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NOTES ON INVARIANT SUBSPACES 

HARI BERCOVICI 

ABSTRACT. The main purpose of this article is to give an ap-
proach to the recent invariant subspace theorem of Brown, 
Chevreau and Pearcy: Every contraction on a Hubert space, 
whose spectrum contains the unit circle has nontrivial invari-
ant subspaces. Our proof incorporates several of the recent 
ideas tying together function theory and operator theory. 

1. I N T R O D U C T I O N 

The Jordan structure theorem for finite matrices has been known 
now for over one hundred years, and its usefulness can hardly be 
overstated. It says that every square matrix A over the complex 
numbers C is similar to another matrix B (i.e., B = XAX~l for 
some invertible matrix X) which is a direct sum of Jordan cells. 
That is, B can be written in block form 

\BX 0 ••• 0 ] 

B=\° B* '" ° 
[o 0 ... Bk\ 

and each Bt has the form 

[A, 
0 
0 

[o 

1 

*i 
0 

0 

0 •• 
1 •• 

h •• 

0 •• 

01 
0 
0 

*J 
for some kt e C. The numbers {Xx, X2, . . . , Xk} can be identified 
as the spectrum, or set of eigenvalues of A, 

{Xx, À2,..., Xk} = {X e C: det(/l/ - A) = 0} 

= {X e C: XI - A is not invertible}. 
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2 HARI BERCOVICI 

One can regard A as a linear operator on the finite-dimensional 
space Cn , and then the Jordan theorem says that Cn can be writ-
ten as a direct sum 

(ƒ = Jtx + ^t2 + ' ' ' + ^k 

of subspaces such that 
(i) each Jfi is invariant for A, i.e., AJtt c ^ ; and 
(ii) the restriction A\Jtt acts like a Jordan cell. 
One particular consequence of this result is that, for n > 2, 

A has nontrivial invariant subspaces (nontrivial means different 
from {0} and Cn). 

The search for an analogue of Jordan's theorem for linear op-
erators on infinite-dimensional spaces has led to many interesting 
developments and, in particular, to an awareness of the fact that 
in the infinite-dimensional case there is a much greater variety 
of linear operators. In particular, there are few meaningful ques-
tions that one may ask about arbitrary linear operators, with any 
hope of ever answering them. One such question is the invariant 
subspace problem which we now formulate. Let %? denote an 
infinite-dimensional complex Hilbert space, and write 2f{^) for 
the space of all continuous linear operators T: & —• &. A sub-
space of W is by definition a closed linear manifold in JT. A 
subspace Jt c ^ is nontrivial if J? ^ {0} and Jt =£ %? ; ^# is 
said to be invariant for T e 2>{%p) if TJ£ c Jl. 

1.1. Problem. Does every operator T € Sf(%?) have a nontrivial 
invariant subspace? 

One should emphasize the fact that merely knowing the answer 
to this problem for a given operator T does not give us nearly 
as much information as the Jordan theorem provides in the finite-
dimensional case. Nevertheless, the search for nontrivial invariant 
subspaces usually leads to more information about the given oper-
ator. 

Many methods have been devised for answering the invariant 
subspace problem, and we will see several of them in this arti-
cle. I would like to start by giving some basic examples which 
show that under certain circumstances one can find more invari-
ant subspaces than expected. For the following discussions we 
need to recall that an invariant subspace Jf for an operator T 
is said to be reducing for T if the orthogonal complement of Jf 
is also invariant for T. Mostly everybody who took a functional 
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analysis course must have heard of one of the great success sto-
ries in invariant subspace history: the spectral theorem for normal 
operators (recall that T is normal if T*T = TT*). The spec-
tral theorem provides a large supply of reducing subspaces such 
that the normal operator can in fact be constructed if we know 
these reducing subspaces. Let us focus on a very particular class 
of normal operators: the diagonal ones. Thus, assume that %? is 
separable and has an orthonormal basis {e{, e2, . . . } . Given a 
bounded sequence w = {w{, w2, . . . } of complex numbers, one 
can construct an operator Tw on %? such that 

Twej = wjej> 7 = 1 , 2 , . . . . 

Such an operator is called a diagonal operator (with diagonal w). 
The reducing subspaces of Tw are easy to determine if the w. are 
distinct: given a subset A of { 1 , 2 , 3 , . . . } consider the subspace 
JtA generated by {e.\ j G A}. Then J!A is reducing, and all 
reducing subspaces of Tw have this form (exercise!). Wermer [17] 
gave an example showing that Tw may have nonreducing invariant 
subspaces, and we would like to consider a closely related example 
here. 

1.2. Theorem. Set wn = exp(- l /n 1 / 2 + in1'2). Then Tw has 
nonreducing invariant subspaces, but T~{ does not. 

Our proof of this theorem will be closer to the approach of 
Brown, Shields and Zeiler [6] than to Wermer's original proof. We 
need a few preliminary facts. Recall that a subset A of a complex 
Banach space 3? is absolutely convex if ax + fiy e A whenever 
x,yeA,a, p eC, and |a| + \p\ < 1. 

1.3. Lemma. Let 3? be a Banach space, and let {xn}^Lx be a 
sequence in 8? whose closed absolutely convex hull is the unit ball 
of 3?. For every x € 8? and every e > 0 there exist scalars 

{a*Kiti c c such that 
oo oo 

J2\an\<WXW+e and X = J2anXn-

Proof. If x = 0 we can take an = 0 for all n. If x ^ 0 then 
JC/||JC|| is in the unit ball of Sf, so there exist scalars fineC, all 
zero except finitely many, such that J2^L\ l /y < 1, a n d 

II °° II 
\\_X y ^ 8 

IWI h \\<2^m 
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Setting a™ = fiH\\x\\, we have £ " i \a^\ < \\x\\ and 
oo I 

E (l) 
anXn\ 

«=1 

e 

( 1 ) , Repeating this procedure with x - Y*n=\ an xn m place of x, we 
find al2) G C such that 

K (2)| E (l) 

«=1 

e and 

(2) * " X X Xn~J2an X„ 

n=\ n=\ 

e 

<4-

(k) 
This process can be continued inductively to yield ^ ' Ê C such 

J*) fc-i that E7=iK ' l<« / 2 and 

t/), 

The reader will verify without difficulty that the numbers an = 

]C^i an satisfy the requirements of the lemma. Q.E.D. 

Let us denote by D the unit disc in C (D = {A e C: |A| < 1}), 
and write H°° for the Banach algebra of all bounded analytic 
functions in D (with the sup norm). A subset A c D is said to be 
dominating [15] if sup{|w(A)|: A e A} = ||w||00(= sup{|w(A)|: A G 
D}) for every u e H°° . Let us recall that every function u e H°° 
has nontangential limits u(Q for almost every Ç in the unit circle 
T = {C:|C| = l} ,and 

111111̂  = ess sup{|«(C)|:C€T}. 

It follows immediately that a set A is dominating if almost every 
point in T is a nontangential limit of A. (The converse is also 
true; cf. [6].) 

1/2 M*\ 1.4. Lemma. The set {wn}n=l, where wn = exp(- l /« ' +in ' ), 
is dominating. 

We leave the proof of this lemma as an exercise, but the follow-
ing picture tells almost all the story. 

We will need now a basic fact about the space H°° : it is (iso-
metrically isomorphic to) the dual of a Banach space. One can 
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exp(in1/2) J 

C /r~~"—""" " ™n 

exp(/(/i 4- l)1/2) i ^ V 

FIGURE 1 

see this in many different ways—one is to realize that H°° is 
closed in the weak* topology of L°°(D). Weak*-convergence of 
sequences in H°° is easy to describe as bounded pointwise con-
vergence. A sequence un e H°° converges weak * to zero if and 
only if sup„ \\un\\ < oo and un(k) -+ 0 for every A e D . Using 
this convergence one can describe a space whose dual is H°° . Let 
%? denote the space of all linear functionals (p in the dual of H°° 
such that (p{un) —• 0 whenever un e H°° and un —• 0 weak*. 
Then the dual <%?* is identified naturally with H°° in the follow-
ing way. For every continuous functional O o n / there exists u 
in H°° such that 

®((p) = (p(u)9 ye^. 

For each 2 e D one can consider the functional Ĥ  G j2* defined 
by 

g,
x(u) = u{X)9 ueH°°. 

