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SUMMARY 

Conditions for a quadratic form in singular normal variables to 

be distributed as x2 
areobtained, correcting and extending previous 

results by Good (1969). Connections with the non-central case and 

independence of two quadratic forms are also given, simplifying earlier 

results by Khatri (1963). Finally, a further generalization of the 

well-known theorem of Cochran (1934) is presented. 

SHORT TITLE 

DISTRIBUTIONS OF SINGULAR QUADRATIC FORMS 
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1. CENTRAL CHI-SQUARE. 

Throughout this section let ~ follow a multivariate normal 

distribution with mean vector O and covariance matrix ~' possibly 

singular, and let A IE a symmetric matrix, not necessarily semi-

definite. Then Good (1969) obtained conditions for x'Ax to be - ---
distributed as chi-square; these conditions simplify those given 

earlier by Khatri (1963), Rayner and Livingstone (1965), Rao (1966), 

and Shanbhag (1968). While sufficient, Good's conditions are here 

shown not to be necessary, as claimed. 

The conditions depend on the following theorem given by Good (1969). 

THEOREM 1. ! necessary and sufficient condition for x'Ax to follow 

a 
2 d. "b · ·th X - istri ution !.=.._ r degrees of freedom is that 

unit characteristic roots, the rest~-

Proof follows by equating characteristic functions of 

i.e., I!.. - 2itA_.2_I-½ = (l-2it)-r/
2 

• 

AC have 

x'Ax and 

Good (1969) claims that if AC has r unit characteristic --

r 

roots, the rest zero, then ~ must be idempotent, rank E• A counter

example was given by Khatri (1963); another is given by 

( 

2, -1, 0 ) 

A = -1, 0, 0 

0, o, 1 

C = ( ~: ~: ~) 

0, 0, 1 

(1) 

Here AC has 1 unit root, 2 zero roots, trace 1 and rank 2, and is not 

idempotent for 

( 1, 
1, 0 

) ( 
o, o, 0 

) AC = -1, -1, 0 ~ (~}2 = 0, o, 0 (2) 

0, o, 1 o, o, 1 
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but ~·~ (sx;) follows a x2
-distribution with one degree of freedom. 

Thus Corollaries (i) and (ii) of Good (1969), 

rank(~ = r, 

tr ((AC )
2

} = tr(AC) = r = rank(~), 

do not provide necessary conditions for x'Ax to be distributed as --
2 

Xr' though they are each sufficient. Khatri (1963), Rayner and 

Livingstone (1965), Rao (1966), and Shanbhag (1968) showed that 

THEOREM 2. ! set of necessary and sufficient conditions for x'Ax to 

follow a x2
-distribution with r degrees of freedom is 

rank(CAC) = tr(~) = r. 

(3) 

(4) 

(5) 

Proof follows from writing C = TT' where T has full colunm rank. Since 

AC= g:r' and !_'U have the same nonzero characteristic roots, we find 

that T'AT is idempotent, it being symmetric. Because rank(CAC) ~ -
rank{!_'g_) = rank{(!_'g,) 3} ~ rank{CAC), we obtain tr(~_) = tr(!,_'£) = 

rank('!__'g_) = rank(CAC) = r, the number of nonzero roots of AC. Thus 

' ~. 

(5) follows. Notice that rank (AC) may exceed E as in (2). This leads to 

THEOREM 3. A necessary and sufficient condition for x'Ax to follow a - ------- -- ----- -- -- - - --- -
x2

-distribution with r degrees of freedom is 

(~
2 

= AC 

if and only if rank(~ = tr(~) = r, or rank(~ = rank(CAC) = r. 

Proof follows from the following 

LEMMA 1. ~ square matrix ~' not necessarily synnnetric, satisfying 

~
2 

= ~3, is idempotent if and only if rank(X) = tr(~ 2.:_ rank(~) = 

2 
rank(! ) • 

(6) 

: . 



Proof. 
2 

If ~ = ~, 
2 

rank(X) = tr(~ = rank(~) follows immediately. 

