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NOTES ON POLYNOMIALLY BOUNDED ARITHMETIC

DOMENICO ZAMBELLA

Abstract. We characterize the collapse of Buss’ bounded arithmetic in terms of the provable collapse of
the polynomial time hierarchy. We include also some general model-theoretical investigations on fragments
of bounded arithmetic.
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§1. Introduction and motivation. In every model of I A; numbers code finite sets.
Sets coded by numbers are Ao-definable. In general, the converse is not true.
Weak theories, which do not prove the totality of exponentiation, do not prove
the existence of a code for every finite Ag-definable set. So, a natural way of
strengthening I Ay is by adding to the language second-order variables X, Y, Z, etc.
ranging over finite sets of numbers and introducing axioms of finite comprehension
ensuring the existence of sets of the form {x < a : p(x)} for p(x) ranging over
some class of second-order formulas. Interesting theories arise when we restrict
the schema of finite comprehension to bounded formulas. These are formulas
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where all quantifiers are of the form Qx < ¢ or QX < ¢ where ¢ is a first-order
term (i.e., a polynomial). Note that second-order bounded quantifiers range over
sets whose elements are bounded by ¢, so, by the absence of exponentiation, their
nature is radically different from that of first-order quantifiers. We introduce the
classes £/ and I1/ counting alternations of (polynomially) bounded second-order
quantifiers. Restricting the strength of the schema of finite comprehension to
formulas of a certain complexity one obtains the hierarchy of theories that we call
ZP-comp. The union of all these theories (i.e., finite comprehension for all bounded
second-order formulas) is called second-order bounded arithmetic B4A. We study
the relative strength of various fragments of BA and in particular their provably
total functions.

In the last decades two subsystems of arithmetic, Ay and S», have been studied
especially for their connections with complexity theory (see e.g., [16] and [3] or [7]).
In particular, Buss’ S, is the most extensively studied. The theory S, coincides with
(an extension by definition of) the equally well-known I Ag+Q;. These theories are
first-order strengthenings of 7Ag. In the case of IAg + Q; or S, the motivation for
the strengthening is somehow technical; it arises from metamathematical and/or
syntactical considerations. In fact, in order to have a reasonable formalization of
computation and/or syntax one needs to be able to perform operations on strings
such as the substitution of substrings. Such an operation increases the code of the
string superpolynomially and so, it is is not provably total in IAg. Addingto IAgan
axiom (i.e., Q) asserting the totality of this function one obtains a stronger theory
in which it is possible to formalize almost all basic notions of metamathematics.
Buss introduced a hierarchy of theories Sé' whose union is S7. These fragments of S,
are obtained by weakening of the axiom of induction (while introducing sufficiently
many new primitives to allow smooth bootstrapping).

It is not surprising that BA coincides with Buss’ .S, modulo an appropriate trans-
lation. Namely, to each (first-order) model 2 of S, corresponds a (second-order)
model 9 of BA. The first-order objects of 9" are the logarithmic numbers of
9’ (i.e., numbers belonging to the domain of exponentiation). The smash function
guarantees that these numbers are closed under multiplication. The second-order
objects of M’ are those finite sets which have a code in 907", In this way, £/ -formulas
get transformed into X°-formulas of Buss’ language (see e.g., [3] or chapter V of
[7]) in a very natural way, so, the constructed second-order model verifies finite
comprehension for all bounded formulas. Vice versa, from a model 9" of B4 one
obtains a (first-order) model M’ of S, by the inverse procedure. As domain of
M’ we take the second-order objects of I, In M” we define the primitives of S
as set operations. Intuitively, we think of a finite set X" as the number »° 2%
and define operations lead by this idea. We shall see that B4 disposes over enough
second-order recursion to formalize these operations and to prove that the axioms
of S; hold in 9. Note, parenthetically, that the cartesian product of two sets is
mapped to a first-order function with the growth rate of the smash function.

This procedure actually maps models of E/-comp into models of S} and vice
versa (for all i > 0). A few details on this isomorphism (which was discovered in
different ways by many authors) are contained in Section 2.7. Readers who are
mainly interested in S} are advised to read this section first. In fact, afterwards
they will be able to translate most of the results reported here into theorems about
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fragments of S,. In particular, Lemma 3.2 is a strengthening of the main theorem
of [3]. Our proof is model-theoretic and it is formally identical to an unpublished
model-theoretic argument for the conservativity of /Z; over PRA by Albert Visser.
In fact, formal similarities between /X, and X/ -comp are apparent when primitive
recursive functions are replaced by polynomial time computable functions. Other
conservativity results are obtainable with the same method. The author’s personal
motivation for using a second-order framework is that this approach allows economy
of primitives, natural definitions and (again in the author’s opinion) a clear heuristic.

In the hierarchy of fragments of BA very few inclusions are known to be strict.
In general the problem of proving inclusions to be strict seems to be a very difficult
one. A more realistic goal is to characterize the collapse of theories in terms of the
provable collapse of some complexity classes. A corollary of Lemma 3.2 is that, if
P-def (i.e., the VZ! fragment of ZF-comp) proves Tf = I14, then BA collapses to
P-def . So, a very satisfactory result would be to prove the converse. One of the best
known results in this direction is the celebrated KPT theorem (see Theorem 4.4):
in [10] Kraji¢ek, Pudlak and Takeuti, proved that if Z-def proves Z/-comp, then
in the standard model the polynomial time hierarchy collapses to the second level.
Unfortunately, it is still unclear whether their proof is formalizable in B4, so, their
result cannot be used to answer questions like: if %-def proves ZV-comp does B4
collapse?

The main achievement of this paper is the following theorem. It gives a satis-
factory characterization of the collapse of BA in terms of the provable collapse of
PH. (On the right hand side we include the translation into Buss’ language. For
uniformity, we set 75 := PV;. For the definition of BBX?, | see Section 2.7.)

THEOREM. The following are equivalent

(i) Pi-def 2L, -comp LF s
(i) P-def F =L, CTIZ,, /poly T3 b2ty S0, [poly
(iii) -def + BA Lt

(iv) Pi-def +Zf, -choice 27,

-comp Ti + BBX?, - Sith

The implication from (i) to (ii) is Theorem 4.3. The implication from (i) to (iii)
can be reconstructed from the proof of Theorem 4.2. (To read these two proofs the
reader needs only to rush through Section 2.) From Theorem 4.2 it actually follows

that (ii) implies (iii) while in Corollary 3.3 is proved that (iv) implies (i).

ACKNOWLEDGMENTS. The numerous discussions with Rineke Verbrugge, Harry
Buhrman and Volodya Shavrukov have been pleasant and stimulating. I also wish
to thank Franco Montagna for corrections. When the first draft of this manuscript
was ready I had interesting discussions with Sam Buss. I owe him various obser-
vations and corrections. Buss [5] independently proved that condition (i) above
implies (ii) and (iii). He observed that from (i) it follows that PH (provably) col-
lapses to Boole(Z?,,). His result inspired the interpolation theorem of Section 4.1.
The supervision of Dick de Jongh and Albert Visser has assisted me through the
numerous stadia of preparation of this work. =

§2. Preliminaries. Here we introduce the necessary definitions. Lemma 2.3 pro-
vides a smooth bootstrapping. The class of polynomial time computable functions
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is concisely introduced in Section 2.5 in a machine independent way. The (stan-
dard) comparison of strength of the various fragments is sketched in Section 2.6.
In Section 2.7 the relation with Buss’ S} is sketched.