1.5. Lemma. If A c D is dominating then the absolutely convex 
hull of {<§̂  : X e A} is dense in the unit ball of Sf. 
Proof. If the conclusion were false we can find (by the Hahn-
Banach theorem) a function u e H°° such that 

sup{|w(A)| : X e A} = sup{|^A(w)| : À e A} 

<sup{\cp(u)\:(pe^,\\(p\\<l} = \\u\\00. 

This contradicts the assumption that A is dominating. Q.E.D. 

We are now ready to prove the first part of Theorem 1.2. 
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1.6. Lemma. The operator Tw in Theorem 1.2 has nonreducing 
invariant subspaces. 
Proof. By Lemmas 1.4 and 1.5, the absolutely convex hull of 
{& : n = 1, 2, . . .} is the unit ball of $?. Lemma 1.3 implies 

n 

that we can find scalars {otn}™=x such that Y^\ \a
n\

 < °° anc* 
TZi an^wn = % • D e f i n e v e c t o r s x,ye^by x = E ^ i <*lJ2en , 
y = X^li 0LlJ2en and note that we have 

oo 

oo 

= £«**«.(**> 
= r 0 ( / ) = i iffe = o 

= 0 iffc^O. 
((•, •) denotes the scalar product.) Denote by Jf the subspace 
generated by {x, Twx, 7"£.x, . . .} . Then J[ is invariant, y is 
orthogonal to rw^f but not to Jf and hence Tw\Jt is not in-
vertible. Since Tw itself is invertible, we see that Jf is not a 
reducing subspace. Q.E.D. 

We note here that there is nothing special about the sequence 
{wn} except that it is a dominating set. Also note that the full 
power of Lemma 1.3 has not been used in the preceding proof. 
For further motivation of the material to follow, let us state the 
following result whose proof is essentially contained in that of 
Lemma 1.6 (replace ^ by (p). 

1.7. Proposition. For every functional (p e %? and every e > 0 
there exist vectors x j e / such that ||x||||y|| < \\ç>\\ + e and 

<p(u) = (u(TJx, y) 

for every polynomial u. 

One could of course define u(Tw) as the diagonal operator 
u(TwK = u(wnK> n= 1,2,... 

for every u G H°°, and then the conclusion of Proposition 1.7 
would hold for any u e H°° . 

We proceed now to prove the second part of Theorem 1.2. 
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1.8. Lemma. Every invariant subspace of Tw
 l is reducing. 

Proof. Let J? be an invariant subspace for T~ , and fix a natural 
number n . Since w~l is in the unbounded component of 

C\{w~l : m ? n}~ , 

Runge's theorem implies the existence of polynomials pk such that 

-> 1 and Pk(wm
l) —• 0 uniformly in m ^ n . The subspace «•# is 

invariant under Pk{T~x), and hence under the norm limit of these 
operators. This limit is clearly the orthogonal projection Pn onto 
the space generated by en . Thus PnJt c ^ # . We conclude that 
for each n we have either en^J^ or en±.^. Therefore J£ is 
generated by {en : en e *•#} and hence it is reducing. Q.E.D. 

Returning now to the invariant subspace problem, we observe 
again that the existence of invariant subspaces for either Tw or 
T~l is not an issue here—there are lots of them. Nevertheless Tw 

somehow manages to have many more invariant subspaces than 
T~l (the one produced in the proof of Lemma 1.6 is just the tip 
of the iceberg; see [5] for more details). A moment of thought 
reveals two properties of Tw that were essential in the proof: 

( 1 ) Tw "lives" in the unit disc D, whence its special relation-
ship with H°° . 

(2) The spectrum of Tw is "rich"—the eigenvalues accumulate 
at all points of T . 

In some sense one can see that Theorem 1.2 is an ancestor of 
the following result of Brown, Chevreau and Pearcy (see [8, 12, 
and 10] for the original proof). 

1.9. Theorem. Let T be an operator on %? such that 

(i) T is a contraction, i.e., \\T\\ < 1 ; and 
(ii) the spectrum a{T) of T contains the unit circle. 

Then T has nontrivial invariant subspaces. 

The rest of this paper will discuss in detail the proof of this 
theorem, starting essentially from scratch. 

2. PLAN OF THE PROOF 

Throughout this section T will be a fixed contraction on %?, 
whose spectrum contains the unit circle. 
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Quasisimilarity and hyperinvariant subspaces. A subspace J[ c %? 
is hyperinvariant for an operator A e &{Jf) if it is invariant for 
every operator X in the commutant {A}' = {X e &(%?): AX = 
XA}. Two operators A e &{&) and A' e <S?{^') are qua-
sisimilar if there exist bounded linear operators V : St —• St1 and 
W\St' -+St such that 

(i) A'V = VA and AW = WA1 ; 
(ii) V and W are one-to-one; and 

(iii) V and W have dense ranges. 

2.1. Lemma. Suppose A and A' are quasisimilar. If À has a 
nontrivial hyperinvariant subspace then A has a nontrivial hyper-
invariant subspace. 

Proof. Let V and W satisfy (i)-(iii) above, and let J!1 be a 
nontrivial hyperinvariant subspace for A1. Define 

jT = \f{XWJ?':Xe{A}'}, 

where " V " stands for "the closed linear manifold generated by." 
Clearly Jf is hyperinvariant and Jt ^ {0} because Jt D WJt'. 
Moreover, Jt ^ St because 

VJf=v{\fXWjr':Xe{A}f} 

c\J{Xfjr':X' e {A'}'} 

ÇLJ?' ±St' = (VSt)~. 

Thus Jt is nontrivial. Q.E.D. 

Normal operators not of the form otl with a e C ( I denotes 
the identity operator) are known to have nontrivial hyperinvariant 
subspaces provided by the spectral theorem. Therefore, in trying 
to prove an invariant subspace theorem, one may exclude those 
operators T which are quasisimilar to a normal operator—these 
are already covered by the preceding lemma. The following result 
of Sz.-Nagy and Foia§ is relevant here. 

2.2. Theorem. Suppose that for every h G St t h ^ 0, we have 

lim \\Tnh\\ïQï lim \\T*nh\\. 
n—•<» n—•oo 

Then T is quasisimilar to a unitary operator. 

Proof. The hypothesis implies that the formula 

| |JC| | '= lim 117**11, J C G / , 
A I — • O O 



NOTES ON INVARIANT SUBSPACES 9 

defines a norm on %f'; clearly ||.x||' < \x\. Denote by 2P1 the 
completion of %? in the new norm, and by X: %f -+ ^ ' the 
inclusion operator. We claim that there is a unitary operator £/ e 
S,{^1) such that J7X = I I . To prove this simply note that 
| | rx | | ' = IMl', x G %?, and hence T extends uniquely to an 
isometry U on &1. To show that U is unitary it suffices to 
prove that the range of U is dense in &1, or that the range of T 
is dense in %f. However this is immediate since the hypothesis 
implies that ker T* = {0} . Remark that X is one-to-one and has 
dense range. 

An analogous argument, with T* in place of T, proves the ex-
istence of a unitary operator U', and an operator Z , one-to-one 
and with dense range, such that TZ = ZU'. To conclude the 
proof we show that the operator Y = ZZ*X*, which is clearly 
one-to-one with dense range, satisfies the relation TY = YU. In-
deed, the relations UX = XT, TZ = ZU', U~{ = U* and 
U'~x = £/'* imply 

TY = TZZ*X* 

= zc/z*x* 
= z(jrzt/'~1)* 
= Z(U~lUXZU'~1)* 

= Z{U~lXTZU'~1)* 

= z(u~lxzu'u'~1)* 
= Z(U~lXZ)* 

= zz*x*u 
= re/, Q.E.D. 

The preceding observations show that in our search for invariant 
subspaces we may assume that at least one of the spaces 

i = { x e / : lim ||r";c|| = 0} 
n—•oo 

and 
1 = { ^ J : lim ||r**x|| = 0} 

* n—•oo 

is not zero. It is however trivial to verify that ^f is hyperinvariant 
for T and Jt^ is hyperinvariant for T*. Thus, in fact, we may 
assume that either Jt = %? or Jt^ = &. Now, T has nontrivial 
invariant subspaces if and only if T* does, so we may always 
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assume that J( = & upon replacing T by T* (if necessary). 
We record this assumption here for further reference. 

