NOTES ON THE DISTRIBUTION OF THE GEOMETRIC MEAN'

By Burton H. Camp

There are two transformation theorems which apply particularly well to the
distribution of a product and therefore to the distribution of the geometric
mean of a sample. Both are implicit in the known theory of the transformation
of integrals, but it is useful to state them in forms which are especially adapted
to probability theory. Several examples will be considered in which distribu-
tions of the geometric mean will be derived by using these theorems.

The first theorem may be stated as

THEOREM A: Let the point set ¢ in an N-dimensional u-space be defined so that
in q a given function of the w’s, F(uy, us - - - un) has the property that

(1) ¢<F <&+ dd
Let G be the elementary volume of the point set q defined as an N-tuple integral

/du1~~~duN
q

taken over q, having a value of order dt. Let

2 wi = 0(t,), i=12 ... N

be continuous and differentiable monotonic functions of the t's with unique inverses
®3) ti = 07 ().

Let r be the point set in t-space corresponding to q in u-space under the transforma-
tion (2) with elementary volume given by the integral

(4) 7==/dt1°--dl1v.
. dt dty o . . .
If J(£) vs defined as " dum at a point in q for which F = ¢, and if, for all points
1 N
n g,
(5) dh | dbx_ ‘J(z)l <M .dt.
dul dun

When M is a constant, independent of g, then the volume 7, is, except for terms of
order (dt)*, given by

(6) alJ (&)

! Read at a joint meeting of the American Mathematical Society and the Institute of
Mathematical Statistics, Indianapolis, December 30, 1937.
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The proof is immediate for we have

5o dtl dtN .
r = q@l...%dul...duh,
— dtl dtN _
= ﬁ[dﬁ% J(é)]dul...duN+/qJ(g)dul,,,duN
dtl dtN _
= /;I:g;;l"' Jun J(s)]dul oo dun| + 3-J@).

But, by (5), the integral in the last line has a value less than § M .d¢, and § is of
order d¢. Therefore 7 differs from §|J (£)| by terms of order (d¢)®.

Let us now apply this theorem to a simple case. The volume of the set g,
where t <u + -+ +uy < é¢4+déui <a,7=1, ..., N, can easily be shown
to be

g =C0Na — &))" dt

Let u; = logt;. Then it follows from the theorem that
7= K e'(Na — &))" dg,

 being the volume of the point set r, where

() §<log(ti---ty) <&+ dt

By the use of (7) one can now use the geometrical method of finding the proba-
bility distribution of the geometric mean,

8 z=( - tn)"'",

of samples of N from the universe ¢(t) dt, provided that ¢ (t) --- o(ty) is a
continuous function of ¢£. Unfortunately there do not appear to be many such
¢ functions. One that is of interest is

o) dt = kt™dt, 0<t<eé.
Let D(§)d¢ represent the distribution of &. We have

/ o) - dltw) dty - - - dty = /lc"(tl, cot)Pdl - diy
= k"™ = Ce™ (Na — £V dt.

Thence we obtain as the distribution of z:
f(x)dz = C12*" (a — log z)" " dx.

The form of f(x) in the special case in which s = 0 and ¢ is a rectangle has been
found by other authors,” and is

f@)dz = C1z" (@ — log )" ' dx.

D(¢) dt

2 E.g. see S. Kullback, ‘“An application of characteristic functions to the distribution
problem of statistics,”” Annals of Mathematical Statistics, vol. 5 (1934), pp. 263-270.
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The second transformation theorem to be used may be stated as.

Turorem B: Let ¢(u)du be the probability element for a given universe and let
the sample (uy, Up. - - - uy) be taken. Let the statistic § = v(ui, uz, - - - un) have
the distribution F(£)dt. If the transformation (2), satisfying the conditions im-
posed on it in Theorem A be applied both to the universe and to the statistic, yielding
o(t)dt and & = g(t, - - - tw) respectively, then the element of distribution of £, as
obtained from ¢, is, as before, F(£)dE.

The proof is straight forward, for the distribution of £, as obtained from ¢ (u)du
is given by

j{ Y(w) - - Yuw) duy, - - - duy

and, as obtained from ¢()dt, it is

/;¢(t1) <o o) dh, - - diy

where ¢ is the set in u-space where § < v < ¢ + df and r is the set in ¢-space
where £ < g < £+ dt. It is clear that these two integrals have the same value
because of the relation

$00) du = $(00) 2D a1 = o(0) at
and the unique correspondence between the points of ¢ and r set up by the
transformation (2), with its unique inverse (3).