Conversely, if x
2 = x3, then Z'Y = (Z'Y)

2
, where X = YZ' with 

--- --- --... ---- --- ---
with Y and Z of full column rank equal to the rank of X. If 

3 

rank(X) = tr(X) = tr(YZ') = tr{Z'Y) = rank (Z'Y), then z'y is nonsingular 
....., .....,_ ....,,_.,__ --- -- ....,_. ---

and equals I. ' . ' 2 Hence X = YZ YZ = X. 
.....,_ __,._.....,._ -- If rank(~= rank(x

2
) = rank 

(g'g_')' then rank(f!.) ~ rank(~ and so z'y = I and -- -
2 

X=X. -- {qed) 

Proof of TheoremJ. From (5), (~3 = (AC)
2 

and rank(CAC) = rank(CACAC) s; 

rank{(Ac)
2 J s; rank(CAC). Thus substituting X = AC in Lemma 1 gives the - --

result. (qed) 

Rayner and Livingstone (1965) and Shanbhag (1968) proved that (5) 

implied (6) when ~ is semi-definite. In such a case rank(~ equals the 

number of its nonzero characteristic roots and so also tr(~ and 

rank(~. The condition of AC syI1DI1etric, also given by Shanbhag (1968), 

similarly implies rank(~= tr(AC) = rank(gAc) = r. Good (1969) states 

that Shanbhag (1968) proved that it was necessary that AC be symmetric 

for (5) to imply (6). Not only is this not so, but Shanbhag (1968) 

claimed only sufficiency, which is true. Mitra (1968) shows that when 

rank(~)= rank(~
2

), there exists a matrix W such that wx2 
= X. Thus 

if x
2 = x3, we obtain wx2 = wx2

x = x2 
= x. The conditions are equivalent --- -

to ~ (or AC) having rank equal to the number of its nonzero 

characteristic roots. 

Shanbhag (1968) proved that 

(~2 = (~3; tr(~) = r, (7) 

tr((~
2

} = tr(~) = r = rank(CAC), (8) 

are each equivalent to (5). We now give slightly simpler proofs. Writing 
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C = TT' - as before, we find from (7) that ('£.'~2 
= (!_'g)3• Since 

T'AT is symmetric it is idempotent and so CACAC = CAC. Hence (5) -- --- -
follows because we have already shown that rank(CAC) = tr{AC) = r. The 

converse is innnediate. When (8) holds, substitute Ai' the i-th 

characteristic root of ~' to obtain, as in Good (1969), 
2 

l::A. =EA..= r. 
l. l. 

The sunnnation is over! from 1 to! since rank(~)= tr(T'g) =!is the 

number of nonzero roots of T'AT or ATT' = AC. Hence E(A.-1)
2 

= 0 
1 

and AC has r unit roots, the rest zero. Thus (8) implies (5) using 

Theorem 1. But (8) implies (4) only under the conditions of Theorem 3. 

Conversely (5) implies (8) since tr({~/}= tr(m'g_I.') = tr({:f~!,_)2} = 

tr(T'AT) = tr(AC). -- -
We now turn to the non-central case and obtain similar conditions. 

2. NON-CENTRAL CHI-SQUARE. 

Unless stated to the contrary, we will assume in what follows that 

the mean vector of ~ is ~, not necessarily Q_. Khatri (1963) and 

·Rayner and Livingstone (1965) proved 

THECREM 4. ~ ~ of necessary and sufficient conditions for ~· ~ ~ 

2 2 
follow! non-central 'Xi-(6) distribution is ill and 

and 

62 ' ' = ~!.~ = ~~-

Applying Lemma 1 to.Theorem 4, we obtain in parallel to Theorem 3 

(9) 

(10) 

COROLLARY 1. ! necessary and sufficient condition for x'Ax to follow 

a non-central x.;(62
) distribution is 

., . 
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(Ac)
2 

= AC; - - (11) 

if ardonly if rank(~)= tr(~= r ~ rank(~= rank(CAC) = r. 

We notice that when rank(~= tr(~ or rank(~= rank(CAC) 

the non-central case requires the additional restriction of 

µ,'A..£A~ = ~·~ over the central situation, cf. (11) and (6). When C 

is nonsingular this extra condition is automatically satisfied for then 

(5) implies ACA = A, or C is a generalized inverse of A as noted - -
by Rao (1962). A parallel result proved by Khatri (1968) is the necessary 

and sufficient condition for x'Ax to follow a x2
-distribution where 

-- r 

rank(9_) = r. Here T'AT = I so (5) implies ~ = £., or ~ is a generalized 

inverse of C • Shanbhag (1968) observed that this reduction also 

applies when ~ is positive definite. In the non-central case, however, 

we still require ~·~ = }!_
1

~ in addition, though (9) is automatically 

satisfied. When C is nonsingular and of order {and rank) E, then 

A= C-l is a single necessary and sufficient condition. 