2.1. The polynomially bounded hierarchy. We define the analogue of the analytical
hierarchy for finite sets. The language L is the language of second-order arithmetic;
it consists of two symbols for constants: 0, 1, two symbols for binary functions:
+, - and two symbols for binary relations: <, €. Moreover, there are two sorts
of variables: first and second-order. Lower case Latin letters x, y, z,... denote
first-order variables and capital Latin letters X, ¥, Z, ... second-order variables.
First and second-order variables are meant to range respectively over numbers and
finite sets of numbers. Terms are constructed from first-order variables only. The
intended meaning of X < y is: “all elements of X are less than y”. Let ¢ be a term
of L, in which x does not occur. We adopt the following abbreviations with the
usual meaning

(Qx < t)p, (Qx € Yo, (QX < t)p,

where Q is either V or 3. Quantifiers occurring in either of these contexts are called
(polynomially) bounded quantifiers. The class of bounded formulas is denoted by
PH. Note that first-order quantifiers range over elements of sets while second-order
quantifiers range over subsets of sets. Here, first-order bounded quantifiers play
the role that sharply bounded quantifiers have in first-order bounded arithmetic (see
e.g., [3] or Chapter V of [7]).

A formula is (polynomially) bounded if all of its quantifiers are. Counting alterna-
tions of second-order quantifiers we classify bounded formulas in the (polynomially)
bounded hierarchy. We use either one of the symbols IT] or = for formulas con-
taining only bounded first-order quantifiers. We define inductively X7, , as the
minimal class of formulas containing IT?, closed under disjunction, conjunction
and bounded existential quantification. The class IT/, ; is the minimal class of for-
mulas containing 27, closed under disjunction, conjunction and bounded universal
quantification. So, PH equals | J; ., Z/ and |, IT/.

The class f(X?) is the smallest set of formulas containing X7, closed under
Boolean operations and bounded first-order quantification. Sometimes we add to
the language L, some set # of new symbols for functions. We define the (relativized)
classes of bounded L,(F)-formulas: 27 (F), ITI? (), etc. similarly to those of the
language L,. (We allow terms of L,( ) to occur in the bounds of the quantifiers.)

The domain of an L, structure 9% is composed of two disjoint parts: the numbers
and the sets of 901. To denote elements of a model, we use the same convention as
for variables, so, we write 4 € M for ‘A4 is a set of M’ and a € M for ‘a is a number
of M’. For models we use Gothic capitals, for the class of first-order objects of a
model 9t we use the corresponding lower case letter m. The disjoint union of w
and Z.., (w) constitutes the standard model, functions and relations are interpreted
in the natural way. We loosely denote the standard model by w.

For our digressions to computational complexity theory it is convenient to think
of finite sets as strings i.e., we identify %, (w) and 2<“. So, sets of finite sets may
be identified with languages. The actual form of the isomorphism is immaterial.
We stipulate that the length of the string associated to a finite set X C w equals (up
to some additive constant) the least upper bound of the set X which we henceforth
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denote by | X|. To begin with, the reader may wish to check that X/ -formulas define
languages in NP, i.e., if ¢(X) € Z{ then the language {X : o = ¢(X)} isin
NP. Vice versa for every language L C 2<“ in NP there is a formula ¢(X) in =¥
such that Lis {X : o | ¢(X)}. In the same way, II}-formulas coincide with
coNP languages and, in general, each level of the bounded hierarchy coincides with
one of the Meyer-Stockmeyer polynomial time hierarchy (with the only exception of
ground level i = 0 which corresponds to uniform-4C Olanguages). When digressing
to computational complexity theory, we identify each number x € w with the set of
its predecessors and so, with a string of ones of length x. Therefore, a formula ¢ (x)
with one free first-order variable defines a tally language, i.e., a language which is
contained in {1}<%.

2.2. The axioms of second-order bounded arithmetic. The theory @ is axiomatized
by the following formulas: (The expressions a < b, 4 = § and 4 C B stand for the
usual abbreviations.)

0+£1 a(b+1)=(ab)+a

a+0=a a<boa<b+1
a+l=b+1—a=>b a<b+lea<b
a+B+1)=(a+b)+1 A<beo(Wxed)x<b
a#0-(3Ax<a)x+1l=a A=B—ACBABCA
a0=0 A# D - @xed)(4<x+1).

These are the axioms of Robinson arithmetic plus the defining axioms for the
relation <, the axiom of extensionality and the least upper bound principle. The
theory /-comp is axiomatized by ® and the schema of (finite) comprehension for
= -formulas i.e., for all  in 27 in which X does not occur free,

-comp: (FX < a)(Vx<a)[x € X « ¢(x)]

The theory of second-order bounded arithmetic, BA, is the union of X7-comp for
1 €.

2.3. Rudimentary functions. In order to keep formulas to a readable size we
need to introduce new function symbols. To begin with, let us give some informal
definitions. We write |4| for the least upper bound of 4 and |a, 4| for the least
upper bound of {1,a,...,an, |41],...,|4n|}. It should be clear that Z}-comp
suffices to prove the existence of |a@, A|. We call rudimentary those functions which
are obtained by i comprehension or by X{ minimalization, i.e., those functions
definable in either one of the two following ways:

Fopla, ) :={x<|a,A] : ¢(x,3,A)}, fop(@A):=p. > e(xa, ),

for some ¢ € 2f and p € w (in the definition of F, , and f, ,, we have stressed
that these functions are polynomially bounded).

Let % be a set of new primitives, one for each (definition of a) rudimentary
function. Let #Z-def be the theory axiomatized by ® plus the defining axioms for
the functions in #. Clearly, Z-comp suffices to prove every rudimentary function
to be total. So, F#-def is a conservative expansion of Zf-comp. The following
lemma ensures us that there is no danger in considering formulas of the expanded
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language L, (%) as abbreviations of Ly-formulas. In fact, the ‘translation’ does not
increase the complexity of the formula. Namely, the following lemma shows that
I = 37 (%) provably in FZ-def .

LEMMA 2.3. For every y € ZL (), there is y* € ZF such that H-def - y — y*.

Proor. The lemma is proved by a method which we believe to be well-known
to the reader, so, we do not need to give it in full detail. One has to unfold the
definitions of the rudimentary functions inside the ZJ(%)-formula . We can
assume that y has only one occurrence of a single rudimentary function F,, ,(d, A)
(we also assume this function is a set function; the case of a number function
is similar). First, one must rewrite i to have all occurrences of rudimentary set
functions on the right of the symbol €. Then replace each subformula of the form
x € F,,(a, 4) with

x < |a@, AP Np(x,a, A).

Finally, replace subformulas of the form x < |a, 4|7 with an equivalent xb-
formula. The defining axioms of F,, , ensure that the formula obtained is equivalent
to the original y. In the resulting formula no rudimentary set function occurs. -

A noteworthy corollary of this lemma is that rudimentary functions are closed
under composition. From the lemma it follows also that X7 (&)-comp + F-def is
equivalent to X7-comp + Z-def and hence an extension by definitions of £f-comp.
Below, we list a few rudimentary functions that we often use.

{a,b) = u,2z=(a+b)(a+b+1), the pairing function,

AXxB = {z: (3x,y <z2)[z=(x,y) Ax € ANy € B}, the cartesian product,
APl = [y : (b,y) € A}, the b-th row of the ‘matrix’ 4,
A(b) = u; z € A®] the value of the ‘function’ 4 at b,
[x] = {y : y < x}, the set of predecessors of x,

{x} = {y : x =y}, thesingleton of x.

2.4. Other fragments. In this section we present some other interesting fragments
of BA4; in the next sections we shall study their relative strength. We agree that all
theories we introduce in this section contain, by definition, Z{,’ -comp. The theories
XP-ind, £¥-dc and X -coll (i.., of induction, dependent choices and strong collection
for Zf-formulas) are axiomatized by the following schemas, for ¢ € Zf.

