
Notes on Max Flow Time Minimization

with Controllable Processing Times

Monaldo Mastrolilli�, Switzerland

Received February 11, 2003; revised June 16, 2003
Published online: October 30, 2003

� Springer-Verlag 2003

Abstract

In a scheduling problem with controllable processing times the job processing time can be compressed
through incurring an additional cost. We consider the identical parallel machines max flow time
minimization problem with controllable processing times. We address the preemptive and non-pre-
emptive version of the problem. For the preemptive case, a linear programming formulation is pre-
sented which solves the problem optimally in polynomial time. For the non-preemptive problem it is
shown that the First In First Out (FIFO) heuristic has a tight worst-case performance of 3� 2=m,
when jobs processing times and costs are set as in some optimal preemptive schedule.

Keywords: Scheduling, controllable processing times, parallel machines, approximation algorithms.

1. Introduction

Motivation. The m-machine scheduling problem is one of the most widely-studied
problems in computer science, with an almost limitless number of variants (see [3]
for a survey). The most common objective function is the makespan, which is the
length of the schedule, or equivalently the time when the last job is completed.
This objective function formalizes the viewpoint of the owner of the machines. If
the makespan is small, the utilization of his machines is high; this captures the
situation when the benefits of the owner are proportional to the work done. If we
turn our attention to the viewpoint of a user, the time it takes to finish individual
jobs may be more important; this is especially true in interactive environments.
Thus, if many jobs that are released early are postponed at the end of the sche-
dule, it is unacceptable to the user of the system even if the makespan is optimal.

For that reason other objective functions are studied. With this aim, a well-studied
objective function is the total flow time [1, 12, 16]. The flow time of a job is the time
the job is in the system, i.e., the completion time minus the time when it becomes
first available. The above mentioned objective function is the sum of these values

Computing 71, 375–386 (2003)
Digital Object Identifier (DOI) 10.1007/s00607-003-0029-z

�Supported by Swiss National Science Foundation project 20-63733.00/1, ‘‘Resource Allocation and
Scheduling in Flexible Manufacturing Systems’’, and by the ‘‘Metaheuristics Network’’, grant HPRN-
CT-1999-00106.



over all jobs. The Shortest Remaining Processing Times (SRPT) heuristic produces
a schedule with optimum total flow time (see [11]) when there is a single processor.
Unfortunately, this heuristic has the well-known drawback that it leads to star-
vation. That is, some jobs may be delayed to an unbounded extent. Inducing
starvation is an inherent property of the total flow time metric. In particular, there
exists inputs where any optimal schedule for total flow time forces the starvation of
some job (see Lemma 2.1 in [2]). This property is undesirable.

From the discussion above, it is natural to conclude that in order to avoid star-
vation, one should bound the flow time of each job. This motivates the study of
the minimization of the maximum flow time.

Most classical scheduling models assume fixed processing times for the jobs.
However, in real-life applications the processing time of a job often depends on
the amount of resources such as facilities, manpower, funds, etc. allocated to it,
and so the processing time can be reduced when additional resources are given to
the job. This speed up of the processing time of a job comes at a certain cost. A
scheduling problem in which the processing times of the jobs can be reduced at
some expense is called a scheduling problem with controllable processing times.
Scheduling problems with controllable processing times have gained importance
in scheduling research since the pioneering works of Vickson [24, 25]. For a survey
of this area until 1990, the reader is referred to [20]. Recent results include [4, 5, 9,
10, 17, 19, 22, 23].

Problem Definition. We address the following scheduling problem. We have a set
J of n jobs, J ¼ J1; . . . ; Jnf g, and m identical machines M ¼ M1; . . . ;Mmf g. Each
job Jj must be processed in an uninterrupted fashion on one of the machines, each
of which can process at most one job at a time. We will also consider the pre-
emptive case, in which a job may be interrupted on one machine and continued
later (possibly on another machine) without penalty. Job Jj (j ¼ 1; . . . ; n) is re-
leased at time rj � 0 and cannot start processing before that time.

The processing time of job Jj lies in an interval ½‘j; uj� (with 0 � ‘j � uj). For each
job Jj we have to choose a machine lj 2 M , and dj 2 ½0; 1� and get then processing
time and cost that depend linearly on dj:

pjðdjÞ ¼ dj‘j þ ð1� djÞuj;

cjðdjÞ ¼ djcj:

We refer dj as the compression level of job Jj, since the processing time pjðdjÞ of Jj

decreases by increasing dj.

