

Bott class. The arguments for the Godbillon-Vey class of real foli-

ations of codimension q are parallel and omitted. Finally, the Einstein

convention is used throughout the article.

We recall the projective Schwarzian derivatives.

Definition 1.1. Let γ be a local biholomorphic diffeomorphism of Cq,

and let y = (y1, . . . , yq) and ŷ = (ŷ1, . . . , ŷq) be the natural coordinates

on the domain and the target of γ, respectively. We set

Σ(γ)lmn =
∂yl

∂ŷp
∂2ŷp

∂ym∂yn
− δln
q + 1

∂ log J(γ)

∂ym
− δlm
q + 1

∂ log J(γ)

∂yn
,

Λ(γ)mn = − 1

q + 1

∂2 log J(γ)

∂ym∂yn

− 1

(q + 1)2

∂ log J(γ)

∂ym
∂ log J(γ)

∂yn
+

1

q + 1

∂ log J(γ)

∂yp
∂yp

∂ŷl
∂2ŷl

∂ym∂yn
,

where J(γ) = detDγ denotes the Jacobian of γ. The (1, 2)-tensor

of which the coefficients are given by Σ(γ)lmn is called the projective

Schwarzian derivative of γ and denoted by Σ(γ). The (0, 2)-tensor of

which the coefficients are given by Λ(γ)mn is denoted by Λ(γ), which

is a kind of the curvature of Σ(γ).

The following is a well-known

Lemma 1.2. We have the following.

1) Σ(γ)pmn = Σ(γ)pnm.

2) Σ(γ)mmn = Σ(γ)mnm = 0.
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3) Σ is a cocycle in the sense that Σ(γ2 ◦ γ1) = γ∗1Σ(γ2) + Σ(γ1).

4) Λ(γ)mn = Λ(γ)nm.

In what follows, we fix a simple open covering {Ui} of M such that

each Ui is contained in a foliation chart. The coordinates in the trans-

verse direction on Ui are denoted by (y1
(i), . . . , y

q
(i)). Let γij be the

transition function from Uj to Ui in the transversal direction. We fix

a Bott connection on
∧qQ(F) and let θi = f(i)ldy

l
(i) be the connection

form on Ui with respect to ∂
∂y1

(i)

∧ · · · ∧ ∂
∂yq

(i)
.

Definition 1.3. We set

Σ(γij)
l
m = Σ(γij)

l
mndy

n
(j),

Λ(γij)m = Λ(γij)mndy
n
(j),

Λ̃(γij)m = (q + 1)Λ(γij)m,

H(ij)mn = Λ̃(γij)mn − f(j)lΣ(γij)
l
mn,

H(ij)m = H(ij)mndy
n
(j) = Λ̃(γij)m − f(j)lΣ(γij)

l
m.

We have δH = 0 by Lemma 1.4 below, and dH(ij)mn = −df(j)lΣ(γij)
l
mn

modulo Iq, where Iq denotes the ideal of Ω∗(M) locally generated by

dy1
(j) ∧ · · · ∧ dy

q
(j).

The following lemma can be shown by direct calculations.

Lemma 1.4. 1) We have

f(k)lΣ(γjk)
l
m − f(k)lΣ(γik)

l
m + f(j)lΣ(γij)

l
r(Dγjk)

r
m

= (f(j)l − f(k)p(Dγkj)
p
l )Σ(γij)

l
r(Dγjk)

r
m

+ f(k)l(Σ(γjk)
l
m − Σ(γik)

l
m + (Dγkj)

l
pΣ(γij)

p
r(Dγjk)

r
m)

=
∂ log Jkj
∂yl(j)

Σ(γij)
l
r(Dγjk)

r
m.

2) The cochain Λ(γ) = {Λ(γij)} fails to be a cocycle. Indeed,

we have

Λ(γjk)m − Λ(γik)m + Λ(γij)r(Dγjk)
r
m =

1

q + 1

∂ log Jkj
∂yl(j)

Σ(γij)
l
r(Dγjk)

r
m.

3) We have H(ij)k(Dγji)
k
m = −H(ji)m.

In what follows, f(j)lΣ(γij)
l
m is often denoted by (fjΣij)m.
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Corollary 1.5. We have

Λ(γji)r(Dγij)
r
m + Λ(γij)m =

1

q + 1

∂ log Jij
∂yl(j)

Σ(γij)
l
m

=
1

q + 1

∂ log Jji
∂yl(i)

Σ(γji)
l
s(Dγij)

s
m.