2r-ind : @(0) AVx[p(x) = @(x + 1)] — ¢(a),
ede @ Vx(VX < b)FY <b)p(x, X, Y) — IZ(Vx < a)p(x, ZF], Zx+1)
f-coll : 3Z (Vx < a)[(BY < b)p(x,Y) — ¢(x, ZM)],
(in the last two schemas Z should not occur free in ¢). The schema of dependent
choices is inspired by second-order arithmetic, We show (cf. Lemma 2.6) that depen-

dent choice, induction and strong collection are all equivalent to comprehension.
A rather intriguing role is played by the following schema of choice

X?-choice : (Yx < a)(3X < b)p(x,X) — 3Z (Vx < a)p(x, Z1),
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where o isin £7. It asserts that the 7 -formulas are closed under first-order bounded
quantification.!

2.5. Polynomial time computable functions. In this section we introduce the
classes of functions %;. These correspond to classes which have been intensively
studied in computational complexity theory, i.e., the functions which are polynomial
time computable with an oracle for £ (also denoted in the literature by 07, ). For
expository reasons we prefer to introduce them in an axiomatic way avoiding direct
reference to any model of computation. Formally, our approach is self-contained.

To begin with, let us work in the standard model, i.e., natural numbers and finite
sets of natural numbers. The functions we introduce are of two sorts, number
functions and set functions, denoted respectively with lower case and capital letters.
Functions take as inputs tuples of numbers and sets. They output either a number
(number functions) or a set (set functions). Numbers, as input and/or output, are
introduced merely as a useful device to express ‘logarithmically many iterations’.

The class 2 is the smallest set of functions containing % and closed under com-
position and under the following schema of second-order (polynomially bounded)
recursion

F(0,7,X)=G(xX); Fy+1,%X)=[y%XP1n H(y, %, X, F(y,%,X))

forany G, H in # and p € w.

The recursion schema introduced above is polynomially bounded for two reasons.
We bound both the size of the output and the depth of the recursion. So, no more
than polynomially many nested iterations of functions are possible.

The class & is also denoted . In general, the classes &; are obtained by adding
to 2 Turing oracles for X/ -formulas and closing under second-order recursion and
composition. Turing oracles for £/ -formulas are functions of the form

Flad) - {{0} if (@, )

] otherwise,

for ¢ in 7.

Now, going back to theories of second-order arithmetic, let us use &; to indicate
also some sets of symbols for functions, a different symbol for each definition of a
function in the corresponding class. Let Ly(%;) be the corresponding expansions
of L,. Let P;-def be the theories axiomatized by ® and the defining axioms of the
functions in %;.

2.6. Relations among fragments. We assume the reader to be familiar with frag-
ments of first-order arithmetic (see e.g., [7]), so, we merely sketch proofs. It is
easy to see that the comprehension schemas for X7, ITY and Z{ (X)-formulas are
equivalent. Also, we may contract quantifiers, so, X7 ;-dc and Xf, -choice are re-
spectively equivalent to I17-dc and I1/-choice (these last two theories are defined in
the obvious way). The theory £, -choice proves that X7, -formulas are closed
under first-order bounded quantification. In the schemas of Xf-choice, Ef-dc

The notation may be a puzzle to the reader if confused with Buss’. Qua strength, ind correspond with
Buss’ LIND or PIND. Our schemas coll and choice correspond to strong-replacement, resp., replacement
in Buss [3]. What is meant by ‘corresponds’ is explained in Section 2.7
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and Xf-coll we can in addition require the set Z to be a subset of {a + 1]x [b]
without strengthening the schema. The easy proofs of these facts are left to the
reader.

The content of the lemma we are going to prove in this section is summarized
in the picture above. An arrow means provability. Next to the arrow we write the
partial conservativity we shall prove in Sections 3.2 and 3.3.

LeEmMA 2.6, Foralli € o,
(i) XF,-ind = 27, |-choice = XF -comp
(.q) Xl -comp <= X! -ind <= X! |-dc <= X[  -coll
(iii) X |-comp = P;-def == E!-comp.
We understand the first inclusion of (iii) as: every model of ¥ v1-comp has a unique
expansion to a model of P;-def.

ProoF OF (i). For the first inclusion, it is sufficient to prove [17-choice. This
is proved in a straightforward manner. By the observation above, the quantifier
3Z in the schema of choice can be bounded. So, assuming the antecedent of the
implication one can prove the consequent by induction on the parameter a. The
second implication is proved by induction on i. Assume that X7, -choice proves
=P-comp (this is true by definition if i = 0, for i > 0 it is taken as induction
hypothesis), we show that X7 ,-choice proves X -comp. Reason in a model of
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7, ,-choice. Let o(x) € Zf,|. For some b and some y € IIf the formula ¢ is
equivalent to (3X < b)y(x, X). We have

* (Vx < a)( BX <b)VY < b)[y(x, X))V ~wy(x, V)]

We may apply the axiom of choice to get a set Z C [a]x [b] such that for all
x < a, either y(x, Z™) or (VY < b)—w(x,Y). So, y(x, Z™) is equivalent to
(x). Therefore, Z‘-’ -comp suffices to prove the existence of the set {x < a : ¢ (x)}.

PrOOF OF (ii). Itisimmediate that £ -comp contains 27, ,-ind. For the converse
inclusion, reason in a model of =7, ,-ind; let ¢ € Zf,, and choose a parameter a.
We want a set X < a such that x € X < ¢(x) for all x < a. We are done if we
can find a set of maximal cardinality among those such that x € X — ¢(x) for all
x < a. In fact, for such an X, also the converse implication holds. Formally, we
write ¥ : [c] < X for the Z§-formula saylng that Y is an injection of [c] into X
ot, in other words, that the cardlnahty of X is at least c. By ZV-ind, there exists a
largest ¢ < a such that

(Fx < a)3@Y < {c,a)) [(Y ‘el = X)A(¥Vx € X)go(x)].

The X, witnessing the existential quantifier for ¢ maximal, is the required set
satisfying x € X < ¢(x) for all x < a. This completes the proof of the first
equivalence. .

To prove that X7, ,-ind implies 7 |-dc it is convenient to derive II-dc. This
is done by straightforward induction as for the schema of choice in the previous
lemma. The converse implication is proved by induction on i. Reason in a model
of X7, |-dc. We show that for every y € 27,

*) w(0) A (vx < a)[y(x) = w(x + 1)] - y(a).

Without loss of generality, we may assume that y(x) is equivalent to (3X < b)
o(x, X) for some ¢ (x) in I1? and some parameter b. Assume the antecedent of (*),
then

(Vx < a)(VX < b)Y < b)[p(x, X) = p(x + 1, Y)].

The formula between square brackets is equivalent to a £/ +1-formula, so, (after a
few manipulations) one can apply X7, -dc to get a set Z C [a + 1]x[b] such that

ZW = 4 A (¥x < a)p(x, ZM) — o(x +1,Z0+1)),

where A is any set such that ¢ (0, 4). Since X/-ind holds (by induction hypothesis
if i > 0 or, by definition, if i = 0), we can apply induction on x to the formula
o(x, Z™) to prove p(a, ZI4) and hence y(a). This completes the proof of the
second equivalence.

We leave the proof that X7-comp is equivalent to Z-coll to the reader.

Proor oF (iii). The proof'is standard but very lengthy and it is left to the reader.
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2.7. Relations with Buss’ bounded arithmetic. In the introduction we mentioned
that X7-comp coincides with Buss’ S} by a suitable translation of formulas. This
translation has been found independently by many authors (see e.g., [14, 15, 9]). It
is not necessary to include full details here, but, to give some clue to the reader, we
quickly show how to transform a model of S} into a model of =f-comp and vice
versa.