2.3. Assumption. We have l i m ^ ^ | |rwx|| = 0 for every x e / ; 
in other words, T is of class C0.. 

Unitary dilation. Let X be a Hubert space containing %", and 
let U be an operator acting on 3?. The operator U is called a 
dilation of T if 

Tn = PjrU
n\JT, /! = 0, 1 , 2 , . . . , 

where / ^ denotes the orthogonal projection onto the subspace 
^f of J " . If, in addition, U is unitary, then we talk about a 
unitary dilation of T . A famous theorem of Sz.-Nagy says that 
every contraction T has a unitary dilation. In the case at hand, 
when T is assumed to be of class C0., there is an easy proof. It 
starts with the observation that I—T*T is a positive operator—in 
fact 

((ƒ - T*T)x,x) = \\xf - | |7x| |2 , i e / , 

and hence it has a square root D. We have then 

xeJ^. II 
Thus, 

(2.4) 

Ml2 

for 

-\\Txf = 

X G St , 

WAX 

((I-T*T)x,x) 

l = \\xf- Urn || : 
n—•oo 

oo 

= E(ii^n2-
n=0 
oo 

n=0 

= \\Dx\\2, 

Tnxf 

\\Tn+lx\\2[ 

Let 2 denote the closure of the range of D, and let Jf denote 
the sum ^^L_QO 2 of infinitely many copies of 2 . Define U 
to be the bilateral shift operator on JT : 

( oo \ oo 

0 K)= 0 v. ; 
k=—oo y k=—oo 

of course f/ is unitary. Finally let V\ %? -* X be defined by 
oo 

™ = ffi hk, 
k——oo 
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where hk = DT~kh for k < 0 and hk = 0 for k > 0. Relation 
(2.4) shows that V is an isometry, and a trivial calculation shows 
that 

VTnh-UnVh±Vjr, he^, 
and hence 

PvjrU
nVh = VTnh, heJ^, /i = 0, 1, 2, 

We conclude that U is a unitary dilation of VTV~l e £?(¥<%*). 
Thus U is a unitary dilation of T if we agree to identify %? with 

The unitary dilation constructed above is a bilateral shift, and 
such operators are well understood. Let us give an alternate de-
scription of U. Consider normalized arclength measure dd/2n 
on T = {ew: 0 < 0 < 2n}. The symbols Ü will refer to 
LP(T, dd/ln). We denote by l}{2) the space of (classes of) 
measurable functions ƒ : T —• 3 such that 

11/1,2 = éiCmei6)^de<0°-
The space L2{3) can be identified with @^=l_003 by the Fourier 

transform—each function ƒ in L (3) corresponds with the se-
quence of its Fourier coefficients 

f{n) = ±tj*
n f{eie)e-inedd. 

Under this identification the shift U becomes simply multiplica-
tion by the independent variable 

(Uf)(eid) = ewf(ew), 0e[0,2n). 

Summarizing, we see that the following assumption can be made 
about T. 

2.5. Assumption. We have %? c L (3) for some Hubert space 
3t, and 

Tn =P^Un\^, n = 0, 1 , 2 , . . . , 

where U denotes the bilateral shift on L (3). 

I would like to note here that the hypothesis that T is of class 
C0. is not the only one that leads to Assumption 2.5. There is a 
more general class of contractions for which this assumption can 
be made—these are called the absolutely continuous contractions; 
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see [5] for a more detailed discussion of this class. Much of the 
discussion in this article applies to all absolutely continuous con-
tractions. 

Functional calculus. Assumption 2.5 implies that 

p(T) = Pjrp(UW 

for every polynomial p, and this suggests that we might define 
p(T) for every function p for which p(U) makes sense. Now 
p(U) makes sense for every p G L°° and, in fact, 

(p(U)f)(0=p(Of(0, peL°°, feL2(2?), 

for almost every £ G T. Thus we can define p(T) for every 
p G L°° . However, the correspondence p -* p(T) has the flaw that 
p(T)q(T) is not generally equal to (pq)(T) (check p(Q = Ç and 
q(Q = 1/C for instance). There is nevertheless a nice subalgebra 
of L°° such that the equation 

(pq)(T)=p(T)q(T) 

is true for p and q in that algebra. To describe this algebra, write 

H°° = {pe L°°:p(n) = 0 for n < 0}. 

This is of course an abuse since H°° has already been defined as 
the algebra of bounded analytic functions on D. This confusion 
disappears if one identifies functions in L°° with their sequence of 
Fourier coefficients, and analytic functions in D with the sequence 
of coefficients of their power series around the origin. A power 
series J2™=oan^n defines a bounded function in D if and only 
if Yl™=o a

n
ein *s ^ e Fourier series of a bounded function on T. 

The equation 

(2.6) (pq)(T)=p(T)q(T), p, q e H°°, 

holds because H°° is the weak * closure of polynomials in L°° , 
and (2.6) clearly holds for polynomials. Here "weak* " refers to 
the weak * topology of L°° as a dual space to L 1 . We refer to [14 
and 16] for a more detailed discussion of these points. The map 
p —> p(T), p G H°° , is the Sz.-Nagy-Foia§ functional calculus. 

Isometric functional calculus. A basic result of Apostol [1] is 
as follows; the proof will be given in §3. 
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2.7. Theorem. Assume that a(T) D T and the functional calculus 
for T is not an isometry, i.e., WPW^ > \\p(T)\\ for some p e H°° . 
Then T has nontrivial hyperinvariant subspaces. 

As a consequence of this result, the proof of Theorem 1.9 is 
reduced to the case in which T satisfies the following additional 
assumption. 

2.8. Assumption. We have \\p{T)\\ = WPW^ for every p e H°° . 

Coup de grâce. The following result was proved by Bercovici [4] 
and, in a somewhat weaker form, by Chevreau [11]. 

2.9. Theorem. Assume that the functional calculus for T is an 
isometry. Then for every weak*-continuous functional (p on H°° 
and every e > 0 there exist vectors X J G / such that 

IMIIMI<(l+fi)IHI and <p(p) = (p(T)x, y), peH°°. 

Note that Assumption 2.3 is not an hypothesis of this theorem. 
However, the proof is somewhat easier under the additional as-
sumption, and most of the ideas of the general case are present. 
At any rate, we saw that for the invariant subspace theorem we 
may assume that 2.3, 2.5 and 2.8 are true. The following result 
concludes the proof of Theorem 1.9. 

2.10. Corollary. If the functional calculus for T is an isometry, 
then T has nontrivial invariant subspaces. 

Proof. As in the proof of Lemma 1.6, choose x , y e / such that 
p(0) = (p(T)x, y), p e H°° , and note that (Tnx, y) = 0 for n > 
1 and (x, y) = 1. Two cases may arise: Tx = 0 or Tx ^ 0. If 
Tx = 0 then ker T is a nontrivial hyperinvariant subspace for T. 
If Tx ^ 0 then the closed linear span of {Tx, T2x, T3x, . . . } is 
invariant for T, and it is nontrivial because it is orthogonal onto 
y^O. Q.E.D. 

3. ISOMETRIC FUNCTIONAL CALCULUS 

The main purpose of this section is to prove Apostol's Theorem 
2.7. The proof will involve another (historically earlier) version of 
the functional calculus. It is well known that, given an operator 
T and a function ƒ analytic on a neighborhood of the spectrum 
a(T), one can define the Riesz-Dunford functional calculus 

f(T) = ^n^fW(U-T)~ldl, 
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where T is a simple closed curve (or a collection of such curves) 
surrounding a{T) and contained in the domain of ƒ . The map 
ƒ —• f(T) is an algebra homomorphism, in particular (fg)(T) = 
f(T)g(T). If the spectrum of T is disconnected this allows one 
to find invariant (indeed, hyperinvariant) subspaces for T. In 
fact, one can find in that case an analytic function g which is 
zero on part of a(T) and one on another part of a(T). The 
operator g(T) is a projection commuting with T, and its range 
is a nontrivial hyperinvariant subspace for T. One can sometimes 
adapt this technique for producing hyperinvariant subspaces when 
the spectrum of T is connected. 

Assume that T is an operator on %?, and a(T) contains the 
unit circle T. Assume further that there exist two rectifiable sim-
ple closed curves T and r ' with the following properties: 

(i) T and T7 are exterior to each other; 
(ii) T (resp. T7) meets T at exactly two points; 

(iii) T and T7 cross T along radial segments; 
(iv) rna(r) = rnT, r,na(r) = r,nT;and 
(v) \\{U- T)~l\\ < c/(|l - |A||) for A on T or T' but not on 

T. 
Denote r n T = {fj, f2} , r / n T = {C3,C4}? and define operators 

Note that the two integrals are Riemann integrals because the inte-
grands are bounded (because of (v)) and have at most two discon-
tinuities (each). It is clear that A commutes with T and hence 
{A%f)~ is an invariant subspace for T. In fact A commutes with 
every X e {T}' so that {A^)~ is hyperinvariant. To show that 
{A%?)~ is not trivial we prove the following result. 