Remark 1.6. The case where q = 1 is exceptional and we have

Σ(γij)
l
m = 0,

Λ(γij)r(Dγji)
r
m + Λ(γji)m = 0.

Moreover, we have

H(ij)1 = Λ̃(γij)1 = −2

(
1

2

γ′′′ij
γ′ij
− 3

2

(
γ′′ij
γ′ij

)2
)
dy(j),

where the symbol ‘′’ means the differentiation with respect to y(j).

Therefore, both H and Λ̃ are equal to the classical Schwarzian deriva-

tive.

Lemma 1.7. Let αk = αkl ∧ dyl(j), where αkl is a differential form. If

(ω̇m(j)) is a Cq-valued differential form, then,

α1l ∧ Σ(γij)
l
m ∧ ω̇m(j) ∧ α2 ∧ · · · ∧ αq

+ α1 ∧ ω̇m(j) ∧ α2l ∧ Σ(γij)
l
m ∧ α3 ∧ · · · ∧ αq

+ · · ·+ α1 ∧ ω̇m(j) ∧ α2 ∧ · · · ∧ αql ∧ Σ(γij)
l
m

= 0.

Proof. The claim is shown by the following well-known equality, namely,

if a1, . . . , aq ∈M1,q(C) and if B ∈Mq(C), then

det


a1B
a2
...
aq

+ det


a1

a2B
...
aq

+ · · ·+ det


a1

a2
...

aqB

 = det


a1

a2
...
aq

 trB.

If we set Bl
n = (Σ(γij)

l
n), then trB = Σ(γij)

l
l = 0. �

Definition 1.8. Let a = {ai0i1···ik} be a Čech–de Rham (k, r)-cochain

which is not necessarily alternating. We define an alternating Čech–de

Rham (k, r)-cochain Alt(a) by

Alt(a)i0i1···ik =
1

(k + 1)!

∑
ρ∈Sk+1

(sgn ρ)aρ(i0)ρ(i1)···ρ(ik).
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We also denote the cochain Alt(a) by Alt(a01···k).

We have the following. The proof is easy and omitted.

Lemma 1.9. If a is a Čech–de Rham cochain, then δAlt(a) = Alt(δa).

Finally we will briefly explain infinitesimal derivatives. Let F be a

transversely holomorphic foliation of complex codimension q, of a mani-

fold M . Then, the Bott class is defined by a Čech–de Rham (0, 2q+1)-

form
(
−1

2π
√
−1

)q+1

θ ∪ (dθ)q, where θ = {θi} is a certain Čech–de Rham

(0, 1)-form. Under a certain condition which is always fulfilled if we

consider real transversely orientable foliations, we may assume that

θ is a globally defined 1-form on M . Especially, the Godbillon–Vey

class is usually defined by the (2q + 1)-form θ ∧ (dθ)q up to multi-

plication of a non-zero constant. If we have a smooth 1-parameter

family {Fs} of complex codimension-q foliations with F0 = F , then

the family
{

−1
2π
√
−1
θs ∪ (dθs)

q
}

is differentiable and we can consider

the derivative at s = 0. If we set θ̇ = ∂
∂s
θs
∣∣
s=0

and θ = θ0, then θ̇

and dθ are globally well-defined and the derivative is represented by(
−1

2π
√
−1

)q+1

(q + 1) θ̇ ∧ (dθ)q. These derivatives can be generalized to

the ones with respect to infinitesimal deformations. An infinitesimal

deformation of F is by definition an element of H1(M ; ΘF), where ΘF
denotes the sheaf of germs of foliated sections to Q(F). Let E(F) be

the vector bundle locally spanned by TF and ∂
∂y1

(i)

, . . . , ∂
∂ȳq

(i)
. In the real

case, we set E(F) = TF . Then infinitesimal deformations are repre-

sented by Q(F)∗-valued 1-forms on E(F). It is known that the repre-

sentatives can always be extended to a Q(F)∗-valued 1 forms and that

the infinitesimal derivatives are independent of the extensions. Given

an infinitesimal deformation, we can construct a derivative θ̇ of θ with

respect to each representative of the deformation. The infinitesimal de-

rivative of the Bott class with respect to the deformation is by definition

the class in H2q+1(M ;C) represented by
(
−1

2π
√
−1

)q+1

(q + 1) θ̇ ∧ (dθ)q.