Solving a non-preemptive scheduling problem with controllable processing times
amounts to specifying an assignment, l ¼ ðl1; l2; . . . ; lnÞ, of jobs to machines
(where lj 2 M is the machine job Jj is assigned to), and a selection of the com-
pression levels, d ¼ ðd1; d2; . . . ; dnÞ, that defines jobs processing times pjðdjÞ and
costs cjðdjÞ. The total cost CðdÞ of d is defined as CðdÞ ¼

Pn
j¼1 cjðdjÞ. We denote

the completion time of job Jj in a schedule S by Es
j or Ej, if no confusion is

376 M. Mastrolilli



possible. The flow time of job Jj is defined as Fj ¼ Ej � rj, and the maximum flow
time Fmax is maxj¼1;...;n Fj. We seek to minimize the maximum flow time when the
total cost is constrained to be at most j, i.e., CðdÞ � j, for some given value j > 0.
According to Graham et al. [7], we denote the preemptive and non-preemptive
version of the described problem by P jpmtn; rj; contr; CðdÞ � jjFmax and
P jrj; contr; CðdÞ � jjFmax, respectively.

Known Results. Problem P jrj; contr; CðdÞ � jjFmax is strongly NP-hard [6] since
the special case with fixed processing times and identical release dates (i.e. the
makespan minimization problem) is strongly NP-hard [15]: The practical
importance of NP–hard problems necessitates tractable relaxations. A very
fruitful approach has been to relax the notion of optimality and settle for near–
optimal solutions. A near–optimal solution is one whose objective function value
is within some small multiplicative ‘‘1’’ factor of the optimal value. Approximation
algorithms are heuristics that in polynomial time provide provably good guar-
antees on the quality of the solutions they return. The book on approximation
algorithms edited by Hochbaum [8] gives a good glimpse of the current knowledge
on the subject.

When preemption is allowed and processing times are fixed, we observe that there
are polynomial-time off-line algorithms for finding optimal preemptive solutions:
these are obtained by adapting the approaches proposed in [13, 14] for the pre-
emptive parallel machines problems with release times and deadlines. In [13, 14]
the objective function is the minimization of the maximum lateness
Lmax ¼ max Lj, where Lj is the lateness of job Jj, that is the completion time of Jj

minus the its deadline (the time by which job Jj must be completed). We can use
the algorithms in [13, 14] for the preemptive maximum flow time minimization by
setting the deadline of each job equal to its release time.

When processing times are fixed and preemption is not allowed, to the best of our
knowledge, the only known result about the non-preemptive max flow time
scheduling problem is due to Bender et al. [2]. They address the on-line non-
preemptive problem with identical parallel machines (in the notation of Graham
et al. [7], this problem is noted P jon-line; rjjFmax). In [2] they claim that the First In
First Out (FIFO) heuristic (that is, scheduling jobs in the order they arrive to the
first available machine) is a ð3� 2=mÞ-competitive algorithm. They also claim a
fully polynomial time approximation schemes when preemption is allowed (this
works also for the max stretch minimization problem).

When processing times are controllable the only known results are about the
makespan model. Nowicki and Zdrzalka [21] consider the preemptive scheduling
of m identical parallel machines. They provide a Oðn2Þ greedy algorithm which
generates the set of Pareto-optimal points. When preemption is not allowed and
the machines are not identical, Trick [23] gave a polynomial time 2.618-approx-
imation algorithm (i.e., an algorithm that returns a solution whose value is within
2.618 times the optimal value) to minimize a weighted sum of the cost and the
makespan. The latter result was improved by Shmoys and Tardos [22] by pro-
viding a polynomial time 2-approximation algorithm.

Notes on Max Flow Time Minimization 377



New Results. We consider the preemptive and non-preemptive max flow time
minimization problems with controllable processing times, i.e.
P jpmtn; rj; contr; CðdÞ � jjFmax and P jrj; contr; CðdÞ � jjFmax. In Section 2 we
observe that the preemptive problem P jpmtn; rj; contr; CðdÞ � jjFmax is polyno-
mially solvable (and hence it is polynomially solvable also the special case with
fixed processing times addressed in [2]). A polynomial time algorithm may work
as follows. First consider the following problem: Given some threshold value /,
compute, if it exists, a schedule that minimizes the total cost when the max flow
time is constrained to be at most /. This problem may be reduced to a linear
program. Then, apply binary search on different /-values, and return the solution
with minimum max flow time and cost at most j.