Let 9 be a model of S;. Let M, be the second-order structure having as first-
order objects the elements a of 9Jt; such that 27 exists and as second-order objects
those finite subsets of M; which are coded in the usual way by elements of 971;. I.e.,
for every a € 9; we add the set 4 to M1, such that

a= Z 2%,
x€A
Functions and relations of 9%, are defined in the natural way. Note that multi-
plication of first-order elements is a total operation in 9%,. In fact if 2% and 2°
exist in 91 then 29 exists too, since it is equal to 2°#2b. It is easy to see that
9, models ¥ -comp. In fact, it is sufficient to note that for every second-order
formula ¢(x, X) € Z? there is a first-order formula ¢*(x,y) € = such that for
everya, A € 9

M Epla,d) < M <p*(a,22x).
x€A4

To see the other direction, we apply the inverse procedure. Let 9, be a model of
EP-comp. We think of sets of I, as representing numbers, i.e., we think of the set

X as the number
n(X) =Y 2%
x€X
Clearly, in general such a number need not exist in 901,. Still, formalizing the natural
algorithm for addition and multiplication of binary numbers, we may define in 91,
some set functions X’ & Y and X ® Y such that

nXeY)=nX)+n(Y)andn(X ® Y) = n(X) -n(Y).

It is well known that such an algorithm is computable in polynomial time, so,
X @ Y and X ® Y are total functions in every model of Z-def. Let X#Y be the set
{|1X]| - |Y| } which exists because 9, models £ -comp. Also, all other functions of
the language of S, can be defined in a similar way. Now, one can construct a model
of S} having as its domain the second-order elements of 9, and as functions and
relations the ones just defined. The reader may check that the 32 axioms of BASIC
hold in M. Since M, is a model of X7-ind, it is not difficult to see that 9, satisfies
logarithmic induction for X?-formulas. Hence, 9, is a model of S%.

We did not introduce any theory corrsponding to the direct translation of Buss’
theories 74 *!. Such translation would look like

*) p(4) —» 3X < Ap A VY < X)=p(Y)

where X < Y stands for X # Y A | XAY|—1€ Y and ¢ is a X7, -formula. For
reason of convienence we introduced the theories %, -def which correspond to



952 DOMENICO ZAMBELLA

PV;,. These theories are just expansions by definitions of 7. *!. From the proof
of Lemma 3.1 it is immediate to see that %;-def proves principle (*) above for
@ in ;. In fact, the function F defined there computes the minimal X in the
lexicografic order satisfying . The proof of the converse, i.e., that P-def is an
extension by definition of (*), is omitted.

Finally, to translate the results of Section 3.3 in the language of S, note that
second-order models of £7 | -choice correspond to first-order models of BBX?, (cf.
Chapter V of [7]), i.e., S} plus the schema

(Vx < [t) @y < s)e(x, y) = Fw(vx < |t]))e(x, (w)x).

where ¢ isin ¢ . In [3] this schema is called =2, | -replacement.

The schema of £ -coll correspond to Zf? (1-strong-replacement of [3].

§3. Witnessing theorems and conservativity results. Buss was the first one to give
an extensive characterization of complexity classes as classes of functions defin-
able and provably total in some weak fragment of arithmetic. Our Corollary 3.2
corresponds to the main theorem of [3]. However, the very idea of the proofs we
report here goes back to the Mints-Parsons’ famous partial conservativity result of
IX; over PRA [11, 13]. Buss’, Parsons’ and Mints’ proofs are proof-theoretical.
Wilkie gave a model-theoretic proof (unpublished) of Buss’ theorem (see [7]). Here
we adapt a model-theoretical proof of the Mints-Parsons’ theorem given by Albert
Visser (unpublished).

3.1. Closures. Let 90 be a model of Zf-comp and let 2 be a subset of M. We
say that 2 is closed under #Z-functions if F(¢,C), f(¢,C) € Aforevery¢,C € A
and F, f € &#. The %#-closure of 2 in 9 is the minimal %#-closed subset of 9
containing 2, i.e.,

g1y, = {F(EC), f(,C) : é&,C c%and E f € #}.

We interpret %Z-closed subsets of 9 as substructures in the canonical way: the
functions and relations of N are the restriction of those of 9. In the same way we
define %;-closed sets in models of %;-def .

We say that 91 C 9tis a £/ -elementary substructure of 9, if for every £f-formula
pand every a, A e M

N p(a, 4) =M = ¢(a, 4).

We write 01 <gp 9 if MNis a I} -elementary substructure of M. A similar notation
is used also for other classes of formulas.

Lemma 3.1 (Definability of Skolem functions).
(i) F-closed substructures of models of £§-comp are If-elementary (so, in par-
ticular, they are models of £§-comp).
(ii) Pi-closed substructures of models of Pi-def are ¥ (P;)-elementary (so, in
particular, they are models of P;-def ).

PrOOE. For (i), observe that first-order Skolem functions for X -formulas are in
Z. The proof of (ii) when i = 0 is easy. For i > 0 it suffices to show that among
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the &;-functions there are Skolem functions for £7(%;)-formulas. Le., for every
EP(%;)-formula ¢ there is a function F in % such that

Y <|a,A|Pp(a, A, Y) — (a, A, F(a, A)).

To see this we shall define a function F that, by binary search, produces the minimal
(in the lexicographic order) set Y < |a, A|? satisfying ¢(a, 4, Y). Let us define the
function G by recursion in the following way (omitting parameters and bounds)

G(O’a-’li) = @’

G(J’yﬁ’A—)ﬂ[J’]Z Yﬂ[y]
G(y,a,d)if AY < |a, AP) NS (a, 4, Y)

G(y+1,a,4) = g

G(y,a, A) U{y} otherwise

(recall that % is closed under definition by X7 (% )-cases since it contains the
characteristic functions of 7-formulas and is closed under composition). Finally,
we define
F(a,A) = G(|a, A").
We leave to the reader the verification that F produces a witness of (3Y < |a, A|?)
w(d, d,Y), if one exists, and is § otherwise. -

The class of Z;-functions is closed under f-definition by cases, so, an easy
compactness argument proves the following witnessing theorem for &;-def .

COROLLARY 3.1 (Witnessing theorem for #;-def). EachV3Z!,, sentence provable
in P;-def has a witnessing function in P;.

Proor. We have to prove that, for all ¢ € % |, there is a function F in %; such
that

Pi-def VX, % IYp(%, X, V) = Pr-def VX, % (%, X,F(x,X)).

By contraction of quantifiers it suffices to show that the implication above holds for
I17-formulas. So, let ¢ be a IT7-formula such that for no F € %,

(*) fg‘)t'def}_v";’i(p(i’in(i’Xv))
Let ¢, C be fresh constants and consider the theory
(**) Pi-def + {~p(¢,C,F(¢,C)) : F € #}.

This theory is consistent. Otherwise by compactness, for a finite set of functions
{F1, .. .,Fn} in 9",‘,

Pi-def V7, X [(p(i, X R(Z,X)) V- Ve(& X, F(%, Xf))} :

So, since Z;-functions are closed under definition by /-cases, one can combine
Fi, ..., F, together to find a function F € % satisfying (*). Now, choose a model
9 of the theory (**) and let 71 be the & -closure of ¢, C. By the previous lemma 0N
is a model of &;-def . The same lemma excludes the possibility of having in 91 a set



954 DOMENICO ZAMBELLA

Y such that ¢ (¢, C, Y). Thus &-def does not prove VX, X 3Yp(%, X, Y) and the
corollary follows. -

3.2. A model-theoretical version of Buss’ witnessing theorem. We derive our ver-
sion of Buss’ witnessing theorem from the following lemma.

