
Kragujevac Journal of Mathematics

Volume 38(1) (2014), Pages 23–33.

NOTES ON ISOTROPIC GEOMETRY OF PRODUCTION MODELS

BANG-YEN CHEN1, SIMONA DECU2, AND LEOPOLD VERSTRAELEN3

Abstract. The production function is one of the key concepts of mainstream
neoclassical theories in economics. The study of the shape and properties of the
production possibility frontier is a subject of great interest in economic analysis. In
this respect, Cobb-Douglas and CES production functions with flat graph hyper-
surfaces in Euclidean spaces are first studied in [20, 21]. Later, more general studies
of production models were given in [5]-[9] and [11, 13, 22]. On the other hand, from
visual-physical experiences [16, 17, 18], the second and third authors proposed in
[15] to study production models via isotropic geometry as well. The purpose of this
paper is thus to investigate important production models via isotropic geometry.

1. Introduction.

In economics, a production function is a non-constant positive function that spec-
ifies the output of a firm, an industry, or an entire economy for all combinations of
inputs. Almost all economic theories presuppose a production function, either on the
firm level or the aggregate level. In this sense, the production function is one of the
key concepts of mainstream neoclassical theories.

Let E
m denote the Euclidean m-space, i.e., the Cartesian m-space Rm endowed

with the Euclidean metric. To visualize a production function f : D ⊂ Rn → R

defined on a domain D of Rn, we usually embed this n-space as (x1, . . . , xn)-space
into E

n+1 and consider the corresponding graph hypersurface

Φ(f) := {(x1, . . . , xn, f(x1, . . . , xn)) ∈ E
n+1 : (x1, . . . , xn) ∈ D}.(1.1)

With respect to the metric induced from the Euclidean metric on E
n+1, (1.1) defines

an isometrically embedded hypersurface in E
n+1.
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It is well known that the study of the shape and the properties of the production
possibility frontier is a subject of great interest in economic analysis. G. E. Vı̂lcu
proved in [20] that a Cobb-Douglas production function has constant return to scale
if and only if the corresponding graph hypersurface in E

n+1 is flat. Later, this result
was extended to CES production function in [21]. Both Cobb-Douglas and CES
production functions are homogeneous. More general geometric studies of production
models were given in [5]-[11] and [13, 22].

Minimality condition of production hypersurfaces was first studied by the first
author in [5]. It is proved in [5] that a 2-input homogenous production function
is a perfect substitute if and only if the production surface is minimal. Recently,
minimality condition of Cobb-Douglas and CES production functions was investigated
by X. Wang and Y. Fu in [23].

Besides Euclidean geometry on Rm, there is another important geometry on Rm,
called isotropic geometry. Isotropic geometry provides one of the 27 Cayley-Klein
geometries on R3. It is the product of the Euclidean space and the isotropic line
equipped with a degenerate parabolic distance metric. The isotropic space In+1 is
derived from E

n+1 by substituting isotropic distance for usual Euclidean distance.
Given p, q ∈ Rn+1 the isotropic distance d(p, q) is either the Euclidean distance of

the orthographic projections ontoRn×{0} if the projections are distinct, or otherwise
simply the Euclidean distance. In several applied sciences, e.g., computer science and
vision, it is natural to view the graph hypersurface Φ(f) in (1.1) as a hypersurface in
Φ(f) × R instead of En+1, which treat Φ(f) as a subset of the isotropic space In+1

(see [16, 18, 19]). For an n-input production function f , the metric on Φ(f) induced
from In+1 is given by g∗ = dx2

1+ · · ·+ dx2
n. Thus (Φ(f), g∗) is always a flat space. So,

its Laplacian is given by

∆ =
n
∑

j=1

∂2

∂2xj

.(1.2)

Recently, it was suggested by the second and third authors in [15] to study pro-
duction models via isotropic geometry as well. The purpose of this paper is thus
to investigate production models from the viewpoint of isotropic geometry. Several
classification results in this respect are obtained.

2. A brief review of isotropic geometry

For later use, we provide a brief review of isotropic geometry from [18] (see also
[15, 16]).

Let f : D ⊂ Rn → R be a function defined on a domain D of Rn. Consider the
graph hypersurface Φ(f) defined by

{(x1, . . . , xn, f(x1, . . . , xn)) ∈ Rn+1 : (x1, . . . , xn) ∈ D}.(2.1)

In this paper we use the following terminology. Lines in the xn+1-direction are called
isotropic lines. k-planes containing an isotropic line are called isotropic k-planes.
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The projections in the isotropic xn+1-direction onto E
n are called top views. Via this

projection, the top views of isotropic lines and k-planes are points and (k−1)-planes,
respectively.