3.1. Lemma. A £ 0, A' £ 0 and A*A = 0. 
Proof. Let 3S c 3?{%?) be a commutative Banach algebra con-
taining A, A' and T. By Zorn's lemma we may also assume 
that 3§ is maximal. Fix a point £ e T which is surrounded 
by T. We have £ e o(T) and therefore Gelfand theory (cf. 
[13]) implies that there exists a continuous algebra homomorphism 
<p: 3§ -» C such that <p(T) = Ç. Now, since 3S is maximal, we 
have {XI - T)~l G 38 whenever X g a(T) 9 and hence we can 
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calculate 

9(A) = ~ J(X - C,)(A - C2)<PW ~ T)~x)dX 

= (C-c,)(C-C2) 

by the Cauchy theorem. Since cp(A) ^ 0, we must have A ^ 0. 
The proof that A1 ^ 0 is virtually identical. 

The proof that A'A = 0 uses a standard technique from the 
Riesz-Dunford functional calculus. In the calculation to follow we 
will use the Cauchy theorem along with the easily verified "resol-
vent equation" 

1 [(XI - T)~l - (ill - T)~l] = (XI - T)~\ixl - T)~\ 
f J L - X 

With the notation p(X) = (X - Q(X - C2), q(/i) = (/i - C3)G" - C4) 
we have 

^ = —^-2 f f'p{X)q{n){kI -T)-\nI -T)-1 dkdn 
(2ni) Jr' Jr 

(2ni)z Jr'JT f*-* 
C i r C n(n\ 1 

dl 

du, 

(2niy JT VT'H-*< 

- ' j q m f l I - T ) - l \ f f { d X 
(2ni) Jr' VJT11~A 

and the integrals in square brackets are zero by the Cauchy theo-
rem. Q.E.D. 

For the remaining part of this section T will denote a con-
traction operator such that a(T) D T . We see from the above 
argument that to find a nontrivial hyperinvariant subspace it suf-
fices to find curves T and T7 with properties (i)—(v) above. We 
note first that the inequality in (v) is true for any X with |A| > 1. 
Indeed, in that case the fact that the Sz.-Nagy-Foia§ functional 
calculus is contractive implies 

pz-D-'Hsupj^^eD} 
1 1 

dist(A,D) \X\-l' 

file:///X/-l'
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One must concentrate therefore on the portion of T and T* that 
are contained in D . Let us set 

A = (o(T) n D) U JA e D\<7(r): ||(A7 - T)~l\\ > j ^ -

and denote by co the set of those £ G T which are not radial limits 
of points in A. 

3.2. Lemma. If co is uncountable then T has nontrivial hyperin-
variant subspaces. 

Proof. For each Ç e co choose two rational numbers a^, b^ G 
(0, 1) such that the set Ac = {tÇ: ac < t < l}u{k: \k-a£\ < bc} 
is contained in D\A. Since co is not countable there are a, b G 
(0,1) and an uncountable co c co such that a^ = a and b^ = b 
for all C £ co . Clearly then we can find Ç{, C2 » C3, C4 G a/ such 
that v4, n ^ r n^4r n ^ r ^ 0 . Supposing that the Ç, are arranged 

<»1 <»2 * 3 M J 

in counter clockwise order one can construct F and r* satisfying 
(i)-(v) such that TnD c At UAC and T'nD c At \JAC . Q.E.D. 

'1 *2 *3 M 

FIGURE 2 

3.3. Theorem. If A is not dominating then T has nontrivial hy-
perinvariant subspaces. If A is dominating then the Sz.-Nagy-Foia§ 
functional calculus is isometric. 
Proof. The first part of the statement follows from Lemma 2.2, 
so we proceed to the second part. Assume therefore that A is 
dominating and fix u G H°° and k G A. We can find v G H°° 
such that 

u(z) - u(k) = (k - z)v(z), z G D, 
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and IMI^ < 2\\u\\J(\ - \X\). We clearly have 

u(T) - u(X)I = (XI - T)v(T) = v(T)(XI - T). 

If X e a(T) it follows that «(A) e a(u(T)) and hence 

(3.4) ||M(DH >|M(A)|, i € f f ( r )nA. 

If A G A\(j(r) then we can choose a vector Ç e %*, \\£\\ = 1, 
such that 

H(A/-r)£ | |<i ( i - |A| ) . 
We have 

\\u(T)\\ > \\u(T)i\\ 
>\u(X)\-\\(u(T)-u(X)I)i\\ 
>\uW\-\\v\UW-T)t\\ 

>l«W|-flNloo» 
and hence 

(3.5) ||«(D|| + f HMI^ > \u(X)\, X G A\a(T). 

Relations (3.4) and (3.5) show now that 

\\u(T)\\ + flMI^ > sup{|M(A)| : A G A} = N ^ 

because A is dominating. Thus ||M(!T)|| > ^IMI^. Applying this 
inequality to un we get 

\\u(T)\\ > \\u(T)nfn > (±\\un\\J/n = (i)1/w | |W | |00, 

whence ||M(!T)|| > H^H .̂ The opposite inequality ||w(r)|| < HwĤ  
is always true. Q.E.D. 

We conclude this section with a result about essential norms 
and some consequences that are important for the developments 
to follow. We recall that the attribute "essential" refers to concepts 
related with the quotient algebra ^(JT)/^^), where JT{MT) 
is the ideal of compact operators on %?. Thus, the essential spec-
trum oe(T) is the spectrum of the class of T in this quotient 
algebra, and the essential norm \\T\\e is the norm of the class of 
T. We always have ae{T) c a(T) and \\T\\e < | |r| | . 

3.6. Proposition. Assume T satisfies Assumption 2.3 and that the 
functional calculus for T is isometric. Then in fact \\u(T)\\e = 
IMIoo M every ueH°° . 
Proof. Fix u e H°° and note that the last part of the proof of 
Theorem 3.3 shows that ||M(!T)|| coincides with the spectral radius 



18 HARI BERCOVICI 

of u(T). Assume, to get a contradiction, that ||M(!T)|| > ||w(r)||^. 
We conclude that there is an eigenvalue JX for u{T), with finite 
multiplicity, with \fi\ = IMI^ . The space */# = ker(w(T) - jul) is 
invariant for T, hence T\J£ has an eigenvalue A. Since T is of 
class C0 (Assumption 2.3), we must have |A| < 1, and therefore 
ker(T - XI) c ker(w(T) - u(X)I). We deduce that // = u(À), and 
hence u attains its maximum. It follows that u is constant and 
in that case clearly ||w(r)|| = ||w(r)||e , a contradiction. Q.E.D. 

From this point on T will be assumed to satisfy Assumptions 
2.3, 2.5 and 2.8. Thus, in particular, %? c L2(2). We denote by 
Xw the characteristic function of the set œ. Proposition 3.6 will 
allow us to find functions in %f which are "concentrated" on a 
given subset of T. 

3.7. Lemma. Given a subset œ c T with positive Lebesgue mea-
sure, a natural number p, e > 0, and vectors Çx, £2, . . . , { e 

L (2), we can find a vector i e / , x ^ 0, such that 

(i) ll#r\a>*H <eÏÏXœxW> <™d 
(ii) (x,tj)=0, 7 = 1, 2 , . . . , p. 

Proof. Choose ô > 0 such that <5/(l - 23) < e2, and fix a func-
tion u e H°° such that \u(Q\ = 1 for almost every Ç e co, and 
|w(Ç)| = £ for almost every £ G T\CÜ. Proposition 3.6 implies 
the existence of x € %? such that (x, {.) = 0, 1 < 7 < p , 

||JC|| = 1, and ||w(r)x|| > (1 - S){/2. But then we also have 
||UJC|| = \\u(U)x\\ > \\u(T)x\\ > (1 - ô)l/2. Thus 

II^^II2 + I U T \ ^ I I 2 - ^ = 1 - ^ 

< ||WX|| 

2 2 

from which we infer H^TW^H < <V( 1 —<?) • We have then H^xH 

= 1 " \\XT\wx\\2 > (1 - 2<5)/(l - Ô) so that 

ll^n^ll2 < T^ÎÔ'T^J
 < r r 2 ^ ' ^ w X " 2 < e2^<"xll2- Q E D -

We need the following slightly different version of this result. 
3.8. Proposition. Let ƒ e L°° be a function such that 0 < ƒ < 1, 
let ^,i2,...,^pGL2m and e e (0 ,1 ) . tf l l /L , > 1 - e , 
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there exists x e J?, x ^ 0, such that (x, £.) = 0, 1 < j < p, 

and\\(\-f){l\\\2<{zl{\~e))\\fll\\\2. 