LEMMA 3.2. Every model M of Pi-def has an 3EL -elementary extension to a
model N of EL_ -comp such that for every T1}-formula o there is a function F € &
with (undisplayed) parameters from N such that (*) below holds

(*) N = VX IYp(X, ¥) — VX (X, F(X)).

ProoOE. We claim that, if we succeed in satisfying condition (*), we obtain also
that 9 models X7 -comp. To prove the claim it is sufficient to check that in N
the schema of dependent choices holds for IT7-formulas. Assume that VxVX3Y
{(x, X, Y) holds in 91 and that a bound b on X and Y is implicit in ¢. Leta € 9.
We want to find a Z such that (Vx < a) ¢{(x,Z¥, ZIx+1) By (*), for some
F € %, and for all x and X, ¢(x, X, F(x, X)). Define the following function G by
second-order recursion (F can be bounded by b):

G0)=0, G(x+1)=F(x+1, G(x)).

Finally, Z is obtained by rudimentary collection: | J,,.,{x} X G(x). This proves
our claim.

Now, let 9t be a model of &;-def. The required model N is constructed as the
union of an JE7_;-elementary chain of models of Z;-def,

93"( = MO '<32§’+1 93?1 4321;1 9)”(2 '<321_1+1 BRI

The chain is constructed by stages. Each link of the chain is constructed using a
model 2 as an intermediate step, as in the following diagram

A

=)

e i+1

Qﬁs el gﬁs-H
Suppose M, has already been constructed. Let ¢, be the s-th IT7-formula of an
enumeration (to be specified below) of I17-formulas with parameters in 97,. Let
(*)s be (*) with ¢, for ¢. We shall construct a model 9, realizing (*), for
some function F € %;. Observe (*), is a 3VII? -formula, so, its truth is preserved
upwards in the chain and finally inherited by the union 9. It is easy to choose
the enumeration such that eventually all IT-formulas with parameters in 9 are
considered. The details of the enumeration are as follows. At each stage s we fix an
arbitrary enumeration {?};c,, of all [1/-formulas with parameters in 9t,. Finally,
let o, be ! for s = (r, ). To define M;,; proceed as follows. If (*), holds for o, we
do nothing, i.e., we define M, := M,. Otherwise, we try to make the antecedent

32,
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of (*), false in 90%;;. We construct M, and C € M, where IV, (C, Y) fails.
Since (*), does not hold in M, the following theory has a model 2

Diag(M;) + {~¢,(C,F(C)) : F € & with parameters in 9, },

where C is a fresh constant and Diag(9;) is the elementary diagram of M (to
check the consistency, argue by compactness). 2 is elementary equivalent to 91,
so, In particular, it is a model of %;-def. Define

Msi1 0= <<9ﬁs + C»gv,.'

Closure to be taken in 2. Clearly, 2, is a £’ -elementary substructure of 2 which
is elementary equivalent to 91, so, every EIE;” i-formula true in 99%;.,; will be true
in 2 and hence in 9%;. In 9| there is no witness of 3Yp, (C, Y). This completes
the proof of the lemma. -

CoRrOLLARY 3.2 (V3Z!, | -conservation and witnessing theorem for =7, -comp).
X7, |-comp is Y3E! | -conservative over F;-def, therefore every V3EL. | sentence prov-
able in 2| -comp has a witnessing function in %;.

Proor. Immediate from the previous lemma and from Lemma 3.1. -

3.3. Amodel theoretical characterization of choice. We now introduce the concept
of Z-extension. This is an extension where all second-order objects are constructible
relative to the extended model. This notion may be viewed also as a second-order
generalization of cofinal extension. It will be used to give a model theoretical
characterization of X7, -choice over £ -comp. An useful application of this notion is
given in the proof of the corollary below. (The conservativity result in Corollary 3.3
(b) will find applications in the following sections to characterize the collapse of
BA.)

Let 0t and 9% be models of 5 -comp. Recall that their first-order parts are denoted
respectively by m and n. We say that 9 is an % -extension of 21 if

(0) om <20p M.
(i) miscofinalin n, i.e, for all a € 9N there is b € M, such that a < b.

(i) 91 = (I +n)),, i.e, for every 4 € N there are a € Nsuch that N = 4 =
F(a) for some F € & with parameters in 1.

We write 9T <& D1 if M is an F-extension of M.
Fact 3.3. Let 91 be an #-extension of M.
(a) 93"( -<E|Ef m
(b) M = EL, | -choice=>M <agr, N
(c) M= El-comp <> N |=Zl-comp.
(d) m |= Pi-def — M |= Pi-def .
PrOOF OF (a). If M |= 3Yp(Y) for some Ef-formula ¢ with parameters in 91,
then for some b € 9, and some F € & with parameters in 9t

N = (3x < b)p(F(x)),

s0, by X} -elementarity, this holds in 9t too. This proves (a).
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PROOF OF (b). Let 9 be a model of X7 -choice. Let a € M and ¢ € E! with
parameters in 9 and suppose N = IV (VX < a)p(X,Y). It suffices to show
that the same formula holds in 9 too. As induction hypothesis we assume 3= -
elementarity. Since N is an F-extension, for some F € % with parameters in I,
and some b € M

N (Gx < b)(VX < a)p(X, F(x)).

Then, clearly,
N (VZ C (a,b))(3x < y)p(ZM, F(x)).

So, by 327 | -elementarity,
M (VZ C (a,b))(Ix < y)p(ZP, F(x)).
Finally, by Z7, ,-choice,
M (Ix < b)(VX < a)p(X, F(x)).
This proves (b).

ProoF OF (c). The ‘left to right’ direction of Fact (c) is true by definition when
i = 0. Fori > 0itfollows from (b} and Lemma 2.6. In fact, these imply that 9tis an
3z!, |-elementary extension of 9. So, let ¢ be any EP-formula with parameters in
M. By (ii), we can assume that all second-order parameters of ¢ belong to 9. Let
Z be all first-order parameters occurring in ¢ and let a € 2 be arbitrary. Choose in
Mab > a,c. Since M = XF-comp there is a set 4 € M such that

M= (Vx, 7 <b)(x,7) € 4 & @(x,p)]

where the variables j are substituted for ¢ in . By 3Z7 | -elementarity, A satisfies
the same property in N too. So, in N theset B := {x < a : {(x,¢) € A} verifies,

NE (Vx <a)[x € B« p(x,0)]

This proves that N is a model of £-comp.

The converse direction {‘right to left’) is also true by definition when i = 0. So,
assume it true for i and let us prove it for i + 1. Let 91 be a model of =7, -comp. By
induction hypothesis, 9 is a model of £ -comp and, by Fact (b) and Lemma 2.6, a
337 -elementary substructure of 9. Let ¢ (x, Y) be a IT? -formula with parameters

i+1
in M1 such that I¥p(x, Y) is £, . It suffices to find in 2 a set 4 such that

ME (Vx<a)x €4 IYp(x,Y)]
By Lemma 2.6, 91 models £ 1-coll, so, for some set Z
N = (Vx < a)[3Yp(x, ¥) « o(x, ZM)].
Then, for some b € M and function F € O with parameters in 91,
Nk (Vx < a)[3Ye(x, ) < o(x, F(6))].