An important remark is that we made a use of a representative σ for µ

in [1], while we made use of a representative ω̇ for −µ in [2] because ω̇

corresponds to the derivative of a (fixed) family of local trivializations

of Q(F)∗. In what follows, we will follow conventions in [2] and make

use of ω̇ = −σ.
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2. A proof of the formula

The formula given in [3] and [1] for the infinitesimal derivatives

of the Bott class and those of Godbillon–Vey class in the projective

Schwarzian derivatives is as follows.

Theorem A ([3], [1, Theorem 4.10]). Let Λ be the foliated Čech 1-
cochain defined by Λij = Λ(γij)m ⊗ dym(j). If µ ∈ H1(M ; ΘF) is rep-

resented by σ and if we set Lij(σ) = Λ(γij)mndy
n
(j) ∧ σm(j), then the

infinitesimal derivative of the Bott class is represented by
q + 1

(2π
√
−1)q+1(q − 1)!

∑
ρ∈Sq+1

(sgn ρ)((d log J)q−1 ∪ L(σ))ρ(0)···ρ(q).

In the real case, the same formula also holds for the infinitesimal de-

rivative of the Godbillon–Vey class.

By abuse of notations, we denote Lij(σ) = −Lij(ω̇) also by −Λij∧ω̇j.
In [2], infinitesimal derivatives of the Bott class as well as those of the

Godbillon–Vey classes are discussed, and it is shown that they can be

represented by means of coefficients of transverse Thomas–Whitehead

projective connections. We will present here a proof of Theorem A by

continuing calculations in [2]. We remark that the proof given in [1] is

in a slightly more general setting. Indeed, we can consider a family of

locally defined Bott connections rather than globally well-defined ones.

Before the proof, we will make some remarks and recall some relevant

facts from [2].

Remark 2.1. On the page 406, line 7 of [1], we claimed that

(D′′ρ(k))0···q = (−1)q(q+1)/2dωk(σk)∆k − 〈(d log J)q|σk〉.

The last term should be read as

〈∂̂(d log J)q|σk〉.

In addition, −(2π
√
−1)q+1〈(d log J)q|σk〉 in the line 9 should be read

as

−(2π
√
−1)−(q+1)〈∂̂(d log J)q|σk〉.

Let N ′(k)i = df(k)i −
1

q + 1
f(k)if(k)jdy

j
(k). The tensor N ′ is defined by

coefficients of transverse Thomas–Whitehead projective connections [2].
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If ω̇ is a representative of an infinitesimal deformation, then we can lo-

cally represent ω̇ as ω̇lj
∂

∂yl
(j)

, where j is an index for coverings and we do

not take contractions. We set N ′j ∧ ω̇j = N ′(j)l ∧ ω̇lj. We define Λij ∧ ω̇j,
Hij ∧ ω̇j, fjΣij ∧ ω̇j and

∂ log Jij
∂y(j)

Σkj ∧ ω̇j in a similar way. As dθi is

globally well-defined, we will omit the indices in what follows. Then,

the family of locally defined tensors N ′ = {N ′(k)i} has the following

properties.

Lemma 2.2 ([2, Lemma 4.10]). We have

−1

q
θ̇ ∧ (dθ)q = d(N ′ ∧ ω̇) ∧ (dθ)q−1.

Lemma 2.3 ([2, Lemma 4.5]).

N ′(j)ltDγji
l
m(Dγji)

t
s −N ′(i)ms = H(ji)ms.

Actually Lemma 4.5 in [2] is shown in a slightly more general setting.

Lemma 2.2 shows that the infinitesimal derivative of the Bott class is

cohomologous to d(N ′∧ω̇∧(dθ)q−1) multiplied by−(−2π
√
−1)−(q+1)q(q+

1) in the Čech–de Rham complex, and Lemma 2.3 shows that (δN ′)ij = −Hij.

Proof of Theorem A. If c = {ci0,...,ik} is a Čech–de Rham cochain, then

we denote ci0,...,ik by c0,...,k for simplicity. As σ = −ω̇, it suffices to show

that θ̇ ∧ (dθ)q is cohomologous to

(−1)
q(q+1)

2

(q − 1)!

∑
ρ∈Sq+1

(sgn ρ)d log Jρ(0)ρ(1)∧· · ·∧d log Jρ(q−2)ρ(q−1)∧Λρ(q−1)ρ(q)∧ω̇q.

Let

c
(0,2q)
0 = N ′(0)l ∧ ω̇l0 ∧ (dθ)q−1.