Proof. Choose e < e such that the set co = {C: ƒ(£) > 1 - e'} 
has positive measure, and choose S > 0 such that 

e+ô2 e 

By Lemma 3.7 we can find x e %?, x ^ 0, with (x, {.) = 0, 

1 < j < p, and ||;tTx wx||2 < ^||zw^l|2 • W e wiU s h ° w that this x 
satisfies the conclusion of our proposition. We have 

\\fl/2x\\2>^lj(ew)\\x(eie)\\2dd 

> ( l - e ' ) | | ^ x | | 2
; 

and hence 

||(1 - / ) 1 / 2 x | | 2 = ^ jf (1 - f(ei6))\\x(eie)\\2dd 

+ ^jT(o(i-f(e
ie))\\x(eie)\\2de 

< fi'lU^II2 + \\Xr\wxf 

<e\\x(0x\\2 + S2\\x(0x\\2 

<-j—-r \ \ f x\\ 1 — e 

4. BOUNDED FUNCTIONS AND THE STRUCTURE 

OF THE UNITARY DILATION 

Throughout this section T will be a contraction operator sub-
ject to Assumptions 2.3, 2.5 and 2.8. We will denote by L°°{3î) 
the set of (classes of) bounded functions in L (3f). The main 
purpose of this section is to show that L°°(<3f) n ^ is dense in 
%?. Along the way we develop some useful facts related to the 
embedding of & in l}(QJ). 

Let us denote, as before, l) = L*(T, dO/ln). For any pair of 
vectors x, y e L (3f) we can define a function x • y e L by 
setting 

(x-y)(0 = (x(0,y(0) 



20 HARI BERCOVICI 

for almost every £ e T ; the scalar product on the right-hand side 
is calculated in 2 . Clearly x is essentially bounded if and only 
if x • x is essentially bounded. We note for further use that the 
Fourier coefficients (x-y)^(n) of x-y can be calculated as follows 

(4.1) (x-yf(n) = (U-nx,y), neZ, x, yeL2(2), 
and 

(d 9x (x • y)~ (n) = (T~nx, y), n < 0 

= (T x,y), n>0, 

if X J G / . Formula (4.1) is immediate. 

(x • JO~ (») = 2^ ̂  *"'"*(* • y)(*") de 

1 ƒ / — ind / /öv / /öxv in 

= 2nJ ^ x{-e ^,y{fi ^ 

= {U~nx,y) 

by the definition of the scalar product in L (3f), and (4.2) follows 
because U is a dilation of T and hence for x, y e %? and « > 0 

= (PjrU
nx,y) 

= (Tnx,y). 

A subspace W <z L {2) is called a wandering space if the 
spaces {UnW: n e Z} are pairwise orthogonal. One can verify 
without difficulty that W is wandering if and only if W ± UnW 
for n — 1 , 2 , 3 , . . . . Moreover, if W is wandering then so is 
UnW for any neZ. 

4.3. Lemma. Every vector in a wandering space is bounded. 

Proof. Let x be an element of a wandering space. It follows from 
(4.1) that (x • x)~ (n) = 0 for all n ^ 0, and hence x • x is 
essentially constant, hence bounded. Q.E.D. 

4.4. Lemma, (i) The spaces 
cT = {Uh-Th:he^y and W = {£/**- T*h: he^}~ 

are wandering. 
(ii) For every x e / a «rf « = 1 , 2 , . . . we have 

U*nx - T*nx eW® U*W e • • • e U*n~ V 

<zm/ /*e«œ 17*"^ - r*wx is bounded. 
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Proof, (i) We only prove that *V is wandering; W is treated 
analogously. It suffices to show that Uh - Th and Un(Uk-Tk) 
are orthogonal for n > 1 and h, k G / . Indeed, 

(Uh-Th, Un(Uk-Tk)) 

= (Uh, Un+lk)-(Uh, UnTk)-(Th, Un+lk) + (Th, UnTk) 

= (h9 Unk)-(h, Un~lTk)-{Th, Un+lk) + (Th, UnTk) 

= (h, Tnk)-(h, Tn~lTk)-{Th, Tn+lk) + (Th, TnTk) 

= 0, 

where we used the fact that U is unitary and dilates T. 

n-\ 
/..x TT*n rr*n Tr^,TT*n—krr^*k TT*n—k—\rr,*k+\ x 

(ll) U X-T X = 2_^{U T X-U T X) 
k=0 

= H£,ir-k-l{U\-T*yk), 
k=0 

where yk = T*kx . Q.E.D. 

Finally we use the fact that T is of class C0. (Assumption 2.3) 
to prove that bounded functions are dense in %?. 

4.5. Proposition, (i) & c ®Z\ U"n<T. 
(ii) X n L°°{2) is dense in %f. 

Proof. Fix X G / and note that 

x = x - lim U*nTnx 
n—>oc 

oo 

E /TT+nr^n TT*n+\ r^n+l x 

(U T x ~ U T x) 
n=0 
oo 

= XX"+1(t/y„-7>j, 
where yn = r " x . Thus (i) follows. To prove (ii) it suffices to 
show that P^(C/*"+1 (Uy - Ty)) is bounded for every y e & and 
n > 0. Since (7 is a dilation of T, we have 

P^(U^x(Uy - Ty)) = P ^ t T y - t /* n + 1 7» 

= r*'V-:r*'H"17>. 
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Now, U*n+l(Uy - Ty) is bounded as an element of a wander-
ing space, and therefore it suffices to show that T*ny - f*n+ly -
U*n+x(Uy - Ty) is bounded. This however is clear from Lemma 
4.4(H). Q.E.D. 

The most important consequence for us of this proposition is 
the following improvement of Proposition 3.8 (the improvement 
consists of the fact that z is bounded). 

4.6. Proposition. Let ƒ € L°° be a function such that 0 < ƒ < 1, 
letZl9i29...,tpeL2(&) andee(0, 1). If WfW^ > l - c f there 
exists a bounded function z e ^ , z ^ 0, such that (z, {.) = 0, 

l<j<P,and ||(1 - f)l/2z\\2 < (e/(l-e))\\fl/2z\\2. 

This version is an immediate consequence of Proposition 3.8— 
we just approximate the vector x of that proposition with a 
bounded function. One only needs to note the following elemen-
tary lemma, whose proof is left as an exercise. 

4.7. Lemma. Let ^ be a Hubert space, J? a dense linear mani-
fold in %?, and %f' a finite-codimensional subspace of %?. Then 
J? n &' is dense in %f'. 

For the proof of Proposition 4.6 take 

& = {x G &\ {x, £7.) = 0, 1 < j < p}. 

5. WEAK*-CONTINUOUS FUNCTIONALS ON H°° 

In this section we will reformulate Theorem 2.8 in the form 
in which we prove it. All the assumptions and notation of §4 
remain in force here. Let //0

l denote the space of those (classes 
of) functions ƒ e l) for which f(n) = 0, n < 0. The quotient 
Ll /HQ is a Banach space, and we will denote by [ƒ] the class 
(coset) in this space of a function ƒ G l) . We will argue below 
that the following statement is equivalent to Theorem 2.8. 

5.1. Theorem. For every (p e Lx /HQ and every e > 0 there exist 
vectors x, y e ^ such that ||JC|||M| < (1 +e)||p|| and <P = [^•y]-

The product x - y for x, y e L2(3î) was defined in §4. Let 
us note that this statement does imply the existence of invariant 
subspaces for T. Indeed, if we choose cp = [1] (the class of 
the constant one function) the equality [x • y] = cp means that 
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(JC • j>r {n) = l(/i) for n < 0 or (cf. (4.2)) that 

(T"x9y) = 1 if/i = 0 
= 0 i f / i ^O . 

The fact that r has nontrivial invariant subspaces follows now as 
in Corollary 2.9. 

Theorems 2.8 and 5.1 are truly identical because there is an 
isometry that associates with every element (p of L1 /H^ an ele-
ment y/ of the space 3? (see §1) in such a way that [x -y] = q> 
if and only if 

{u(T)x, y) = ^(w), u e H°°. 