This theorem is particularly well adapted to the derivation of the distribution
of the geometric mean because of the simple logarithmic transformation con-
necting the sum and the product of N numbers, and because several distributions
of the sum are already known. Two of these cases will now be presented.

ExampLe 1. Let z be the geometric mean (8) of the sample of N from a
universe with distribution law

(log )™~ i

© st = 2

t > 1.

Then the distribution of z is

N""Oog )V

(10) f(@)dx = T (ND)

dx (ZE > 1),
and it is to be noticed that x has the same type of distribution as ¢.

To prove (10), first'let £ = (w1 + --- + uw)/N, where the w’s are a sample
from a Type III universe,

—u p—1

y(u) du = 6—17(1:))— du (u > 0).
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Irwin® has shown that the distribution of £ is

Ne Mi(Ng)¥P
I'(Np)

Making the transformation u = log ¢, we have

(11) F(§) dt = dt.

p—1
(log ?) a,
£T(p)
and F(£)d¢ is unchanged. We now obtain f (x)dz by substituting ¢ = log z in
(11).
ExampLe* 2. If 7 is the geometric mean (8) of a sample of N from a universe
whose distribution is

g=1log (- tm)'Y, )dt= t>1,

(12) o(t) dt = 1 e 2_:—’ (log 7;)2 dt (¢, t, G > 0)
tC'\/Zr b b ARd b

the distribution of z is

(13) f(x) dz = —\/—Z_V— e 7 (log%) dz, (z > 0).

ze\/ 2

To prove this, one begins with the arithmetic mean ¢ and the universe,

L, g 0 VN - -2
uw) du = e 2? du. Here F(§) d¢ = Vo7 2et d.
w( o £) dt o £
Again using u = log &, one obtains £ = log (4, - -~ , tx)"" and

(e L) _
o(t) dt = e 2°* G/ dt,where G = e* > 0,

1
ten/ 27
and F(¢) df is unchanged. To get (13) one substitutes ¢ = log = in F(§) d¢.

Again it follows that the geometric mean has the same distribution as the
universe except for a change in one of the parameters (c¢). This frequency curve
has other interesting features. It was developed by Galton and McAlister’ by
quite a different method and was called the curve of equal facility. They were
seeking for a distribution ¢(t) which would have the characteristic that, if ¢ and
# were two observations differing from G by the same relative amount, @ -/t
= (' — G)/@, they would have equal probabilities. MecAlister noted various
properties of ¢, including the fact that G was actually its geometric mean, and
that it was not the same as the mode or the arithmetic mean. Certain properties
which he did not mention are the following:

(:) If one draws a sample from a universe with the distribution ¢ in order to

s Biometrika, vol. 19 (1927), p. 229; see also A. Church, Biometrika, vol. 18 (1926), p. 336.

¢ This distribution can also be obtained by the method of A. T. Craig, American Journal
of Mathematics, vol. 54 (1932), p. 362, but it would be difficult to evaluate his integral
without the substitution which would be suggested if the distribution were known.

s Proceedings of the Royal Society, vol. 29 (1879), pp. 365, 367.
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determine @, the geometric mean of the universe, the maximum likelihood
solution is z, the geometric mean of the sample.

(77) The modal point of the sampling distribution (f) approaches G as a limit
as N becomes infinite.

(#77) One can devise a function s of the sample analogous to but different from
Student’s s, and show that x/s has a distribution independent of the parameters
of G and c of the universe. To do this it is necessary first to extend the second
transformation theorem so as to include cases where the number of statistics
(functions of the sample) being obtained simultaneously is greater than one.
This is not difficult, but since the analogous tests for significance have been
developed for the normal universe it would not be particularly useful, for if the
observations are distributed in accordance with ¢(f) their logarithms are dis-
tributed normally, and their logarithms can equally well be used for testing
significance.

(#v) If one uses the curve of equal facility instead of the normal curve as the
distribution of biological lengths, then any power of such lengths, in particular
the third power, which is supposed to be approximately proportional to weights,
would also be distributed in the same manner, except for a change in the para-
meters. This is a property which the normal curve does not have. It raises
the question: Can biological lengths be represented by the curve of equal
facility? The remainder of this paper will be devoted to a discussion of this
question and cognate matters.