We have 1
q
θ̇ ∧ (dθ)q +D′′c(0,2q) = 0, and

(δc(0,2q))01 = c
(0,2q)
1 − c(0,2q)

0

= H(10)m ∧ ω̇m0 ∧ (dθ)q−1

= −H(01)m ∧ ω̇m1 ∧ (dθ)q−1.

If q = 1, then these equalities together with Remark 1.6 show that

θ̇ ∧ dθ is cohomologous to −Λ̃ ∧ ω̇ and the proof is completed. We

assume q > 1 in what follows. For 1 ≤ k ≤ q − 1, we set

α
(k,2q−k)
0,...,k = θ0 ∧ d log J01 ∧ · · · ∧ d log Jk−2,k−1 ∧Hk−1,k ∧ ω̇k ∧ (dθ)q−k−1,
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β
(k,2q−k)
0,...,k =

k−1∑
r=0

(θ0 ∧ d log J01 ∧ · · · ∧ d log Jk−2,k−1 ∧ frDγrkΣk−1,k ∧ ω̇k ∧ (dθ)q−k−1,

γ(k,2q−k) = α(k,2q−k) +
1

q
β(k,2q−k),

c(k,2q−k) = (−1)
(k+1)(k+2)

2 Alt γ(k,2q−k),

where d log J01 ∧ · · · ∧ d log Jk−2,k−1 is formally set to be 1 if k = 1.

We have

dα
(k,2q−k)
0,...,k

= d log J01 ∧ · · · ∧ d log Jk−2,k−1 ∧Hk−1,k ∧ ω̇k ∧ (dθ)q−k

− (−1)kθ0 ∧ d log J01 ∧ · · · ∧ d log Jk−2,k−1 ∧ dfk ∧ Σk−1,k ∧ ω̇k ∧ (dθ)q−k−1,

dβ
(k,2q−k)
0,...,k

=
k−1∑
r=0

d log J01 ∧ · · · ∧ d log Jk−2,k−1 ∧ frDγrkΣk−1,k ∧ ω̇k ∧ (dθ)q−k

+ (−1)k
k−1∑
r=0

θ0 ∧ d log J01 ∧ · · · ∧ d log Jk−2,k−1 ∧ dfr ∧DγrkΣk−1,k ∧ ω̇k ∧ (dθ)q−k−1,

δα
(k,2q−k)
0,...,k+1

= d log J01 ∧ · · · ∧ d log Jk−2,k−1 ∧ d log Jk−1,k ∧Hk,k+1 ∧ ω̇k+1 ∧ (dθ)q−k−1,

δβ
(k,2q−k)
0,...,k+1

=
k∑
r=1

d log J01 ∧ · · · ∧ d log Jk−1,k ∧ frDγr,k+1Σk,k+1 ∧ ω̇k+1 ∧ (dθ)q−k−1

+
k−1∑
r=0

(−1)r(θ0 ∧ d log J01 ∧ · · · ∧ ̂d log Jr,r+1 ∧ · · · ∧ d log Jk−1,k

∧ ∂ log Jr,r+1

∂y(r+1)

Dγr+1,kΣk,k+1 ∧ ω̇k+1 ∧ (dθ)q−k−1).
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By Lemma 1.7, we have

δγ
(k,2q−k)
0,...,k+1 − dγ

(k+1,2q−k−1)
0,...,k+1

= −1

q
d log J01 ∧ · · · ∧ d log Jk−1,k ∧ f0Dγ0,k+1Σk,k+1 ∧ ω̇k+1 ∧ (dθ)q−k−1

+
1

q

k−1∑
r=0

(−1)r(θ0 ∧ d log J01 ∧ · · · ∧ ̂d log Jr,r+1 ∧ · · · ∧ d log Jk−1,k

∧ ∂ log Jr,r+1

∂y(r+1)

Dγr+1,k+1Σk,k+1 ∧ ω̇k+1 ∧ (dθ)q−k−1)

+ (−1)k+1 q − k − 1

q
θ0 ∧ d log J01 ∧ · · · ∧ d log Jk−1,k

∧ dfk+1 ∧ Σk,k+1 ∧ ω̇k+1 ∧ (dθ)q−k−2

= 0.