We will not dwell on this subject any longer since it is somewhat 
technical, and since the invariant subspace result follows from The-
orem 5.1. 

6. FUNCTIONS CONCENTRATED ON A GIVEN SET 

The remainder of this paper is dedicated to the proof of Theo-
rem 5.1 (under Assumptions 2.3, 2.5 and 2.8). It is interesting to 
note that the central fact we use is Proposition 4.6. The structure 
of the contraction T disappears from the stage. Proposition 4.6 
tells us about the existence of bounded functions in & that are 
concentrated on a set. In this section we will further study these 
functions showing that they can be controlled very well in some 
sense. This presentation contains ideas from [8] and [3]. 

Fix a set a c T with positive measure \a\, vectors £x, £2, . . . , 
£ € L (3f), and two positive numbers r\ and ô . 

6.1. Definition. . The set S(a ; £x, £2, . . . , £ ; r\, a) consists of 
those vectors X G / such that 

(a) (x9Zj)=0, \<j<p\ 

(b) x can be written &sx = g + b,g,beL (3f) ; and 
(bl) ||S(C)||<*,(C) for almost every C e T ; 
(b2) ||6|| < 1,11*11; 
(b3) \(g,Zj)\<6\\x\\9 \<j<p. 

Observe that Proposition 4.6 guarantees the existence of nonzero 
elements in S{a ; £x, £2, . . . , £ ; r\ ; 8). Indeed, let ƒ = xa , and 
let z be given by that proposition. Choose a > 0 small enough 
that a||z(C)|| < 1 almost everywhere, and set x = az, g = xax, 
b = Xj\a

x • Properties (a), (bl) and (b2) are immediate if e is 
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small enough. For (b3) we note that 

\{g,tj)\ = \(b, t.)\ < \\b\\Uj\\ < (j^j UjWUW 

so that (b3) is also verified if e is small enough. 
If x = g + b e S{a ; £,, £2, . . . , £p ; rj ; Ô) then clearly 

JN_ < M < JWL. 
1 + 1 / " l l 5 " " 1 - 1 / 

6.2. Proposition. If r\ <\ then 

sup{||jc|| : x G S(<7 ; ̂  , £2, . . . , ̂  ; f/ ; Ô)} > 2"3>7|<7|1/2. 
Proof. For simplicity we write S = S(a ; ̂  , £2, . . . , Çp ; rç ; a), 
and let us set sup{||jc||: x € 5} = y|cr|1/2. Assume, to get a con-
tradiction, that y < 2~3*/. Let xn G 5 be a sequence such that 
l i m ^ ^ | | *J = y\a\{'2, and write xn = gn + bn, as required by 
the definition of the set S. Note that 

and set 

Then 

HsJI<lkJ/(i->/)<2--2/7M,/2
: 

o>„ = {Ce a: \\gn{Q\\ < i } 

< 4 

I I2 

1 ƒ M / iöv. ,2 / \\gH{ei0)\?de 
Jo\œ„ 

2 n Ja\œt 

<4iigjr 
< 2 - 2 f / 2 | a | , 

and hence 
rln |w«|=è/o *«,yv0>(i-2-y)M. 

Dropping to a subsequence we may assume that 

(i) xn converge weakly in %? to x ; 

(ii) xœ gn converge weakly in L {3f) to u ; 

(iii) T̂v 6n converge weakly in L (3f) to v ; and 

(iv) y converge weak* in L°° to ƒ , 0 < ƒ < y . 
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Note that 
i pin i p2n 

-fo xe«)d8 = nm^jo X(0y)de>(i-2-WM, 

and hence we must have f(Q > 1 - 2 Y\ for f in a set of posi-
tive measure. An application of Proposition 4.6 yields a bounded 
function z e / , z ^ 0, such that 

(V) <Z, U) = (Z,V) = (z,x) = (z,Zj) = (Z,ftj) = 0 
for 1 < j < p ; and 

(vi) | | ( l - / ) 1 / 2 z | | < (2-1f ,2 /( l-2-1
f /

2)) | | /1 / 2z| |2 < > / V / 2 z | | 2 . 
Dividing z by a sufficiently large constant we may assume that 
\\z(0\\ < 5 for almost every Ç e T. We claim that for sufficiently 
large n the vector xn = xn + z belongs to 5 and | |^ | | > y|cr|1/2 . 
The latter inequality is verified because 

ii™, KH 2 = j fe (Kii2+NI2+2Re<*«.z» 
= y2M + ||z||2 + 2Re<x,z) 

= yV| + ||z||2 

2 . i 

> 7 M; 

here we used (i) and (v). To see that xn € S we note first that xn 

satisfies condition (a) of the definition by (v). Furthermore, we can 
write x'n = g'n + b'n, were g'n = gn + X^ and b'n = bn+ ^ z . 
Condition (bl) is verified by the definition of con, and because 
11̂ (011 < \ almost everywhere. To verify (b2) we calculate 

i i^f-Vtói2 

= l|èJ|2-»/2 | |g ; j | |
2 + I U T \ û , z | | 2 - ^ | | ^ z | | 2 

+ 2Re[{bn , Xj\w z) - rl
2(gn, X(0 z)] 

where we used the fact that xn satisfies (b2). We use now (ii), 
(iii), (v) and (vi) to get 

l i m s u p C I I ^ I I 2 - ^ ! ! 2 ) 

< ||(1 - / ) 1 / 2 z | | 2 - > / V / 2 z | | 2 + 2Re[<t;, z> - r,2(u, z)] 

= \\(l-f)1/2z\\2-r,2\\f1/2z\\2<0, 
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so that xn satisfies (b2) eventually. Finally, 

K^^y)|<|(^,^)| + | (^z ,^) | 

<*II*JI + IU«,*^>I 
n J 

<6y\o\xl2 + \(Xwz,^\, 

so that using (iv) and (v) we get 

l i m s u p | ( ^ , ^ . ) | < ^ | ( 7 | 1 / 2 + | ( / z , ^ ) | = ^|(T|1 / 2 , 

and hence \(g'n, £.)| < S\\x'n\\ for n large. Therefore xn G S even-
tually, and this is a contradiction because ||JC^|| > sup{||jc|| : x G S} 
for n large. Q.E.D. 

We are now able to prove a strengthening of Proposition 6.2. 

6.3. Proposition. If r\ <\ then 

s u p { | | x | | : x G 5 ( ( 7 ; ^ , ^ , . . . , ^ ; ^ ; 5 ) } > ( l - ^ ) | ( 7 | 1 / 2 . 
Proof. Denote, as before, S = S(a ; Çx, £2, . . . , £ ; rç ; 5) , and 
set 

sup{| |x | | :xG5} = M l - ^ / ) k | 1 / 2 . 
Suppose, to get a contradiction, that // < 1. Let x = g + b be 
an element of S, and note that \\g\\ < fi\a\1^2 . The set co = {Ç G 
cr: ||^(C)|| < /^1/2} has positive measure; in fact 

2n Jo\o) V 2n Ja\to 

so that \co\ > (1 - //)|cr|. Let now ô' be a positive number, and 
choose an element 

z = y + fieS' = S(œ;b,g,il9i2,...9tp;ri;ô') 

such that ||z|| > 2~3rç|a;|1/2 > 2"3A/(1 — /z)1/2|cr|1/2. Let us as-
sume for the moment that the vector x — JC + (1 - /J )z has 
been shown to belong to S. We must have then \\x\\ < //(l -
*?)|<T|1/2 or, equivalents since (x, z) = 0, | | JC | | 2 +(1 - / / 1 / 2 ) 2 | | Z | | 2 < 
/i2(l-ri)2\a\. Thus 

IMI2+(i - ,ul/2)22-y (i - /I)|CJ| < /Ai - q)Vi. 
Letting ||x|| approach /i(l-ri)\o\ we get ( l - /* 1 / 2 ) 2 2~V(l -* / )M 
< 0, a contradiction. Thus, to conclude the proof it suffices to 
show that x e S for sufficiently small ô'. To do this note that 
condition (a) of Definition 6.1 is clearly verified. Next we write 
x' = g + b', were g = g + (l - fil/2)y and b' = ô + (l -til/2)p. 
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We have 

ll^(C)ll<k(OII + (i-^/2)l|y(OII 
<\\g(0\\ + (i-fii/2)xJO 
<xo(0 

by the definition of the set co ; this shows that (bl) of Definition 
6.1 holds for x'. To verify (b2) we calculate 

ll&'ll2 - tfU't = \\b\t - nWgf + (1 - ^1 / 2)2( | |^ | |2 - r,2\\y\\2) 

+ 2(l-nl/2)Re[(g,y}-r,2(b,fi)] 

<\\b\\2-r,2\\g\\2 + 2[\(g,y)\ + \(b,p)\]-

Using the fact that z e S' we get \(g, y)\ < ô'\\z\\ < 2ô' and 
\(b,P)\ = \{b,y)\<â'\\z\\<2ô',sothat 

\\b'f-ri2\\g'\\2<\\b\\2-t,2\\g\\2 + SS'. 