In isotropic geometry, it is convenient to represent a point p ∈ In+1 with the
coordinate vector X = (x1, . . . , xn+1) ∈ Rn+1 by its top view x = (x1, . . . , xn) and
the last coordinate xn+1. We will use i = (0, . . . , 0, 1) ∈ R for the isotropic direction
and we write

X = x+ xn+1i

with the understanding that in this combination x = (x1, . . . , xn, 0).
A curve X(s) ⊂ In+1 without isotropic tangents can be represented by

X(s) = x(s) + xn+1(s)i(2.2)

with s as the isotropic arclength, which is the Euclidean arclength of its top view
curve x(s). The derivative vectors X ′(s) and x′(s) satisfy ||X ′(s)||i = ||x′(x)|| = 1,
where || · ||i denotes the isotropic norm. Second derivative with respect to s yields
the curvature vector X ′′(s) = x′′(s) + x′′

n+1(s)i. Thus we have

κ(s) := ||X ′′(s)||i = ||x′′(s)||,(2.3)

which is the curvature of the isotropic curve at X(s). In fact, κ(s) is nothing but the
Euclidean curvature of the top view x(s).
Case (1): κ 6= 0. The principal normal vector is defined as E2 := X ′′(s)/||X ′′(s)||i
in this case, which is isotropically orthogonal to E1 := X ′(s) and satisfies E ′

1 = κE2.

Case (2): For so with κ(so) = 0. We define the s-curvature as κs(so) := x′′

n+1(s0).

The curvature theory of hypersurfaces in In+1 can be found in [18] which is anal-
ogous to the Euclidean counterpart. For a function f : D ⊂ Rn → R, consider the
graph hypersurface Φ(f) = {x + f(x)i : x ∈ D}. Let X(s) = x(s) + f(x(s))i be a
curve on Φ(f) which is parameterized by an isotropic arclength s. For its tangent
vectors E1(s) = T (s), we have

T (s) = X ′(s) = x′(s) + 〈x′(s),∇f(x(s))〉 i,(2.4)

where 〈 · , · 〉 denotes the scalar product on E
n and ∇f is the gradient of f . In the

following, we suppress the argument s whenever there are no confusion.
The curvature vector is

X ′′ = x′′ + 〈x′′,∇f(x)〉 i+ (x′T · (D2f(x))x′)i,(2.5)

where D2f is the Hessian of f . The first two terms in (2.5) form a vector S̃ in the
tangent hyperplane T (so) of Φ(f) at X(xo). The isotropic length of this vector is
considered as the geodesic curvature κg of the curve at X(so). Because of ||S̃||i =
||X ′′||i, κg is the same as the isotropic curvature κ of the curve X(s) at X(so) and
the Euclidean curvature of its top view.

For κg 6= 0, we normalize S̃ to the side vector S = S̃/κg, and for κg = 0, we set
S = i. The third term in (2.5) is the “normal”, i.e., isotropic component of X ′′. Its
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s-length is called the normal curvature κn. Denoting the top view x′(s) of the tangent
vector T by t. Consequently, one has

(2.6)
X ′′ = κgS + κni,

κg = κ = ||X ′′||i = ||x′′||, κn = tT · (D2f(x))t.

It is well known that the extremal values of the normal curvatures at point p ∈ Φ(f)
are the eigenvalues of the Hessian D2f(p). The corresponding directions are the
associated normalized eigenvectors. Since the Hessian is symmetric, all principal
curvatures κ1, . . . , κn are real and there is an orthonormal basis of main directions
t1, . . . , tn in E

n. From t1, . . . , tn we have the principal curvature directions of Φ(f) ⊂ l
given by Tj = tj + 〈tj,∇f(p)〉 i, j = 1, . . . , n.
Without solving the characteristic equation det(D2f − λE) = 0, one can read off

the elementary symmetric functions of the principal curvatures from the coefficients of
the characteristic polynomial. This leads to n fundamental curvatures K1, . . . , Kn. If
we denote by H i1,...,is the determinant of the quadratic submatrix of D2f(p) obtained
by taking in D2f only rows and columns with indices i1, . . . , is, then we have

(2.7)

Kj =
1
(

n

j

)

(

κ1 · · ·κj + κ1 · · ·κj−1κj+1 + · · ·+ κn−j+1 · · ·κn

)

,

=
1
(

n

j

)

(

H1,...,j +H1,...,j−1,j+1 + · · ·+Hn−j+1,...,n
)

.