Consider, in 9, the set 4 := {x < a : 3y ¢(x, F(y)F)}. We claim this is the
required one. We only need to show that (Vx < a)[3Ye(x, Y) — x € A}, because
the converse implication is obvious. If 3Yp(x, ¥) holds in 91 for some x < a,
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then this will be also true in the £/-elementary extension 0. Then 3y ¢ (x, F(y)I*])
holds in 0 and, again by £/-elementarity, is true in 90t too. Therefore x € A.

PRrOOF OF (d).

To prove the ‘left to right’ direction we use Lemma 3.2. This lemma characterizes
models of #;-def as those having an 3= ,1-clementary extension to a model € of
Z7, -comp. So, it suffices to show that there exists a model 2 satisfying the following
diagram of (restricted) elementary extensions

=,
M ———— C L -comp

174

3z,

Consider the theory Diag(€) + Diagyy | (M). This theory has a model. Otherwise,
suppose that for some ¢ € X7,

VXp(X,C) € Diagpy (M) and Diag(¢) F -VXp(X, )

where we assume that a bound on X is implicit in . Since 9 <5 91, we can assume
that all other parameters of ¢ except ¢ are in 9. Let a € 9 be such that ¢ < a.
Replacing the constants ¢ &/€ with variables and quantifying we obtain

€ E (V& < a)3X—-p(X, %).

We may apply =7 1-Choice to get,

¢ = 3AZ(Vx < a)~p(ZH, %)
so, by 3Z7 | -elementarity,
M = IZ(Vx < a)-p(ZF, %),

Recall that 9t models £/ -comp, so, by (b), #-extensions of M are I=F .1-€lementary.
So,
NE=3IZVE < a)~p(ZW, x).
Therefore,
N = (VX < a)AX (X, ).
A contradiction since we assumed that VX (X, ¢) € Diagyy ().
Let 2 be a model of the theory above and let

A:={a,Ac A :a,4<bforsomeb € M}.

Clearly ' is a model of £ ,-comp and consequently also 2. To prove N <37, A,
it suffices to observe that N <2 A, that A <py A’ and that MNis cofinal in A. This
proves the left to right direction of (d).

For the converse, assume 1 is a model of #;-def. By Lemma 3.2, there is a model
N such that
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m
Z HEf_H

»
i+1
N ——— N |= 2L, -comp

where the diagonal arrow follows from (a) and (b) since, by (c), 9 is a model of
Zl-comp. 4

LeMMA 3.3. Every model 9 of Ef-comp has an F-extension to a model N of
XP . -choice
+1 .

ProoF. The proof is similar to that of Lemma 3.2. The model 91 is constructed
as the union of a chain

M =My <z M| <z My <g -

By the fact above, we actually construct a 3= ", 1-€lementary chain of models of
ZF-comp. Let {¢;}s € w be an enumeration Wlth infinitely many repetitions of
all formulas with parameters in 91, such that all parameters of o, are in 9, (see
Theorem 3.2 for details on this enumeration). The chain is constructed so that for
all ¢, € I17, either (1) or (2) below holds.

(1) Forevery a € M thereisa Z € Mt such that M, = (Vx < a)p,(x, ZDD).
(2) Thereisac € M, such that M, = VY —p(c, Y).
Each link of the chain is constructed using a model 2 as an intermediate step, as in
the proof of Lemma 3.2. Suppose 91, has already been constructed. If (1) holds in
M, then let M1 := M. Otherwise, let A be any model of

Diag(M;) + (c < a) + {~ps{c, F(c)) : F € & with parameters in M1}.

Such a model exists, otherwise, for some »
n
M, = (Vx < a) \/

Using E;” -comp one can define a set Z in 90, such that for all x < a,
ZW = F, (x) for the minimal m < » such that ¢ (x, F,,(x)) holds.

But we assumed such a set does not exist.

Clearly 21 is, up to isomorphism, an elementary superstructure of 9t,. Let
M1 = (M + c)), (closure to be taken in A). To check that M, <5 M, note
that 9,1 is a 2{)’ substructure of %A. Also, observe that all elements of i, are
generated by elements of 9, and the first-order element ¢ < a, so, conditions (o),
(i) and (ii) in the definition of #-extension are fulfilled.

To check that (2) holds, suppose not, for a contradiction. If 3Ye;(c, ¥) held in
9.1, then we would have o, (c, F(c)) for some F € & with parameters in ;1.
We will reach a contradiction by showing that instead ¢, (c, F (c)) must fail in 9%, ;.
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By construction, we have —p,(c, F(c)) in 2. To pull this back to 9, we reason
as follows. Since M, is a model of ¥-comp, for some 4 € M,

(Vx < a)x € 4 < ¢,(x, F,(x))].

So, by the elementary equivalences proved above, this holds also in 2 and in 9,.,;.
In 2 we have ¢ €/ 4 and, by Z{ equivalence this holds in 9,,1. So, (¢, F(c)), a
contradiction.

Finally, 0 is a model of 7, | -choice, since the truth of both formulas in (1) and
in (2) is preserved along the 37, | -chain. -

Now we can easily prove the characterization announced above.

THEOREM 3.3. For every I |= X-comp the following are equivalent
(i) M |= X2, -choice.
(ii) Every K-elementary extension of I is 3=r p-€lementary.

ProoF. That (i) implies (ii) has already been observed in the fact above. For the
converse, let ¢ € I17 and suppose that (Vx < a)(3Y < b)p(x, Y) holdsin 7. LetN
be the #-clementary extension of 9 to a model of 7. -choice. The existence of Nis
guaranteed by the lemma above. By 327 -elementarity, (Vx < a)(3Y < b)p(x, ¥)
holds also in . Let Z in M be such that (Vx < a)p(x, Z*1). By the definition of
F-extension,

N @y < e)(vx < a)p(x, F(y)l)
for some ¢ € M and some F €  with parameters in 9. So, by 327, , -elementarity
this formula holds also in 91 .

The following conservativity results are consequences of the lemma above.

COROLLARY 3.3.
(a) X, |-choice is VALL | -conservative over X -comp.
(b) F-def +ZL, -choice t- =L, |-comp => P;-def - BF ', {-comp.
(c) Z7,|-choice - Z¢ | -comp =2l -comp & EF_ | -comp.

PROOF. (a) follows from the lemma and Fact (b) above. The proof of (b) and
(c) are similar. Let us prove (b). Assume &,-def + X7, |-choice proves T, ;-comp.
Let 2 be any model of #;-def. In particular, M is a model of £’-comp, so, by
the lemma above, it has an Z-extension 91 to a model of =/, ,-choice. By Fact (d)
above, N is also a model of #;-def. So, by our assumption, 9 models =7 L1-comp.
By Fact (c) above, M is also a model of =7, ,-comp. =

§4. The collapse of BA versus the collapse of PH. It is not known whether B4
collapses, i.e., whether it is equal to some of its fragments. The only collapse that
we are able to exclude is L7 -choice = P-def . In fact, rudimentary functions % are
the only functions with a X{ graph that are provably total in X{-choice; a simple
diagonalization argument shows these are strictly included in the polynomial time
computable functions #. Actually, one can also see that the VE] fragment of P-def
strictly includes that of £{-comp (and, by conservativity, that of £7-choice). In fact,
in [2] Ajtai has constructed a model m of TAq(R) such that

mE3dx R:[x] — [x +1],
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i.e.,, R is an injection of [x] into [x + 1]. We can expand m to a model M of
Z§-comp taking as sets of 91 the finite Ag(R)-definable sets of m. Then 901 falsifies
the pigeonhole principle, i.e., the sentence

VX  Vx- X [x+ 1] [x],

while the sentence above is easily seen to be provable in Z-def .