Therefore,

D′(−1)
(k+1)(k+2)

2 γ
(k,2q−k)
0,...,k+1 +D′′(−1)

(k+2)(k+3)
2 γ(k+1,2q−k−1)

= (−1)
(k+1)(k+2)

2 δγ
(k,2q−k)
0,...,k+1 − (−1)

(k+1)(k+2)
2 dγ(k+1,2q−k−1)

= 0

for k ≥ 1 and

D′′(−γ(1,2q−1)) = dγ(1,2q−1)

= H01 ∧ ω̇1 ∧ (dθ)q−1 + θ0 ∧ df1 ∧ Σ01 ∧ ω̇1 ∧ (dθ)q−2

+
1

q
f0Dγ01Σ01 ∧ ω̇1 ∧ (dθ)q−1

− 1

q
θ0 ∧ df0 ∧Dγ01Σ01 ∧ ω̇1 ∧ (dθ)q−2

= H01 ∧ ω̇1 ∧ (dθ)q−1.
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Hence θ̇ ∧ (dθ)q is cohomologous to qD′c(q−1,q+1) in the Čech–de Rham

complex. On the other hand, we have

δγ(q−1,q+1)

= d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧Hq−1,q ∧ ω̇q

+
1

q

q−1∑
r=1

d log J01 ∧ · · · ∧ d log Jq−2,q−1 ∧ frDγr,qΣq−1,q ∧ ω̇q

+
1

q

q−2∑
r=0

(−1)r(θ0 ∧ d log J01 ∧ · · · ∧ ̂d log Jr,r+1 ∧ · · · ∧ d log Jq−2,q−1

∧ ∂ log Jr,r+1

∂y(r+1)

Dγr+1,qΣq−1,q ∧ ω̇q)

= d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ Λ̃q−1,q ∧ ω̇q
− d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ fqΣq−1,q ∧ ω̇q

+
1

q

q−1∑
r=1

d log J01 ∧ · · · ∧ d log Jq−2,q−1 ∧ frDγr,qΣq−1,q ∧ ω̇q

+
1

q
d log J01 ∧ · · · ∧ d log Jq−2,q−1 ∧ f0Dγ0,qΣq−1,q ∧ ω̇q

= d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ Λ̃q−1,q ∧ ω̇q

− 1

q

q−1∑
r=0

d log J01 ∧ · · · ∧ d log Jq−2,q−1 ∧
∂ log Jrq
∂y(q)

Σq−1,q ∧ ω̇q

= d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ Λ̃q−1,q ∧ ω̇q

− 1

q

q−1∑
r=0

d log J01 ∧ · · · ∧ d log Jq−2,q−1 ∧ (Λ̃qr − Λ̃q−1,r + Λ̃q−1,q) ∧ ω̇q

= −1

q

q−1∑
r=0

d log J01 ∧ · · · ∧ d log Jq−2,q−1 ∧ Λ̃qr ∧ ω̇q

+
1

q

q−2∑
r=0

d log J01 ∧ · · · ∧ d log Jq−2,q−1 ∧ Λ̃q−1,r ∧ ω̇q,
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where ‘ ̂d log Jr,r+1’ means that d log Jr,r+1 is omitted. We have

(2.4)
d log J01 ∧ · · · ∧ d log Jq−2,q−1

= d log J01 ∧ · · · ∧ d log Jr−2,r−1 ∧ · · · ∧ d log Jq−2,q−1

= d log J01 ∧ · · · ∧ d log Jr−3,r−2

∧ d log Jr−2,r ∧ d log Jr−1,r+1 ∧ · · · ∧ d log Jq−3,q−1 ∧ d log Jq−2,q−1.

If q − r is even, then the right hand side of (2.4) is equal to

(−1)εd log J01 ∧ · · · ∧ d log Jr−3,r−2

∧ d log Jr−2,r ∧ d log Jr,r+2 ∧ · · · ∧ d log Jq−4,q−2 ∧ d log Jq−2,q−1

∧ d log Jq−1,q−3 ∧ · · · ∧ d log Jr+1,r,

where ε = l2 if q − r = 2l. If q − r is odd, then the right hand side

of (2.4) is equal to

(−1)εd log J01 ∧ · · · ∧ d log Jr−3,r−2

∧ d log Jr−2,r ∧ d log Jr,r+2 ∧ · · · ∧ d log Jq−3,q−1 ∧ d log Jq−1,q−2

∧ d log Jq−2,q−4 ∧ · · · ∧ d log Jr+1,r,

where ε = l2 + l if q − r = 2l + 1. Therefore, modulo alternations of

indices, we have

d log J01 ∧ · · · ∧ d log Jq−2,q−1 ∧ Λ̃qr ∧ ω̇r
Alt
= −d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q ∧ Λ̃q−1,q ∧ ω̇q
= −d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ Λ̃q−1,q ∧ ω̇q
− d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−1,q ∧ Λ̃q−1,q ∧ ω̇q,

where the symbol ‘
Alt
=’ means that the equality holds modulo alterna-

tions of indices. Similarly, we have

d log J01 ∧ · · · ∧ d log Jq−2,q−1 ∧ Λ̃q−1,r ∧ ω̇r
Alt
= d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ Λ̃q−2,q−1 ∧ ω̇q−1.
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Therefore, we have