In particular, one has the isotropic mean curvature

K1(p) =
1

n
trace (D2f(p)) =

1

n
∆f(p),(2.8)

and the analogue of the Gaussian-Kronecker curvature is the relative curvature

Kn(p) = det (D2f(p)).(2.9)

Remark 2.1. It follows from (2.8) that the graph hypersurface Φ(f) of production
function f is isotropic minimal in l if and only if f is harmonic, i.e., ∆f = 0.

3. Some important production functions in economics

There are two special classes of production functions that are often analyzed in
microeconomics and macroeconomics; namely, homogeneous and homothetic produc-
tion functions. A production function f(x1, · · · , xn) is said to be homogeneous of

degree d or d-homogeneous, if

f(tx1, . . . , txn) = tdf(x1, . . . , xn)(3.1)

holds for each t ∈ R for which (3.1) is defined. A homogeneous function of degree
one is called linearly homogeneous.
If d > 1, the homogeneous function exhibits increasing returns to scale, and it

exhibits decreasing returns to scale if d < 1. If it is homogeneous of degree one, it
exhibits constant returns to scale. Constant returns to scale is the in-between case.
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A homothetic function is a production function of the form:

f = F (h(x1, . . . , xn)),(3.2)

where h(x1, . . . , xn) is a homogeneous function of any given degree and F is a mono-
tonically increasing function.

In economics, an isoquant is a contour line drawn through the set of points at
which the same quantity of output is produced while changing the quantities of two
or more inputs. Homothetic functions are functions whose marginal technical rate of
substitution (the slope of the isoquant) is homogeneous of degree zero.
The n-input Cobb-Douglas production function can be expressed as (cf. [14])

f = γxα1

1 · · · xαn

n ,(3.3)

where γ is a positive constant and α1, . . . , αn are nonzero constants. The Cobb-
Douglas production function is especially notable for being the first time an aggregate
or economy-wide production function was developed, estimated, and then presented to
the profession for analysis. It gave a landmark change in how economists approached
macroeconomics.

The n-input CES production functions (or ACMS production function [1]) are given
by

f = γ

(

n
∑

i=1

aρix
ρ
i

)
d
ρ

,(3.4)

where ai, d, γ, ρ are nonzero constants. The CES production functions are of great
interest in economy because of their invariant characteristic; namely, the elasticity
of substitution between the parameters is constant on their domains. Obvious, both
Cobb-Douglas and CES production functions are homogeneous.
In economics, goods that are completely substitutable with each other are called

perfect substitutes. They may be characterized as goods having a constant marginal
rate of substitution. Mathematically, a production function is a perfect substitute if
it is of the form

f(x1, . . . , xn) =
n
∑

i=1

aixi(3.5)

for some nonzero constants a1, . . . , an.

4. Minimality of production models.

For a production function f : D ⊂ Rn → R, the study of minimality of the graph
hypersurface

Φ(f) := {(x1, . . . , xn, f(x1, . . . , xn)) ∈ E
n+1 : (x1, . . . , xn) ∈ D}(4.1)

in E
n+1 with respect to the Euclidean metric on E

n+1 was initiated by the first author
in [5] and later in [23] by Wang and Fu. The following results were proved in [5, 23].
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Theorem 4.1. [5] A 2-input homogeneous production function is a perfect substitute

if and only if the production surface is a minimal surface in E
3.

Theorem 4.2. [23] There does not exist a minimal Cobb-Douglas production hyper-

surface in E
n+1.

Theorem 4.3. [23] An n-input CES production hypersurface in E
n+1 is minimal if

and only if the production function is a perfect substitute.

Next, we discuss the minimality condition of production models in the isotropic
space In+1, instead of En+1.
For 2-input functions, we give the following simple geometric characterization of

perfect substitute via isotropic geometry.

Proposition 4.1. Let f be a 2-input linearly homogeneous production function. Then

f is a perfect substitute if and only if the production surface is isotropic minimal in

the isotropic 3-space I3.

Proof. Assume that f(x1, x2) is a linearly homogeneous production function. Then it
follows from the Euler Homogeneous Function Theorem that f satisfies

x1fx1
+ x2fx2

= f,(4.2)

where fxj
denotes the partial derivative of f with respect to xj. By taking the partial

derivatives of (4.2) with respect to x1, x2, respectively, we find

(4.3)
x1fx1x1

+ x2fx1x2
= 0,

x1fx1x2
+ x2fx2x2

= 0.