In Section 3 we address the non-preemptive problem P jrj; contr; CðdÞ � jjFmax.
We show that a solution with cost at most j and max flow within factor ð3� 2=mÞ
of the optimal value may be obtained by using FIFO, when jobs processing times
and costs set as in some optimal preemptive schedule. We prove that this bound is
asymptotically tight.

2 The Preemptive Problem

The goal of this section is to find a preemptive schedule on m identical machines
with minimum max flow time and total cost at most j. We adopt and extend some
ideas presented in [14] for the preemptive parallel machines problem with release
times, deadlines and fixed processing times.

The proposed algorithm is sketched below. We first consider the following
problem: Given some threshold value /, compute, if it exists, a schedule that
minimizes the total cost when the max flow time is constrained to be at most /,
i.e., Fmax � /. This problem may be reduced to a linear program. Then, we apply
binary search on different /-values, and return the solution with minimum max
flow time and cost at most j.

2.1 Linear Programming

We start observing that the max flow time is at most / if and only if

Ej � d/
j :¼ rj þ / for all j ¼ 1; . . . ; n.

Thus, all jobs Jj must finish before the deadline d/
j and cannot start before the

release time rj, i.e., each job Jj must be processed in an interval ½rj; d
/
j � associated

with Jj. We call these intervals time windows.

Next we address the problem of finding a preemptive schedule for jobs Jj

(j ¼ 1; . . . ; n) on m identical machines such that all jobs Jj are processed within
their time windows ½rj; d

/
j � and the total cost is minimized. This problem may be

reduced to a linear programming constructed as follows.

378 M. Mastrolilli



Let

z1 < z2 < . . . < zwþ1

be the ordered sequence of all different rj values and d/
j values. Consider the

intervals

Iv :¼ ½zv; zvþ1� of length Zv ¼ zvþ1 � zv for v ¼ 1; . . . ;w:

Then we have to solve

min
Xn

j¼1

Xm

i¼1

Xw

v¼1
cjx
ðvÞ
ij

ðAÞ s:t:
Xm

i¼1

Xw

v¼1
ðxðvÞij þ yðvÞij Þ ¼ 1 j ¼ 1; . . . ; n;

ðBÞ
Xn

j¼1
ðxðvÞij ‘j þ yðvÞij ujÞ � Zv i ¼ 1; . . . ;m; v ¼ 1; . . . ;w;

ðCÞ
Xm

i¼1
ðxðvÞij ‘j þ yðvÞij ujÞ � Zv j ¼ 1; . . . ; n; v ¼ 1; . . . ;w;

ðDÞ xðvÞij ; yðvÞij � 0 j ¼ 1; . . . ; n; i ¼ 1; . . . ;m;

v ¼ 1; . . . ;w;

ðEÞ xðvÞij ¼ yðvÞij ¼ 0 j ¼ 1; . . . ; n; i ¼ 1; . . . ;m;

v ¼ 1; . . . ;w; zv < rj; d/
j � zv:

ð1Þ

Note that xðvÞij ‘j þ yðvÞij uj denotes the total amount of time that machine Mi spends
on job Jj in time period Iv (therefore xðvÞij represents the compression level of job Jj

in time interval Iv when processed by machine Mi). The first set ðAÞ of constraints
ensures that every job gets assigned to some machines and time windows. The
second set ðBÞ guarantees that the total load on each machine and for each time
window is at most the interval length. The third set ðCÞ says that at each time
window the total time spent processing one job is at most the interval length (this
is a necessary condition to avoid overlapping). Finally, set ðEÞ ensures that no job
starts processing before its release date and ends later its deadline d/

j .

If there exists a feasible solution of the linear program (1) then there exists a
preemptive schedule respecting all time windows. In this case the processing time
and cost of job Jj (j ¼ 1; . . . ; n) are, respectively,

Xw

v¼1

Xm

i¼1
ðxðvÞij ‘j þ yðvÞij ujÞ ¼ dj‘j þ ð1� djÞuj; ð2Þ

Xw

v¼1

Xm

i¼1
xðvÞij cj ¼ djcj; ð3Þ

Notes on Max Flow Time Minimization 379



where the compression level dj of job Jj is dj ¼
Pw

v¼1
Pm

i¼1 xðvÞij and
1� dj ¼

Pw
v¼1
Pm

i¼1 yðvÞij , by the first set ðAÞ of constraints of (1). Moreover, the
total amount of processing time in Iv is at most mZv, which is the capacity of m
machines, i.e.