For stronger fragments we can only produce relativized results. The main result of
this section is to prove that the collapse of BA is equivalent to the provable collapse
of PH.

4.1. Aninterpolation theorem. The following is the ‘bounded version’ of a general
interpolation theorem for classical predicate logic. It entails that formulas which
are both VII/ , and 3Z7,, over a VII? , theory are actually provably equivalent to

a Boolean combination of Z{’ 41 formulas.

THEOREM 4.1. Let ¢ and y be VII? ,-formulas and let T be a V117 ,-axiomatized
theory. If T &= p — —y then there is a Boolean combination f§ of X7 -formulas such

that, T - @ — Band T - B — —w. Moreover all free variables of B occur free in
=y

ProOOF. Let ¢ and w be as above and suppose that the required interpolant does
not exist. We intend to show that T + ¢ + w is consistent. (When the context
suggests it, the free variables of ¢ — —y need to be replaced by fresh constants.)
To show this, it is sufficient to show that there are two VII? ,-theories U D T + ¢
and V O T + y such that U and ¥ have the same VZ-consequences (we say also
that they are mutually VX -conservative). In fact, we claim that, for any pair U and
V of mutually VZ! -conservative theories which are VII/, ,-axiomatizable, U + V" is
consistent (and, actually, also has the same VX/-consequences). Let us first prove
this claim and then proceed to the construction of U and V. We construct a
=P -elementary chain of models,

Mo '<Z,4’ oy —<zl_p...,

such that 9, is a model of U and 901,,; is a model of V. It is possible to find
Mos11 and My, 4o such that

931234—1 ’: Diagnzg (WZS) + V and m25+2 ’: Diagng (m25+1) + U

In fact, if we assume as induction hypothesis that 9%, is a model of U, then V is
consistent with the IT7 diagram of 91,,, otherwise, for some 6 € I/

V - VxX—60 and My, = IxX 0

which contradicts the VZ/-conservativity of ¥ over U. The symmetric argument
works for odd stages. Finally, recall that both U and V" are VII/,,-theories (and
hence conserved by unions of £/ -chains). So, the union of the chain

N:= Usms = Ufmzs = Um25+1
sew sew sew

is a model of both U and V. This proves the claim.
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Now we construct U and V. Let X be all free variables occurring in ¢ — -y,
Let %, denote the class of formulas with free variables among X of the form
VYB and such that VY < |X|?f (for p € ) is a Boolean combination of 7, ;-
formulas. Let us say that two theories U and V are %, inseparable (in the
following simply inseparable) if ¥ + Thg,,, (U) is consistent. In other words, if
there isno VY € %4, such that U - VYB and V - —VYB. Let Up := T + p and
Vs := T + w. If no interpolant exists, Uy and ¥} are inseparable. In fact, suppose
for a contradiction that

T+orVYBand T + y - -VYB

where VYB is in %,,1. Since T is axiomatized by VPH sentences, we can apply a
well-known theorem of Parikh’s, to find a p € w such that

THVYX [y — VY < |X|?B].

Therefore VY < | X|?  would be an interpolant of ¢ and y of the required complex-
ity. Now, we show, by induction on s that the following theories are inseparable:

U1 = Us + Thg,, (Vi)and Vi = Vi + Thg,,, (Us).

We have already shown the case s = 0. Suppose U, and ¥ are inseparable. If, for
a contradiction, for some VY in &, 1,

U, + Thg,,,(V,) - VYB and ¥ + Thg,,, (U;) - -VYS
then, for some VZp' € Thg,,,(Vs),
U, -VZp — VYB.
Applying again Parikh’s theorem, for some p € o,
U -VY VZ < |Y|PB — Bl

therefore,
VY VZ < |Y|PB — B] € Thg,, (U;).

But V, - VZB', so, V; + Thg,,, (U;) is inconsistent. This contradicts our induction
hypothesis. Finally, let U := {J,.,, Us and V :={J,,, V. Clearly,

Thg,, ,(U) = Thg, (V).

So, in particular, U and ¥ have the same VX! -consequences. -



962 DOMENICO ZAMBELLA

4.2. Sufficient conditions for the collapse of B4. Let us introduce some terminol-
ogy. We say that a theory proves I17 = X7 if every I17-formula is provably equivalent
to a Z/-formula (with the same free variables). In this case we also say that PH
provably collapses to II7 = Z7. We say that a theory proves I17 , = X7 | /poly, if
for every 0 € 7, | thereisa y € I17, | and p € w such that, provably

@AW < ?) (VX < ¢) [e(x) o w(X, W)].

(All variables are shown.) A W witnessing the existential quantifier above is usu-
ally called (polynomial) advice. Observe that, given any bounded formula ¢ (X)
and some element ¢ of a model where IT7 , = X7, | /poly, there is a 2 -formula
w(X) equivalent to ¢ (X) for all X < ¢. In general, such a y can contain extra pa-
rameters (i.e., advices which transform universal in existential quantifiers and vice
versa). These parameters will depend on ¢. The following theorem is an interesting
consequence of Lemma 3.2 and Lemma 3.3.

THEOREM 4.2. The following are sufficient conditions for P;-def - BA
(a) Pi-def +%7, |-choice - 117, = XF ,,
(b) Pi-def + Zf,|-choice - I}, = ZF | /poly.

Proor. By Corollary 3.3 (b), in both cases it is sufficient to show that &;-def +
X7, |-choice proves BA. Let us prove (a). Every model M of %;-def + 7, -choice has
an 3%’ ,-elementary extension to a model of 7, |-comp. By the provable collapse
of PH every bounded formula is equivalent both to a I1?,, and to a X7, ,-formula.
Therefore every 3% ', 1-clementary extension is actually 3PH-elementary. So 9 is
a model of =¥, -comp too. By the interpolation lemma above every PH-formula is
equivalent to a Boolean combination of X7, |-formulas. For this class of formulas
comprehension is provable in X7, ,-comp.

To prove (b) it suffices to note that the schema of choice holds for every bounded
formula. In fact, as observed above, every bounded formula is provably equivalent

to a X7, ,-formula depending on some additional parameters. =

4.3. Necessary conditions for the collapse of BA. Here we show that if %;-def

proves X7, -comp then it proves the collapse of PH and BA reduces to %;-def. We

need the following lemma of [10] which is known as the KPT witnessing theorem.

LEMMA 4.3. For every ¢ € 117 if P;-def proves VX3YVZp(X, Y, Z), then there
are Fy, ... ,F,_1 in P; such that P;-def proves

(X, Fy(X), Zo)
o(X, Fi(X, Zy), Z1)
VX, Zo,..s Zuoy \/

<P(X’ Fn—l(K ZO: e ’Zn—z)’Zn—l)‘

Proor. Let {F),},c» be an enumeration of all the functions in %; with infinitely
many repetitions. Let C, {D, },<., be fresh constants. Consider the theory

Pi-def + {—~¢p(C,F,(C,D,),D,) : n € w}
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where D, stands for D, ..., D,_;. If this theory is inconsistent, our claim follows
by compactness. So, we suppose for a contradiction that this theory has a model.
Let 9 be the ;-closure of C, {D,},ce in the model of the theory above. By
Lemma 3.1, 97 is a £ (% )-elementary substructure, so,

m ’: _'<P(C’ Fn(C’ En)’ Dn)

But, in 90, every possible witness of AYVZyp(C, ¥; Z) is of the form F,(C,D,). A
contradiction. —

For the next theorem we use ideas of [8] as we learned them from Harry Buhrman.
THEOREM 4.3. P;-def - Zf | -comp = P;-def - 117 | =7 | /poly.