From (4.3) we get

∆f = fx1x1
+ fx2x2

= −fx1x2

(

x2
1 + x2

2

x1x2

)

,(4.4)

Therefore, it follows from (2.8) and (4.4) that if the production surface is isotropic
minimal in I3, then fx1x2

= 0, which implies that f(x1, x2) = p(x1) + q(x2) for some
functions p and q. Since f is assumed to be linearly homogeneous, we conclude that
f is a perfect substitute.

The converse is trivial. �

Remark 4.1. Contrast to Theorem 4.1, Proposition 4.1 is false if the homogeneous
production function f is nonlinear. Two simple examples are the degree 2 homoge-
neous production functions given by f = x1x2 and k = x2

1−x2
2. It is easy to verify that

the graph surfaces of f and k are isotropic minimal in I3, but not perfect substitutes.

Theorem 4.2 states that there do not exist minimal Cobb-Douglas production hy-
persurfaces in E

n+1. In contrast, the next result states that there do exist isotropic
minimal Cobb-Douglas production models in In+1.
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Proposition 4.2. An n-input Cobb-Douglas production hypersurface is isotropic min-

imal in In+1 if and only if the production function is of the form f = γx1 · · · xn for

some nonzero constant γ.

Proof. Follows from (2.8) and (3.3). �

Analogous to Theorem 4.3, we have the following simple geometric characterization
of n-input perfect substitute in term of isotropic minimality.

Proposition 4.3. An n-input CES production hypersurface is isotropic minimal in

In+1 if and only if the production function is a perfect substitute.

Proof. Let f is an n-input CES production function defined by

f(x1, . . . , xn) = γ

(

n
∑

i=1

aρix
ρ
i

)
d
ρ

,(4.5)

where ai, d, γ, ρ are nonzero constants. By applying a straight-forward computation
we find

fxj
= γdaρjx

ρ−1

j (
n
∑

i=1

aρix
ρ
i )

d
ρ
−1,

fxjxj
= γdaρjx

ρ−2

j (
n
∑

i=1

aρix
ρ
i )

d
ρ
−2((ρ− 1)

n
∑

i=1

aρix
ρ
i + (d− ρ)aρjx

ρ
j ),

(4.6)

for j = 1, . . . , n. After a direct computation we obtain from (4.6) that the Laplacian
of f satisfies

∆f =
γd(
∑n

i=1
aρix

ρ
i )

d
ρ
−2

x2
1 · · · x

2
n

{

(d−1)
(

a2ρ1 x2ρ
1 x2

2 · · · x
2

n + · · ·+ a2ρn x2

1 · · · x
2

n−1x
2ρ
n

)

+ (ρ− 1)
{

(a1a2x1x2)
ρ(x2

1 + x2

2)x
2

3 · · · x
2

n + · · ·

+ x2

1 · · · x
2

n−2(an−1anxn−1xn)
ρ(x2

n−1 + x2

n)
}

}

,(4.7)

which implies that the graph hypersurface Φ(f) is isotropic minimal in In+1 if and
only if d = ρ = 1, i.e., f is a perfect substitute. �

5. Remarks on production models in In+1 with null relative curvature

It follows from (2.9) that the graph hypersurface Φ(f) of a production function f
has null relative curvature if and only if the production function is a solution to the
homogeneous Monge-Ampère equation. Hence, by [5, Proposition 2.1], the results
given in the last section of [11] can be rephrased as the following.

Theorem 5.1. Let f = F (h(x1, . . . , xn)) be a homothetic production function such

that h is a homogeneous function with deg h 6= 1. Then the graph hypersurface Φ(f)
of f in In+1 has null relative curvature if and only if either
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(i) h satisfies the homogeneous Monge-Ampère equation det(hij) = 0 or

(ii) up to constants, f = F ◦ h is a linearly homogeneous function.

For Cobb-Douglas and CES production models, we have the following.

Theorem 5.2. Let h(x1, . . . , xn) be a Cobb-Douglas production function. Then the

graph hypersurface Φ(f) of the homothetic production function f = F ◦ h in In+1 has

null relative curvature if and only if both F and h are linear.

Theorem 5.3. Let h(x1, . . . , xn) be a CES production function defined by (3.4). Then
the graph hypersurface of the homothetic production function f = F ◦ h in In+1 has

null relative curvature if and only if either

(a) ρ = 1, or
(b) f has constant return to scale.