Xm

i¼1

Xn

j¼1
ðxðvÞij ‘j þ yðvÞij ujÞ � mZv: ð4Þ

Furthermore, the total time job Jj is processed in interval Iv is at most the interval
length, i.e.

Xm

i¼1
ðxðvÞij ‘j þ yðvÞij ujÞ � Zv: ð5Þ

A feasible solution for the preemptive scheduling problem with time windows is
constructed by scheduling partial jobs Jjv with processing timesPm

i¼1ðx
ðvÞ
ij ‘j þ yðvÞij ujÞ in the intervals Iv on m identical machines. For each interval

Iv, this is essentially the preemptive makespan minimization of the identical
parallel machines scheduling problem, which has a solution with total length at
most Zv because of (4) and (5). (A schedule meeting this bound can be constructed
in linear time by using McNaughton’s rule [18]: fill the machines successively,
scheduling the jobs in any order and splitting jobs into two parts whenever the
above time bound Zv is met. Schedule the second part of a preempted job on the
next machine at the beginning of interval Iv. Because of (5) for all Jj, the two parts
of preempted job do not overlap.)

2.2 Binary Search

A solution with minimum max flow and cost at most j can be computed by
embedding the algorithm described in the previous subsection within a binary
search procedure. Assume, without loss of generality, that the input instance has
integral data. Clearly, the value of the optimal flow time is in the interval
½0; numax�, where umax ¼ maxj uj. Thus we can use UB :¼ 0 and LB :¼ numax as
initial upper and lower bounds, respectively, for the binary search; in each iter-
ation the algorithm performs the following steps:

a) it uses the linear program (1) to find a schedule of minimum cost and max flow
time at most the value /, where / ¼ ðLBþ UBÞ=2 (if a solution of max flow
time / exists);

b) if there exists a feasible solution and the total cost is not greater than j; then
update the upper bound UB to /, otherwise update the lower bound LB to
/þ 1.

The algorithm terminates when LB ¼ UB, and outputs the best schedule found. A
straightforward proof by induction shows that, throughout the execution of the

380 M. Mastrolilli



binary search, the LB value is never greater than the optimal max flow value when
the cost is constrained to be at most j. After OðlogðnumaxÞÞ iterations the search
converges. The resulting algorithm is polynomial in the binary encoding of the
input size.

We conclude that problem P jpmtn; rj; contr; CðdÞ � jjFmax is polynomially solv-
able.

3 The Non-Preemptive Problem

In this section we present an approximation algorithm for minimizing the max
flow time when preemption is not allowed. The algorithm is as follows. First,
jobs processing times and costs are set as in some optimal preemptive schedule
SOLp (see (2) and (3) of Section 2.1). Then, jobs are scheduled according to
FIFO heuristic (that is, scheduling jobs in the order they are released to the first
available machine). The analysis shows that the proposed algorithm is fairly
good, and it comes within the same bound as when processing times are fixed
[2].

Theorem 1 When jobs processing times and costs are set as in some optimal pre-
emptive schedule, FIFO returns a ð3� 2=mÞ-approximate solution for problem
P jrj; contr; CðdÞ � jjFmax.

Proof. Assuming, without loss of generality, that jobs are renumbered such that
r1 � r2 � . . . � rn holds, then jobs J1; J2; . . . ; Jn are assigned in this order to the
first available (i.e. idle) machine. Consider the schedule SOL returned by FIFO
and let Fmax denote the maximum flow time of SOL. Denote by p1; . . . ; pn and
c1; . . . ; cn the jobs processing times and costs, respectively, when they are set as in
some optimal preemptive schedule SOLp (see (2) and (3) of Section 2.1). Note that
the total cost is bounded by j by construction, i.e.,

P
j cj � j. Let F p

max and F �max

denote the optimal preemptive and the optimal non-preemptive solution values,
respectively.

Let Jf be a job that attains the maximum flow time value, i.e. Fmax ¼ sf þ pf � rf ,
where sf is the starting time of job Jf according to SOL. Without loss of gener-
ality, we can assume that job Jf was the last job released, i.e. Jf ¼ Jn and
r1 � r2 � . . . � rn, since otherwise we can truncate the instance at this point and
obtain a new instance on which FIFO performs at least as badly relative to the
optimal schedule.