Proor. Consider an arbitrary formula of the form 3Zyp (X, Z) for ¢ € IT7 where
a bound on Z is implicit in . We shall find a formula y € II? | such that % -def
proves

IW (VX < ¢) [azw(x, Z) o w(X, W)]

-comp is equivalent to X7 -coll, we can assume that

Since, by Lemma 2.6, X7 1

i+1
P;-def proves the following sentence

VX3Y (¥x < a) [3Zp(XW, Z) — X, y)).

This sentence says that for every sequence of sets X1, ..., X1e=1 there is a se-
quence Y ..., Yl¢—1 coding witnesses, (when they exist) of 3Zp (X, Z),.. .,
3Zp(Xx12-1,Z). So, assume this is provable in &;-def, move the quantifiers 3Z as
far to the left as possible and apply the previous lemma to this formula. Fix a = n
and, for better readability, let us suppose n = 2.

(vx <2) [p(xt, 4) = p(x®, FPI(x))]
VX, 4,B\/
(vx <2) [(XV],B) = (Xt FII(x, 4))].
We can replace the universal quantifier Vx < 2 with a conjunction. Also, to
streamline notation, let us use two variables X, Y in place of X% and X1 and

introduce the functions F, G and H, K in place of the two components of F| and
F,. The formula above can be rewritten as VX, ¥, 4 y(X, ¥, A) where

{ o(X,4) — p(X,F(X,Y))
o(Y4) - o(L,G(X, Y))
y(X, Y, 4) = \/
3Bp(X, B) — o(X, H(X, Y, 4))
3Bp (Y, B) — p(LK(X, X, 4)).

Let & stand for the first disjunct of y, i.e., for the formula

— (X, 4) — o(X,F(X,Y))
v =N\ { p(¥.4) - (X G(X, 7).
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Now, we define the formula w (X, W) to be

V o(X,F (X, W))
ceW ANVY<c)VA[-E(L X, 4) — o(X,K(Y, X, A))].

Recall that above we assumed that a polynomial bound for the quantifier VA is
implicit in ¢. So, w(X, W) is a I17, | -formula. To complete the proof we have
to show that for every c there is advice W such that 3Yp(X,Y) « w(X, W) for
every X < c¢. Let ¢ be given, we proceed in a nonuniform way. We consider two
possibilities.

(o) Suppose thereis a ¥ < ¢ such that £(X, ¥, 4) holds for every X < ¢ and every
A. Let W = Y. From &(X, W, A) it follows that 34 (X, 4) implies ¢ (X, F (X, W'))
and so, (X, W). The converse is obvious: we have chosen a W < ¢, so the second
disjunct is always false.

(00) Suppose case (o) does not obtain, i.e., (reversing the roles of X and Y)
suppose for all X, (3Y < ¢) 34 —&(Y, X, A). We chose a W which informs
us of this fact: W = {c}. If 3Bp(X, B) does not hold then in particular neither
(X, F(X, W))nor—¢(X, K(Y, X, A)) hold forany W,Y and 4. So, y (X, W) fails,
Vice versa, assume 3By (X, B). For all Y and 4 such that —¢( ¥, X, A), the second
disjunct in y (¥, X, 4) must be true. So, since 3By (X, B), we have p(X, K (Y, X, 4)).
Thus the second disjunct of (X, W) holds.

This completes the proof under the condition » = 2. The general case is similar.
One has to consider # cases in place of 2 and the advice W must inform of which
case actually obtains for a given ¢. Details are left to the reader. -

COROLLARY 4.3.
(a) P-def b EF,-comp=—=>P;-def - BA
(b) Pi-def + EV. |-comp=>Pi-def - 11} ; =X .

Proor. (a) follows immediately from Theorem 4.2 and the theorem above. To
prove (b), we can assume that 6(4) € M7 ; has the form (VX < ¢)(3Y <
c)p(X, Y, 4) for some ¢ € II7.,. We want a X ,-formula equivalent to 6(4)
for every 4. From I1/,, = X7, /poly we have that, provably in &;-def, for some
w € X7, |, (omitting the bound on W)

W (X, KA < ) [o(X, K d) o w(X, EW4)].
Note that the formula below that says that W is good advice for all X, Y < ¢,
(X, %4 <) [p(X, Xd) o w(X A4, W)

1s I1?2

f12- So, let ¢ (W, A) stand for this formula. Provably in %;-def,

(VX < ) AY < )p(X, K, 4) & WL (W, A) A (VX < ¢)(3Y < ¢)w(X, Y, W, 4)].A
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4.4, Kraji¢ek, Pudlak and Takeuti’s method. Krajicek, Pudlak and Takeuti have
shown in [10] that if ;-def proves X7, -comp then X | = %, /poly in the standard
model (and hence X7, = II7 ;). We show how their result can be obtained by
sharpening the reasoning of the previous section. The combinatoral methods used
in the following proof are of a more complex nature than those needed in the
previous section. It is still unknown whether this proof can be formalized in BA.

We say that ¥ | = %, /poly if for every X, -formula Y (X, Y) there is a
Z;-function F such that for some p € o,

(@W < e?)(¥X <€) [3Yp(X, ¥) = o (X, F (X, W),

holds for every c.

ZPTHEO;E}VI 4}4. If P-def + Zf, | -choice - ZY, |-comp then in the standard model
i+l — poiy.

ProoF. By Corollary 3.3 we can as well assume that #-def + 2 -comp. Let
3Yp(X, Y) be in 7, ;. Reasoning as in the proof of Theorem 4.3 (so, assuming
again that the KPT witnessing theorem holds with » = 2 for the formula under
consideration) we obtain that the formula VX, ¥; 4 y (X, ¥, A) defined there is prov-
able in Z-def. In particular, it holds in the standard model. For the rest of the
argument let us work in w. We say that X has information about Y if one of the
following cases hold

(a) (Y F(Y X)),

(b) p(Y, K (X, Y, A)), for all 4 such that ¢ (X, 4).
Observe that if X has information about Y, then knowing any witness of 34¢ (X, 4)
we can compute a witness of 34x (Y, 4). Now, we claim that for any pair of sets
X, Y < ¢ such that 34 (X, A) and A4 (Y, A) either X has information about Y or
vice versa. To prove the claim, suppose X has no information about Y. In particular
@(Y, F(Y, X)) does not hold. Let A be any witness of 34 (Y, 4) then, by y(¥, X, 4),
(the roles of X and Y are interchanged) 3Bp (X, B) — ¢(X, K (¥, X, A)) must hold.
Therefore, ¢ (X, K(Y, X, A)) follows, so, by (b), Y has information about X

Consider now the class Q = {X < ¢ : J4¢(X, 4) } and reason in the standard
model. Thereisa X € Q such that X has information about at least half of the sets
in Q. Toseethis, leti (X, Y) be 1if X hasinformation about Y, —1 otherwise. Then,
by our claim above, 3y o i(X,Y)=0,s0,forsome X in,> . i(X,Y) >0.
Clearly such an X has information about at least half of the Y in Q. Iterating the
argument above, since £ contains at most 2¢-elements, we obtain W < (c, ¢) such
that w10 ... Wlc—1l have information about all elements of . Let ¥ be such that
(WU Vi) fori =0,...,c — 1. Then, we have that for all X < ¢

34 (X, 4) © @x < &) [p (6 F (X WD) v (X, K (W, X, V1),
That is, for some function F’ € &; and some W' coding W and V,
(VX <€) [3¥p(X, V) o p(X, F'(X, W))].

Recall that we assumed that a bound on 3Y is implicit in ¢ so, the size of V' can be
bounded by some standard power of ¢. Hence W' < ¢” for some p € w.
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The general case (for n > 2) is similar. =
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