For 2-input homothetic production functions, we have the following.

Theorem 5.4. Let f(x, y) = F (h(x, y)) be a homothetic production function. Then

the graph surface of f has null relative curvature in I3 if and only if either

(a) f(x, y) is linearly homogeneous, or

(b) the inner function h(x, y) is a perfect substitute.

6. Remark on flat production models in In+1

Homogeneous production functions with flat graph hypersurfaces in E
n+1 were

classified by the first author and G. E. Vı̂lcu as follows.

Theorem 6.1. [13] Let f be a homogeneous production function with deg f = d.
Then the graph hypersurface of f in E

n+1 is flat if and only if either

(a) f has constant return to scale, or

(b) f is of the form

f = (c1x1 + c2x2 + · · ·+ cnxn)
d , d 6= 1,(6.1)

for some real constants c1, . . . , cn.

Finally, we discuss isotropic flat production models in In+1. First, we remark that
for an n-input production function f , it follows from (2.6) that all curves on Φ(f)
passing through a given point with a given tangent have the same normal curvature.
For a 2-dimensional subspace π of the tangent space Tp(Φ(f)) of the graph hy-

persurface Φ(f) at a point p, we define the isotropic sectional curvature Ki(π) to be
the product of the maximum and minimum normal curvatures with respect to the
directions in π. A graph hypersurface Φ(f) in In+1 is said to be isotropic flat if its
isotropic sectional curvatures vanish identically.

Analogous to Theorem 6.1 we have the following.

Theorem 6.2. Let f be a homogeneous production function. Then the graph hyper-

surface of f in In+1 is isotropic flat if and only if either
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(a) f has constant return to scale, or

(b) deg f 6= 1 and f is a power of a perfect substitute.

Proof. Let f(x1, . . . , xn) be a homogeneous production function. Let us consider
the graph hypersurface Φ(f) of f and the plane section πjk = Span{ ∂

∂xj
, ∂
∂xk

} with

1 ≤ j 6= k ≤ n, at a point on Φ(f) in In+1. Then the isotropic sectional curvature
Ki(πjk) is obtained by taking D2f only from rows and columns with indices j, k.
Therefore, if the graph hypersurface Φ(f) is isotropic flat in In+1, then we have

fxjxj
fxkxk

− f 2

xjxk
= 0

for 1 ≤ j 6= k 6= n. Consequently, we may apply the same argument as in the proof
of Theorem 1.1 of [13] to conclude the theorem. �

7. Concluding remarks

By imposing various curvature conditions on graph hypersurfaces, we observe in
the last three sections several differences and similarities between graph hypersurfaces
in E

n+1 and graph hypersurfaces in In+1. In the following, we discuss some differ-
ences between graph hypersurfaces in E

n+1 and graph hypersurfaces in In+1 from the
viewpoint of finite type theory in the sense of the first author [2, 3, 4, 12].

Analogous to the theory of finite type submanifolds in E
n+1 (cf. [4, 12]), we call

a graph hypersurface Φ(f) in In+1 to be of finite type if all coordinate functions of
Φ(f) in In+1 are finite sums of eigenfunctions of the Laplacian ∆ on E

n. It is clear
from (2.1) that a graph hypersurface Φ(f) in In+1 is of finite type if and only if the
function f is of finite type. Since there exist many finite type functions, there are
abundant examples of finite type graph hypersurfaces in In+1, a phenomenon contrast
to finite type hypersurfaces in Euclidean spaces (cf. [12]).

Similar to Euclidean submanifolds, we call a graph hypersurface Φ(f) in In+1

isotropically biharmonic if the position function x of Φ(f) in In+1 is biharmonic,
i.e., it satisfies the biharmonic equation:

∆2x = 0.(7.1)

It follows from (2.1) and (7.1) that a graph hypersurface Φ(f) in In+1 is isotropically
biharmonic if and only if the function f is biharmonic. Obviously, there exist many
biharmonic functions which are not harmonic. Consequently, there are many graph
hypersurfaces in In+1 which are isotropically biharmonic, but not harmonic. This
phenomenon is quite different from Euclidean biharmonic submanifolds. In fact, the
first author conjectured more than three decades ago that minimal submanifolds are
the only biharmonic submanifolds in Euclidean spaces.

The study of this biharmonic conjecture becomes a very active research topics in
recent years and it remains unsettled after more than three decades (see [3, 10, 12]
for the most recent development on biharmonic conjecture).
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