Another reduction of Theorem 4 occurs when µ,'AC= O'. This -- -
generalizes a special case given by Rayner and Livingstone (1965). 

COROLLARY 2. When ~'AC= 0 1
, a necessary and sufficient condition for -- --- __,,,,_, -... - ---- -- ----- ----

x 'Ax - ~·~ to follow ! x;-distribution is fil. 

Proof. The quadratic form {~-.b!!_)'~(!_-~) follows a x;-distribution if 

and only if (5) holds. When µ,'~= 2_', }!_
1

~ has variance O and so 

'Ax - 'A 
~- = ~~-

follows. 

Hence x '~ - !:!' ~ = (!;~) '~(~~ and so the result 

(qed) 

3. INDEPENDENCE. 

The above results extend the properties originated by Cochran 



(1934) and Craig (1943) with the case C = I. Parallel results for 

independence of two quadratic forms were then also obtained, and 

recently extended to the singular case by Khatri (1963), for f!.not 

necessarily 2_, and by Good (1963) and Shanbhag (1966) for~=£ only. 

THEOREM 5. !_ ~ of necessary and sufficient conditions for ~· ~ and 

x'Bx to be independently distributed is 

CACBC = Q__, 

and 
CAC13~ = CBCA~ = 2_ , 

~'ACBµ, = O, 

6 

(12) 

(13) 

(14) 

where!. and!~ synnnetric matrices, not necessarily semi-definite, and 

x follows a multivariate normal distribution with~ vector!:!!,., not 

necessarily 2_, and covariance matrix S possibly singular. 

Theorem 5 was proved by Khatri (1963) for the more general case of 

a Wishart distribution. Shanbhag (1966) showed that when A is semi

definite (12), (13), and (14) reduce to 

~ = Q__; 

while for A and! both semi-definite (15) reduces to 

ACB = O. 

We note that (16) is the same necessary and sufficient condition for 

independence when£. is nonsingular. 

(15) 

(16) 

Condition (12) does not always reduce to ACBC =£when rank(~)= 

rank{CAC), nor is this restriction necessary for the reduction, since -
CBC= O may hold throughout. Thus we do not obtain a parallel result to - -

' ... 

Theorem 3 for independence. Also semi-definiteness of A reduces CACAC = CAC 

. . 
.. -



. . 

only to ~ = ~ and not necessarily further to ~ = ~- The last 

equation can never hold if rank(~> rank(£). This is, however, not 

relevant in (16). Also in the case of independence, semi-definiteness 

yields a condition not involving!!_, which is not so for chi-square. 

4. COCHRAN' S THEOREM. 

Let x follow a £-variate normal distribution with mean vector O 

and covariance matrix I, and let A. (i = 1, ••• , k) be symmetric 
-p -a. 

. k 
matrices of ranks r. (i = 1, ••• , k), such that .E

1
A. = I • Then 

1. l.= -1. -p 

7 

Cochran (1934) proved that x'A.x are each independently distributed as 
---!.-

Y21.. if and only if .~
1
r. = p. Madow (1940) generalized the result for 

''T l.= 1. 

x with mean vector~ not necessarily Q_, while Chipman and Rao(l964) 

extended Cochran's Theorem to ~with positive definite covariance matrix 

t. Elegant matrix proofs of Cochran's original result and related 

interrelationships have been given by James (1952), Banerjee (1964), 

Chipman and Rao (1964), Loynes (1966), and Khatri (1968). We use the 

results of sections 1 to 3 of this paper to prove a further generaliza-

tion. 

Let x follow a multivariate normal distribution with mean vector!!. 

and covariance matrix£., possibly singular. Let Q = x'Ax and Q. = 
- - 1. 

x'A.x (i = 1, 
----:i.-

k 
., k) be quadratic forms such that Q = .E

1
Q. 

l.= l. 
and 

r = rank(CAC), r = rank(CA.C), i = 1, • 
i --'1.-

., k. When£. is nonsingular 

we have r = rank(~) and r. = rank(A.), i = 1, ••• , k. 
1. -a. 