δγ(q−1,q+1)

Alt
= d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ Λ̃q−1,q ∧ ω̇q

+ d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−1,q ∧ Λ̃q−1,q ∧ ω̇q

+
q − 1

q
d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ Λ̃q−2,q−1 ∧ ω̇q−1.

If we set ζ01 = d log J01 ∧ Λ̃01, then we have

d(d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ ζq−2,q−1) = 0

and

δ(d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ ζq−2,q−1)

= d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−1,q ∧ Λ̃q−1,q ∧ ω̇q
+ d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ Λ̃q−2,q−1 ∧ ω̇q−1

− d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q ∧ Λ̃q−2,q ∧ ω̇q.

On the other hand, we have

d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−1,q ∧ Λ̃q−1,q ∧ ω̇q
= d log J01 ∧ · · · ∧ d log Jq−4,q−3 ∧ d log Jq−3,q−1 ∧ d log Jq−1,q ∧ Λ̃q−1,q ∧ ω̇q
− d log J01 ∧ · · · ∧ d log Jq−4,q−3 ∧ d log Jq−2,q−1 ∧ d log Jq−1,q ∧ Λ̃q−1,q ∧ ω̇q

= d log J01 ∧ · · · ∧ d log Jq−4,q−3 ∧ d log Jq−3,q−1 ∧ d log Jq−1,q ∧ Λ̃q−1,q ∧ ω̇q
− d log J01 ∧ · · · ∧ d log Jq−5,q−4 ∧ d log Jq−4,q−2

∧ d log Jq−2,q−1 ∧ d log Jq−1,q ∧ Λ̃q−1,q ∧ ω̇q
+ d log J01 ∧ · · · ∧ d log Jq−5,q−4 ∧ d log Jq−3,q−2

∧ d log Jq−2,q−1 ∧ d log Jq−1,q ∧ Λ̃q−1,q ∧ ω̇q
= · · ·
Alt
= (q − 1) d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ Λ̃q−2,q−1 ∧ ω̇q−1

Alt
= −(q − 1) d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q ∧ Λ̃q−2,q ∧ ω̇q.
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Hence we have

δ(d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ ζq−2,q−1)

Alt
=
q + 1

q − 1
d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−1,q ∧ Λ̃q−1,q ∧ ω̇q

Alt
= (q + 1) d log J01 ∧ · · · ∧ d log Jq−3,q−2 ∧ d log Jq−2,q−1 ∧ Λ̃q−2,q−1 ∧ ω̇q−1.

Consequently, D′c(q−1,q+1) is equal, modulo alternations, to

(−1)
q(q+1)

2 Alt(d log J01∧· · ·∧d log Jq−3,q−2∧d log Jq−2,q−1∧ Λ̃q−1,q∧ ω̇q).

Thus we are done. �

Remark 2.5. Actually, we have shown that

Li0···iq =
q + 1

(2π
√
−1)q+1(q − 1)!

∑
ρ∈Sq+1

(sgn ρ)((d log J)q−1 ∪ Λ)ρ(0)···ρ(q),

where L is defined in [1]. This is the formula in [1, Lemma 4.7].

Remark 2.6. We can show that

(−1)
q(q+1)

2 (q + 1)2q

(−2π
√
−1)q+1

Alt(d log J0q ∧ · · · ∧ d log Jq−2,q ∧ Λq−1,q ∧ ω̇q)

is also a representative for the infinitesimal derivative of the Bott class.

It is more symmetric representation. Due to several non-trivial rela-

tions among Λ(γ), Σ(γ) and d log J(γ), a cocycle can have many ex-

pression. In addition, we can consider coboundaries so that we do not

know if there is a canonical or natural choice of a representative such

as so-called the Thurston cocycle for the Godbillon–Vey class (cf. [4]).

We think however that the one given in Theorem A and the one as

above are the simplest ones.
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