The curve of equal facility may be made to approach as a limit the normal
curve if the origin be moved indefinitely to the left. This is almost intuitively
evident from a consideration of the hypotheses under which the two curves were
derived by Galton and McAlister. It is also indicated by the behavior of the
lower moments. Let »; refer to the sth moment of (12) relative to the origin
of ¢, u; to the corresponding moment relative to the arithmetic mean. It is
easy to show that

(14)  w=@e"" i=0,1,..., n =1 = Gh, where h = ¢
(15) we = GRE* — 1), w = GCHG’ — 30 + 2),
p = G'RARE — 4h° + 61 + 3),
6 jas = w/uy® = (W' +2) (® — )",
loes = pa/us = (B — 1)* + 6(* — 1)° + 15(8° — 1)’ + 16(h* — 1) + 3.

From (16) it follows that as h approaches unity a3 and a4 approach their normal
values, 0 and 3, respectively. If at the same time u. is kept constant, it follows
from (15) that G* and therefore f become infinite. So the origin is moved an
infinite distance to the left.

The question, then, whether the curve of equal facility may be used equally
well with the normal curve to represent biological lengths depends on whether
in practical cases the natural choice of origin, which is the position indicated by
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zero length, is such as to make the two curves practically indistinguishable.
This is apparently the situation in the case of human statures. For 8585 adult
males born in the British Isles® the values of the several constants, obtained by
so fitting ¢(t) to the observations that the mean and standard deviations agree,
are as follows: f = 67.46 in.,, @ = 67.411, ¢ = 2.56, h = 1.00072, observed
a3 = 0.0125, o3 for ¢ = 0.11; observed oy = 3.149, oy for ¢ = 3.02. Thus for the
curve of equal facility a; is further from the observed value than for the normal
curve, but a4 is nearer to its observed value. In both cases the difference is
unimportant. A graph of both curves’ would not make it clear to the eye which
of the two fitted the data better.

It would be expected that the distribution of the cubes of these statures, being
roughly proportional to the weights of the men, would not be normally dis-
tributed. This also can be verified easily, for the distribution of (y = *) from
#(t)dt is ¢(y)dy except that ck replaces ¢, and G* replaces G. So the distribution
of cubes is:

— 1 - 1‘%2 (’°‘ bgi)z

F(y) dy Sy e dy.
If this curve is fitted to the cubes of the statures, ;3 = 0.23, and oy = 3.21.
Both are considerably further from their normal values than before. For this
case the corresponding value of k is 1.0064. It is the closeness of this quantity
to unity, or in other words the smallness of the coefficient of rariation, 100
o/T = 100 (A* — 1)"?, which determines how close the curve is to the normal.
For the statures o/f = 0.0379. For the cubes of the statures® ¢/ = 0.269. Its
values in certain other cases® are: length of forearm 0.05, chest circumference
0.08, strength of grip 0.26, visual acuity 0.39. It appears to be evident, there-
fore, that for many types of biometric measurements, especially lengths, which
we know can be represented well by the normal curve, the curve of equal facility
is practically just as good. In a given case it may fit a little better or a little
worse. If we wish the distribution of the arithmetic mean as obtained by
sampling from such data we may find it by supposing the universe normal;
if we wish the distribution of the geometric mean we may find it by supposing
the universe of a curve of equal facility. This device of substituting for the
normal curve another type of curve which is equally good in practical cases, in
order to find the distribution of a statistic which cannot be found easily for the
normal curve, may perhaps be useful also for other statistics than the geometric
mean.

WESLEYAN UNIVERSITY.

8 G. Udny Yule and M. G. Kendall, An Introduction to the Theory of Statistics, London,
1937, pp. 94, 116, 157, 163, 187.

7 Such as on page 187, Yule and Kendall.

8 For the weights of a similar group of men ¢/t = 0.137, and thus the two curves would
be more nearly alike if fitted to weights than if fitted to the cubes of these statures.

? From a long list with values ranging from 0.0049 to 0.5058, compiled by Raymond
Pearl, Medical Biometry and Statistics, Philadelphia (1930), pp. 347-9.