Consider the 

following propositions: 

2 " (a) Q follows a Xr(.1:!.'~ distribution, 

(b) Q. follows a x2 
(1!,'A.0 distribution, i = 1, ••• , k, 

1. ri -1. 

(c) Qi, Qj are independently distributed, for all i J j 
(i, j = 1, ••• , k), 
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(d) r = i~lri. 

THEOREM 6. If (I) C is nonsingular, or (II) C is singular and - -- - ----------
~ = O, ~ (III) £. is singular, ~ ~ necessarily Q., and ~ positive 

semi-definite (i = 1, ••• , k) then 

(a) and (d) imply (b) and (c), (17) 

(a) and (b) imply {c) and (d), (18) 

{a) and (c) imply {b) and {d), (19) 

and {b) and (c) imply {a) and (d). (20) 

Proof. Let ~ = !!_' , where !_ has full column rank equal to the rank of --
c. When £. is nonsingular so is '!'_• Then under (I) or (II), we may -
rewrite (a) to (c) as 

(a') T1AT = (T'AT)
2 

(b I) !..'~!_ = ( T I A . T )2 , i= 1 , 
-..-..a.-

. . . ' k, 

(c 1
) T'A~TT'A.T = O, for all iJj (i, j=l, ••• , k), 

........ ~~ ........ J~ ---

using the results of section 1 to 3 of this paper. For (III) we need 

in addition to (a') and {b 1
), 

(a 
11

) ~
1
ACA~ = ~·~, 

(b I I) lL I A. CA. lL = µIA . l1' 
.c:. -l. -1. .c:. - -l. .c;;:. 

i=l, . . . , k . 

Notice that T1A.T has rank r. (i=l, 
- -a- l. 

. . • , k or absent). We first prove 

(17) to (20) with (a), (b), and (c) replaced by (a 1
), (b'), and (c'). We 

then prove that when these hold, (a 1
') and (b 11

) are equivalent. 

~· 

=--

Write T 1A.T = U.V~, where U. and V. have full column rank r.(i=l, • 
- ..-..a.- -a-i. -a -a. l. 

. . , 
k or absent). Then (a') and (d) imply!.'£= !!Y_1

, where"[_= (!!,
1

, ••• , 

and Y.= (y_
1

, ••• , Ytt), following Chipman and Rao (1964). Since UV' is 

idempotent from (a'), V'U = I and so V~~ = I (i=l, ••• , k) and 
-- - ~ - ~i 

and V~U. = O for all iJj (i, j=l, ••• , k). Thus (b') and (c') follow. 
-a.-J -

!!tc) 

i-

. 
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. k 
Moreover, (a') and (b') imply r = tr(!_'g} = 1~1tr(T'~!) = or ( d). 

Hence (c') follows from the previous reasoning. When (a') and (c') hold, 

k · k 2 
we obtain i~l (T '~!) = i~l (!_' ~i!) • Multiplying through by !_' ~j!.. (l. fixed) 

yields (!_'~j!)
2 

= (!'~j!) 3 and so (b') follows, since 

T'A.T is symmetric, and hence (d). Finally, (b') and (ci) imply (a') 
--J---

since di!.'~!J2 = J1 (!_'~!)
2 

+ 1~/!.'~!)(!_'~j!) = i~l (·£_'~!), and (d) 

follows as before. 

When (a'), (b'), (c'), and (d) hold, (b 11
) directly implies (a'') upon 

summation over i from 1 to k. To show the converse let !t = ~~, where ~i has 

full colum.rank (i=l; ••• ,k). This is possible when we assume ~ positive 

semi-definite. Then (a'') implies 

k 

i~l~·~ (!.,-~~~ )~}! = 0 • (21) 

But ~~ has the same nonzero characteristic roots as ~~2_= ~ 

which from (a') and Theorem 1 are all unity. Since B~CB. is symmetric it 
--:I.~ 

follows that it and !_-~~ are positive semi-definite, i=l, ••• ,k. 

Hence each component in (21) must be nonnegative and so zero. Thus (b'') 

follows. (qed) 
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