Therefore (b2) is verified provided that 

(6.4) 8<S'<,/2||g||2-||6||2. 

To verify (b3) we use the fact that x eS and 2 6 5 ' to get 

Kx',9l<|(x,^.)| + (l-/i,/2)|(z,^.>l 
<\{X,ij)\ + \(z,Zj)\ 

<ô\\x\\+ô'\\z\\ 

<Ô\\x\\ + 2ô'. 

Since 

\\x'\\ = (\\x\\2 + (l-fil/2)2\\z\\2)l/2 

>[W2 + ( i -^ / 2) 22-V(i-^)ki] , / 2 , 
we see that (6.3) is satisfied provided that 

(6.5) *||x|| + 2d' < ô[\\xf + (1 - til/2)22-6r,2(l - /I)|(T|]1/2 . 

Since both (6.4) and (6.5) are satisfied for sufficiently small a', 
the proposition follows. Q.E.D. 

The left-hand side in the inequality of Proposition 4.3 is increas-
ing in r\, while the right-hand side is decreasing. Thus Proposition 
4.3 immediately implies the following strengthening of itself. 

file:////b/t
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6.6. Corollary. For all rj > 0 we have 

s\xp{\\x\\:xeS(a;Çl9Ç2,... ,L;ri;ô}> \cr\l/2. 

7. APPROXIMATE FACTORIZATION IN L1 

The following result is a little weaker than Theorem 5.1 be-
cause it provides approximate factorization, and a little stronger 
than Theorem 5.1 because it refers to functions in L rather than 
classes in l) /H^ . The notation and assumptions of the previous 
section will remain in force. 

7.1. Theorem. Let Çl9Ç2, ... ,£p € &, e > 0, and ƒ e L{ 

be given. There exist x9y e %? such that ||x|| < ||/||J , 
IMI < | | / | i ; / 2 , (x,ij) = (y,tj) = 0 for j= 1,2,...,p, and 
\\f - x • y || j < e. Iff>0 almost everywhere we may choose 
x = y. 

Proof. Choose pairwise disjoint sets ox, a2, . . . , an with positive 
measure, and scalars yx, y2, . . . , yn such that 

I n 

/=i 

e 

1 

(7.2) 

and 

(7-3) EWKI< 
1=1 

Fix r\, ô > 0, and choose by virtue of Corollary 6.6 vectors 

z. e S(at ; Çx, £2, . . . , £p ; r\ ; 8) 

such that 

(7.4) l l z j l ^ l - ^ l 1 / 2 , i=l,2,...,n. 

Choose for each i a square root at of y., and set 
n n 

i = i i = i 

If ƒ is positive then the y. can be assumed positive, and hence 
x = y . To conclude the proof we have to show that x and y sat-
isfy the requirements of the statement provided that Y\ is appro-
priately small. The conditions (x, £.) = (y, £,) = 0, 1 < j < p, 
are immediate. Write z. = #. + bt as required by the fact that 
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zt G S{ai ; £{, £2, . . . , Çp ; rj ; <$), and note that the gt have dis-
joint supports, hence they are pairwise orthogonal. Therefore 

NI2<X>IKI+ £ KIKI(2II^IIII^II + IÎ IIII*;II) 
1=1 / , y = i 

< £ l * , l + £ l«/H«yl(2»;IU/IIIUyll+ 1̂1̂ 1111̂ 11) 
1=1 1,7=1 

i=i \ i = i / 

and by (7.3) we see that ||x|| < | | / | | } / 2 if rj is small enough. 
Finally we note that 

n n 

1=1 1,7 = 1 

where we used the fact that g. • g.. = 0 if / ^ j . Furthermore, 

iî , - *,- • ftiii=èiC^y^ - ^Mw)\\2)dd 

= \<r,\ ~ Uif 

' (l + '7)2 

+ E KIKItllftllll^ll + ll^llll^ll + 11̂1111̂111 

^ ^ - ( ^ ^ Ê W K I + ̂  + ^ ^ K l ) 2 -
This last number can be made < e/2 if Y\ is sufficiently small, 
and the inequality || ƒ - x • y || < e follows from (7.2). Q.E.D. 

8. FACTORIZATION IN THE QUOTIENT SPACE 

In this section we finally prove Theorem 5.1 and conclude the 
paper. The ideas here can be traced back to [12], but they have 

whence 
1 n 1 
uZy^ai-

x'y\ 
ii i= i i 

i n 

^ ii i=i 
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been adapted to the case of contractions of class C0.. We will 
need to return to our contraction T, subject to Assumptions 2.3, 
2.5 and 2.8. Let 

oo 

Jf+ = \J UnJT and U+ = U\J^. 
n=0 

8.1. Lemma. Ifxe 3£+ and j e / then [x • y] = [P^x • y]. 

Proof. We note first that 3P+ 6 %? is invariant for C/+ . Indeed, 
we have 

JT+ = & \j{ unh - Tnh : n > 1, h e <T}, 

and *T ± {l^A - Tnh: n > 1, h e •F} because t/ is a dilation 
of r . Thus we have 

3T+e<r = \/{Unh -Tnh:n>l,heJT}. 

Since 

U+(Unh - Tnh) = [/"+1/* - rn+1/z + Uk-Tk, k = -Tnh, 

we conclude immediately that f/+ leaves ^ © ^ invariant. This, 
of course amounts to the identity P^U^P^ = P^U" r n > I. 
Thus for x G 3£+ and y € %? we have 

for all « > 0. Q.E.D. 

We note for further use the relation T* = [/* | ^ which follows 
from the fact that « ^ 0 ^ is invariant for U+ . 

8.2. Proposition. IfxeJf+ and {yn} c %? is a sequence that 
converges weakly to zero, then l i m ^ ^ \\[x -yn]\\ = 0. 

Proof. By Lemma 8.1, we may assume that I G / , and by Propo-
sition 4.5(i) it will suffice to prove the present result for all vectors 
x e 0 ^ ! U*n<V. Since {yn} is a bounded sequence, it suffices 
to prove the proposition for x in a total set in © ^ U*neV, for 
instance for x of the form U*kz, z e f , ( : > 1. Note that 
([ /px, yn) = 0 if p > /:, and therefore 

ll[*-3gil<ÊK^*>^>l-

The latter sum clearly converges to zero as n —• oo. Q.E.D. 
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We use now the fact that C/+ is an isometry to write 3f+ = 
J£ ^31, where ^f and «£? are reducing spaces for £/ , £/ |^f is 
a unilateral shift (pure isometry), and U+\32 is a unitary operator. 
If m, m' eJf and r , r' € 3 1 it is clear that 

(m -f r) • (m +r) = m- m +r -r 

(just check the Fourier coefficients). 

8.3. Proposition. If y e J? and {xn} c ^f w a sequence that 
converges weakly to zero, then l i m ^ ^ ||[xw -y]|| = 0. 

Proof. This is similar to Proposition 8.2. It suffices, by the remark 
preceding the statement, to prove the proposition for a set of vec-
tors y total in J?. Assume therefore that y G ker U+N for some 
N>1. Then (U*xn, y) = 0 for fc > N, and hence 

J V - l 

i iK-y] | |<EK^^>i- Q-E-D-

We proceed now to several successive improvements of Theorem 
7.1. 