Let Ei (i ¼ 1; . . . ;m) denote the ending time of machine Mi. Without loss of
generality, let us assume that Jf is processed on machine M1. Since jobs are
assigned to the first available machine, we have

Ei � sf , for i ¼ 2; . . . ;m:

Notes on Max Flow Time Minimization 381



Summing this inequality over all machines Mi for i > 1, and adding sf yields

X

i>1

Ei þ sf � msf ,

and hence

sf �
1

m
ð
Xm

i¼1
Ei � pf Þ: ð6Þ

According to SOL, let Jh be the last job that starts processing as soon as it is
released, i.e. its starting time sh is equal to rh. It is not difficult to recognize that
such a job Jh always exists.

If Jh ¼ Jf then the returned solution is optimal, since Fmax ¼ sf þ pf � rf ¼
pf � F p

max � F �max, and the claim is proved.

Otherwise, observe that after time rh each machine Mi (i ¼ 1; . . . ;m) has no
idle time up to its ending time Ei. This means that the sum of machines ending
times

Pm
i¼1 Ei is equal to m � rh plus the total time Th spent by machines after

time rh.

To bound Th, we first note that at time rh there are at most m� 1 jobs that are
released before time rh and that have not yet been completed. Indeed, if there
had been more jobs Jj with rj < rh at time rh, than they would have taken
priority over Jh, and Jh would not have been scheduled at time rh. Their
contribution to the value of Th is bounded by ðm� 1Þpmax, where
pmax ¼ maxj pj.

The second contribution to the value of Th is given by those jobs Jj with
rh � rj � rf . Observe that these jobs in the preemptive optimal solution start not
before time rh and end not later than rf þ F p

max. It follows that the sum or their
processing times is at most mðrf � rh þ F p

maxÞ.

We then obtain

Xm

i¼1
Ei � ðm� 1Þpmax þ mrh þ mðrf � rh þ F p

maxÞ;

and by inequality (6) we have

sf �
1

m
ð
Xm

i¼1
Ei � pf Þ

¼ 1

m
ððm� 1Þpmax þ mðrf þ F p

maxÞ � pf Þ

¼ pmax þ rf þ F p
max �

pmax þ pf

m
.

382 M. Mastrolilli



Therefore, the proposed algorithm returns a solution with max flow time

Fmax ¼ sf þ pf � rf

� pmax þ rf þ F p
max �

pmax þ pf

m
þ pf � rf

� 2pmaxð1�
1

m
Þ þ F p

max

� ð3� 2

m
ÞF p

max

� ð3� 2

m
ÞF �max: (

Finally, we observe that the approximation ratio of the proposed algorithm is
asymptotically tight. Indeed, this follows by observing that the approximation
ratio of FIFO is asymptotically tight when processing times are fixed1.

Theorem 2 The approximation ratio of FIFO is asymptotically tight.

Proof. We consider the following family of instances (see Fig. 1 for an example
with three machines). For any number of machines m, jobs are released at time
rðkÞ ¼ km, for k ¼ 0; 1; . . . ; l where l is a non-negative integer.

At time rðkÞ, for k ¼ 0; 1; 2; . . . ; l� 1, a set J1ðkÞ; . . . ; J2mðkÞ of 2m jobs are released.
Let pjðkÞ denote the processing time of the j-th job JjðkÞ released at time rðkÞ. The
processing times are as follows

� p1ðkÞ ¼
0; if k ¼ 0;
p1ðk�1Þ þ p2ðk�1Þ; otherwise;

�

� p2ðkÞ ¼ p3ðkÞ ¼ . . . ¼ pmþ1ðkÞ ¼ 1� p1ðkÞ=m;

� pmþ2ðkÞ ¼ pmþ3ðkÞ ¼ . . . ¼ p2mðkÞ ¼ m.

At time rðlÞ we submit a set J1ðlÞ; . . . ; J2ðmþ1ÞðlÞ of 2ðmþ 1Þ jobs with processing
times as follows

� p1ðlÞ ¼
0; if l ¼ 0;
p1ðl�1Þ þ p2ðl�1Þ; otherwise;

�

� p2ðlÞ ¼ p3ðlÞ ¼ . . . ¼ pmþ1ðlÞ ¼ 1� p1ðlÞ=m;

� pmþ2ðlÞ ¼ pmþ3ðlÞ ¼ . . . ¼ p2mþ1ðlÞ ¼ 1;

� p2ðmþ1ÞðlÞ ¼ m.

It is easy to check that jobs released at time rðkÞ, for k ¼ 0; 1; 2; . . . ; l, can be
completed by time rðkÞ þ m, therefore always before new jobs are released (if any).
It follows that the optimal maximum flow time is F �max ¼ m.

1 In [2] it is claimed that FIFO is a ð3� 2=mÞ approximation algorithm and this bound is tight.
However no proof is available in literature and we provide our own proof for completeness.

Notes on Max Flow Time Minimization 383



Starting from k ¼ 0; 1; 2; . . . ; l� 1, assume, without loss of generality, that FIFO
schedules jobs according to the order J1ðkÞ; . . . ; J2mðkÞ. According to FIFO, let
CiðkÞ be the time the last job released before time rðkÞ completes on machine Mi.
Since our instances are such that all jobs released before rðkÞ can be completed by
time rðkÞ (according to some optimal off-line schedule), we define
HiðkÞ ¼ maxfCiðkÞ � rðkÞ; 0g as the overflow of machine Mi at time rðkÞ.

By induction, the reader should have no difficulty to check that for
k ¼ 0; 1; 2; . . . ; l� 1, there are m� 1 machines each with overflow

Hið0Þ ¼ 0
Hiðk þ 1Þ ¼ 1þ HiðkÞð1� 1

mÞ for k ¼ 0; 1; 2; . . .

�

Solving the previous recurrences we have that at time rðkÞ there are m� 1 ma-
chines with overflow

HiðkÞ ¼ m� mð1� 1

m
Þk.

At time rðlÞ there are m� 1 machines with overflow HðlÞ ¼ m� mð1� 1
mÞ

l.
Moreover, observe that p1ðlÞ ¼ HðlÞ and all jobs but J2ðmþ1ÞðlÞ are completed at the
same time, i.e. at time

rðlÞ þ ðm� 1ÞðHðlÞ þ mÞ
m

¼ rðlÞ þ ðm� 1Þð2� ð1� 1

m
ÞlÞ:

2

M2

3 4

5

6

5

6

1 2 3 4

5

6

1 2 3 4 1 2 3 4

5 6 7

8

M1

M3

r(1)=3 r(2)=6r(0)=0 r(3)=9 12

2

M2 3

4

5

6

5

6

1

2

3

4

5

6

1

2

3

4 1

2

3

4

5

6

7

8M1

M3

r(1)=3 r(2)=6r(0)=0 r(3)=9 12 15+11/27

l=3 p1(k) p2(k) p3(k) p4(k) p5(k) p6(k) p7(k) p8(k)

k=0 0 1 1 1 3 3 - -

k=1 1 2/3 2/3 2/3 3 3 - -

k=2 5/3 4/9 4/9 4/9 3 3 - -

k=3 19/9 8/27 8/27 8/27 1 1 1 3

Fig. 1. An optimal schedule versus a possible FIFO schedule, for an instance with three machines
and l ¼ 3

384 M. Mastrolilli



It follows that J2ðmþ1ÞðlÞ completes at time rðlÞ þ ðm� 1Þð2� ð1� 1
mÞ

lÞ þ m and its
flow time, that is also the maximum flow time, is equal to 3m� 2� ðm� 1Þ
ð1� 1

mÞ
l. Therefore the competitive ratio is

3� 2=m� ð1� 1

m
Þlþ1;

which converges to 3� 2=m by increasing l: (

References

[1] Awerbuch, B., Azar, Y., Leonardi, S., Regev, O.: Minimizing the flow time without migration. In:
Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC’99), pages
198–205, 1999.

[2] Bender, M. A., Chakrabarti, S., Muthukrishnan, S.: Flow and Stretch Metrics for Scheduling
Continuous Job Streams. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’98), pp. 270–279, 1998.

[3] Chen, B., Potts, C., Woeginger, G.: A review of machine scheduling: complexity, algorithms and
approximability. Handbook of combinatorial optimization, vol. 3, pp. 21–169, 1998.

[4] Chen, Z., Lu, Q., Tang, G.: Single machine scheduling with discretely controllable processing
times. Operation Research Letters 21, 69–76 (1997).

[5] Cheng, T., Shakhlevich, N.: Proportionate flow shop with controllable processing times. Journal
of Scheduling 2, 253–265 (1999).