8.4. Proposition. Let e>0, x9y9y' € ^ , and x e 3ê be given. 
There exist xx, yx e £f with the following properties 

\\[x-y] + [x -y\-[xx-yx]\\<t, 

\\y-yx\\<2\\y'\\and 

\\xx || < (1 + e)[\\Pj,xt + (\\Pax\\ + \\x'\\)2]1'2. 
Proof. To explain the idea, we note that we may not be able to 
write 

[x-y] + [x-y] = [xx-(y + y)] 

for some xx e & because the sum y + y may vanish on a large 
set. Therefore we have to adjust the vector y such that the sum 
y + y is not zero two often. The adjustment of y is done as 
follows. Fix ô > 0, define a measurable set a c T by 

<7 = {CeT:||(Ps?y)(C)||<||(i'^)(C)||}, 

and consider an outer function y/ e H°° such that \i//(Q\ = S al-
most 
everywhere on a and \y/(Q\ = 2 almost everywhere on T\cr. De-
fine r\ e %? by r\ = y/(T)*y', and note that y/(T)*y' = y ( t / * ) / , 
and i/t(U+)\& is the operator of pointwise multiplication by ^ . 
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Therefore \\(P^r,)(Q\\ = MC)|||(P*/)(C)|| for almost every Ç. 
We need to make one further change. Choose a natural number 
N such that ||t/* V^>/|| < Ô and set / ' = T*Nrj G ^ . We have 
then 

ll^r/H = PV^'fll = I I ^ O l l < <*> Il/H * Ml ^ 2l|y'||> 
and 

IK^XOII = IK^XOII = lv(OIII(^/XC)ll 
almost everywhere. We are now ready to define yx = y + y" . In 
order to define xl we note first that for almost every Ç e a, 

\\(P^yl)(0\\ = \\(P^y)(Q + (P^y")(0\\ 

> \\(P^y)(0\\ - IK^/XOII 
= 11(^^(011-^IK^y'KOII 
>(i-o)\\(P^y)(0\\, 

while for almost every Ç € T\cr, 

IK^XOII > IK^/'XOII - IK^XOII 
= 2\\(P^y')(0\\-\\(P^y)(Q\\ 

> \\(Pay)(Ql 
Therefore we have 

IKF^XOH > (1 -5)max{||(P^)(C)||, ||(^/XC)II} 
almost everywhere. It follows that we can choose a measurable 
function g(Q such that 

g(C)HPayi)(C)\\2 = (x • Pay)(C) + (*' • /)(C) 
almost everywhere, and g(Q = 0 when (P#yx)(Q = 0. More-
over, we have 

giOWiP^KOW 
< ll(^*X0llll(^X0ll + llx'tOlllK/VXQII 

IK^y.XOII 
< (li(^,^)(0ii +11^(011)""«{iKf^fflii, ii(/y'xoil} 

IK^XOII 

^ Y 3 i ( l l ( ^ J C ) ( O I I + l |x ' (C) l l ) 

almost everywhere. Therefore the function x2 G & defined by 
x2(Q

 = S(0(P^y\)(0 satisfies the inequality 

Wl £ Î ^ 1 1 7 * * 1 1 + ll*'ll) > and x2 '* = x • (^) + *' • /• 
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Define next xx = P^(P^x + x2). To conclude the proof we have 
to show that xx and yx satisfy the conditions in the statement 
provided that ô is sufficiently small. First, 

\\y-yl\\ = 11/11 < 2II/H, 
and 

| | * j < | | ^ x + x j = [||^x||2 + ||*j2]1 /2 

(l-d) 

<^^[\\Pjex\\2 + (\\Pslx\\ + \\x'\\)2f2 1 

1/2 

1-Ô 

so that the last inequality in the lemma is satisfied if 1/(1 - ô) < 
1 +e. Finally, we have [x{ -y^ = [(PJg.x + x2)-yl] by Lemma 8.1, 
and therefore 

[x-y] + [x' •y']-[xl -y,] 

= \PjgX • y] + [x • Pmy\ + [x' • / ] - [P^x • y] 

- -IPjfX • Pj'l 

Thus 

\\**y\ + [x-y] - [xx -yx]\\ < | |x | | | | iV" | | < S\\x\\ < e 

for ô sufficiently small. Q.E.D. 

Our next task is to replace the function x • y in Proposition 
8.4 by an arbitrary function in L . 

8.5. Proposition. Let e > 0, x, y e J?, and g e l) be given. 
There exist xx,yx^%? with the following properties 

\\[x-y] + [g]-[xl-yl]\\<e, | | y - y J < 3 | | * | | J / 2 , and 

11*1 ii < o + « O K I I ^ I I + iisii!/2)2 + (IIP^XII + kii! / 2)2]1 / 2 . 
Proof. Theorem 7.1 implies the existence of orthogonal sequences 
{x(Al)}, {y{n)} in <T such that \\x{n\\ < \\gti\ \\y{n)\\ < \\g\\\/2, 
and 

Urn \\g-x{n).yin)\\x=0. 

Fix ô > 0, ô < e/4, and note that Propositions 8.2 and 8.3 imply 
the existence of n such that, upon setting £ = x^ and r\ = y^n), 

file:///PjgX
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we have \\[x • r,]\\ < ô, \\[{P^Q -y]\\ < ô, and \\g - Ç • tj^ < ô . 
Observe that 

[x-y] + [g] = [x-y] + [Ç-ri) + [g-Ç- rj] 

= [x-y] + [P^-r,} + [P^'t]] + [g-i-r1] 

= [(x + P^Ç) • (y + V)) + [P^Z "l] + [g-i"l] 

-[x-rt-iP^t-y], 

or, using Lemma 8.1, 

[x-y] + [g] = [PAX + PJ?Z) • (y + M + W " /] + '•» 

where the remainder r has norm ||r|| < 3ô. We can now apply 
Proposition 8.4, with e, x, y, x', y of that proposition replaced 
by ô, P%>{x + PjfÇ), y + y, Pc#Ç, n , respectively. This yields 
vectors xl and y, with the following properties 

\\[P„{x + Pjfi) • (y + t,)] + [P^ 'ti]-[xryi]\\<â, 

and 

||J; + > / - J ; 1 | | < 2 | | ^ | | < 2 | | ^ | | ; / 2
; 

Ik,II < (1 + fi)l\\P*x + P^f + (\\Pax\\ + | | ^ | | ) 2 ] 1 / 2 . 

It is immediate now to check that xx and y{ verify the conclusion 
of our proposition. Q.E.D. 

The following result is a slightly modified form of Theorem 5.1. 

8.6. Theorem. Given ƒ G L{ and e > 0 there exist x j e / 
such that [ƒ] = [x • y] and \\x\\ < (1 + e)\\f\\\/2, \\y\\ < (1 + e) 

1 ' 

Proof. We may, and shall, assume without loss of generality that 
ƒ ^ 0. Let {ôn} be a sequence of positive numbers, subject to 
several conditions to be specified shortly. We claim that there exist 
sequences {xn} and {yn} in %? with the following properties: 

\\\f\-\xn-yn\\\<à\ 

K i l < II/1117' - I M ^ II/1117' » H^+i ~yJ< ^n » and 

I K + 1 l l < ( i + <5„+1)[(l|/V^II + ^ ) 2 + ( l | / , ^JI + ^ ) 2 ] 1 / 2 

for all n > 0. Indeed, the existence of x0 and y0 follows from 
Theorem 7.1. If xn and yn have already been chosen, let gn e Ll 
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be such that [gn] = [ƒ]-[x„-yn] and \\gn\\l < &\ . Then an appli-
cation of Proposition 8.5 with e, x, y, g of that proposition re-
placed by Sn+l j X ^ ^ , ^ , respectively, yields vectors xn+l and 
yn+l with the desired properties. The vectors x and y that verify 
the conclusion of our theorem will be obtained as certain appro-
priate limits of {xn} and {yn} . First let us clarify the choice of 
Sn . Fix a strictly increasing sequence ene (0, e), and choose ôn 

such that 
oo 

3£<5„<eIL/lll/2' 
n=0 

and 

(1 + ^+ 1)[(a + ôf + (fi + Sn)2]i/2 < (1 + cn+1)||/ll!/2 

whenever a2+02 < (l+fin)| |/ | |} /2 and a, 0 > 0. With this choice 
we have | | x j | < (1 + e„) | | / | |^2 , and hence there exist nx < n2< 
• • • such that {x } converges weakly to a vector x with norm 

j J 

||*|| < (1 + e)ll/llî/2 • The sequence {yn} is Cauchy in norm, and 
its limit y has norm 

oo 

W ^ W + E I I ^ + I - ^ I I 
oo 

<imi! /2+E3<J» 

<(i+e)imi! / 2 . 
To conclude the proof we need only to show that [x • y] = [f] 
or, equivalently, that (T x, y) — f(-k) for k > 0. This follows 
because 

ƒ ( - * ) = l i m [ ^ -ynr(-k) 
j—»oo "j "j 

= lim(Thxn ,yn) 
J—>00 nj 'lJ 

= (Tkx,y). Q.E.D. 
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