[6] Garey, M. R., Johnson, D. S.: Computers and intractability; a guide to the theory of NP-
completeness. W.H. Freeman 1979.

[7] Graham, R., Lawler, E., Lenstra, J., Kan, A. R.: Optimization and approximation in
deterministic sequencing and scheduling: A survey. vol. 5, pp. 287–326. Amsterdam: North-
Holland 1979.

[8] Hochbaum, D. (ed.): Approximation algorithms for NP-hard problems. Boston: PWS Publishing
Company 1995.

[9] Hoogeveen, H., Woeginger, G. J.: Some comments on sequencing with controllable processing
times. Computing 68, 181–192 (2002).

[10] Jansen, K., Mastrolilli, M., Solis-Oba, R.: Job shop scheduling problems with controllable
processing times. In: Proceedings of the 7th Italian Conference on Theoretical Computer Science,
vol. LNCS 2202, pp. 107–122, 2001.

[11] Karger, D., Stein, C., Wein, J.: Scheduling algorithms. In: Atallah, M. J. (ed.): Handbook of
algorithms and theory of computation. CRC Press 1997.

[12] Kellerer, H., Tautenhahn, T., Woeginger G. J.: Approximability and nonapproximability results
for minimizing total flow time on a single machine. In: Proceedings of the 28th Annual ACM
Symposium on Theory of Computing (STOC’96), pp. 418–426, 1996.

[13] Labetoulle, J., Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R.: Preemptive scheduling of uniform
machines subject to release dates. In: Pulleyblank, W. R. (ed.): Progress in combinatorial
optimization, pp. 245–261. Academic Press 1984.

[14] Lawler, E., Labetoulle, J.: On preemptive scheduling of unrelated parallel processors by linear
programming. Journal of the ACM 25, 612–619 (1978).

[15] Lenstra, J. K., Kan, A. H. G. R., Brucker, P.: Complexity of machine scheduling problems.
Annals of Operations Research 1, 343–362 (1977).

[16] Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. In: Proc. 28th Annual
ACM Symposium on the Theory of Computing (STOC’96), pp. 110–119, 1997.

[17] Mastrolilli, M.: A PTAS for the single machine scheduling problem with controllable processing
times. In: Algorithm Theory – SWAT 2002, 8th Scandinavian Workshop on Algorithm Theory,
vol. LNCS 2368, pp. 51–59, 2002.

[18] McNaughton, R.: Scheduling with deadlines and loss functions. Management Science 12, 1–12
(1959).

[19] Nowicki, E.: An approximation algorithm for the m-machine permutation flow shop scheduling
problem with controllable processing time. European Journal of Operational Research 70, 342–
349 (1993).

Notes on Max Flow Time Minimization 385



[20] Nowicki, E., Zdrzalka, S.: A survey of results for sequencing problems with controllable
processing times. Discrete Applied Mathematics 26, 271–287 (1990).

[21] Nowicki, E., Zdrzalka, S.: A bicriterion approach to preemptive scheduling of parallel machines
with controllable job processing times. Discrete Applied Mathematics, 63 237–256 (1995).

[22] Shmoys, D., Tardos, E.: An approximation algorithm for the generalized assignment problem.
Mathematical Programming 62, 461–474 (1993).

[23] Trick, M.: Scheduling multiple variable-speed machines. Operations Research 42, 234–248 (1994).
[24] Vickson, R.: Choosing the job sequence and processing times to minimize total processing plus

flow cost on a single machine. Operations Research 28, 1155–1167 (1980).
[25] Vickson, R.: Two single machine sequencing problems involving controllable job processing

times. AIIE Trans., 12 258–262 (1980).

Monaldo Mastrolilli
IDSIA
Galleria 2
6928 Manno
Switzerland
e-mail: monaldo@idsia.ch

386 M. Mastrolilli: Notes on Max Flow Time Minimization

Verleger: Springer-Verlag KG, Sachsenplatz 4–6, A-1201 Wien. – Herausgeber: Prof. Dr. Wolfgang Hackbusch, Max-Planck-
Institut für Mathematik in den Naturwissenschaften, Inselstraße 22–26, D-04103 Leipzig – Satz und Umbruch: Scientific

Publishing Services (P) Ltd., Madras; Offsetdruck: Manz Crossmedia. 1051Wien. – Verlagsort: Wien. – Herstellungsort: Wien. –
Printed in Austria.


