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Abstract We discuss the proof of Kazhdan and Lusztig of the equivalence of the
Drinfeld category D(g, i) of g-modules and the category of finite dimensional
U,g-modules, ¢ = ¢™", for h e C\ Q*. Aiming at operator algebraists the result is
formulated as the existence for each 7 € iR of a normalized unitary 2-cochain F on
the dual G of a compact simple Lie group G such that the convolution algebra of
G with the coproduct twisted by F is x-isomorphic to the convolution algebra of
the g-deformation G, of G, while the coboundary of F~! coincides with Drinfeld’s
KZ-associator defined via monodromy of the Knizhnik—Zamolodchikov equations.
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Mathematics Subject Classifications (2010) Primary 17B37; Secondary 20G42 -
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1 Introduction

One of the most beautiful and important results in quantum groups is the theorem of

Drinfeld [4, 5] stating that the category of Uj,g-modules is equivalent to a category of
g-modules with the usual tensor product but with nontrivial associativity morphisms
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defined by the monodromy of the Knizhnik—Zamolodchikov equations from confor-
mal field theory. In defining the latter category, known as the Drinfeld category,
Drinfeld was inspired by a result of Kohno which states that the representation
of the braid group defined by the universal R-matrix of Ug is equivalent to the
monodromy representation of the KZ-equations. Drinfeld proved equivalence of the
categories working in the context of quasi-Hopf algebras, which are generalizations
of Hopf algebras and are algebraic counterparts of monoidal categories with quasi-
fiber functors. In this language the result says that there exists F € (Ug ® Ug)[[h]]
such that the coproduct Ay on Ung = Ugl[h]] is given by Ap = FAC)F! and that

(R AFHUIRF NF & A )F)

coincides with the element ®g; defining the associativity morphisms in the
Drinfeld category. Drinfeld worked in the formal deformation setting and gave two
different proofs. Another proof of the equivalence of the categories that works
for all irrational complex parameters was given a few years later by Kazhdan and
Lusztig [12, 13]. Their approach was then used by Etingof and Kazhdan [7] to solve
the problem of existence of quantization of an arbitrary Lie bialgebra.

The result of Kazhdan and Lusztig can again be formulated in algebraic terms, that
is, there exists an analogue of the twist F in the analytic setting. In [17] we observed
that such an element can be used to construct a deformation of the Dirac operator
on quantum groups that gives rise to spectral triples. These notes originated from
a desire to understand better properties of F for the study of these quantum Dirac
operators. Another motivation is that the result of Kazhdan and Lusztig is not usually
formulated in the form we need. Even though the formulation we are using should
be obvious to a careful reader, to refer this away to a series of papers totaling several
hundred pages seems inappropriate. What makes the situation more complicated is
that Kazhdan and Lusztig prove a more general result allowing rational deformation
parameters, in which case the Drinfeld category has to be replaced by a category of
modules over the affine Lie algebra §.

The notes are organized as follows.

Section 2 contains categorical preliminaries. The main point is Drinfeld’s notion
of a quasi-Hopf algebra [4]. Since the monoidal categories we are interested in are
infinite, one has to understand the coproduct in the multiplier sense, so we talk about
discrete quasi-Hopf algebras. Modulo this nuance Section 2 contains the standard
dictionary between categorical and algebraic terms: monoidal categories and quasi-
bialgebras, equivalence of categories and isomorphism of quasi-bialgebras up to
twisting, weak tensor functors and comonoids, rigidity and existence of coinverse.

In Section 3 we introduce the Drinfeld category D(g, /i), i € C\ Q*. As men-
tioned above, it is the category of finite dimensional g-modules with the usual tensor
product but with nontrivial associativity morphisms ®x, defined via monodromy of
the KZ-equations. Alternatively one can think of the associator ®x as a 3-cocycle
on the dual discrete group G. We follow Drinfeld’s original argument [4, 5] to prove
that D(g, ) is indeed a braided monoidal category. Remark that by specialization
and analytic continuation this can be deduced directly from the formal deformation
case, which is a bit more convenient to deal with. The simplifications are however not
significant, so to avoid confusion we work entirely in the analytic setting. Remark
also that there is a somewhat more conceptual proof showing that D(g, h) is the
monoidal category which corresponds to a genus zero modular functor, see e.g. [1].
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Equivalence of Categories 899

But as everywhere in these notes we sacrifice generality in favor of a hands-on
approach.

In Section 4 we formulate the main result, that is, equivalence of D(g, i) and
the category C(g, /i) of finite dimensional admissible U,g-modules, ¢ = ™. Fur-
thermore, the functor D(g, h) — C(g, /i) defining this equivalence can be chosen
such that its composition with the forgetful functor C(g, ) — Vec is naturally
isomorphic to the forgetful functor D(g, ) — Vec. This means that the equivalence
can be expressed in algebraic terms, that is, the corresponding quasi-bialgebras are
isomorphic up to twisting. The proof of this theorem occupies the remaining part of
the paper. In fact, we prove it only for generic 4. A simple compactness argument
then shows that the result holds at least for all & € iR, which is the most interesting
case from the operator algebra point of view.

The actual proof starts in Section 5. Since we want a functor isomorphic to
the forgetful one, we first of all need a tensor structure on the forgetful functor
D(g, h) — Vec. If we have a module M representing this functor then to have a weak
tensor structure on the functor is the same thing as having a comonoid structure
on M. Clearly, no finite dimensional g-module can represent the forgetful functor.
In Section 5 we define a representing object M in a completion of D(g, /). It can
be thought of as an object in an ind-pro-category, but we prefer to think of it as a
topological g-module.

In Section 6 we define a comonoid structure on M thus endowing the functor
Homg (M, -) with a weak tensor structure. We then check that for generic i we in
fact get a tensor structure. This already implies that Drinfeld’s KZ-associator is a
coboundary for generic f. It is interesting to note that up to this point the only
properties of @, which have been used are analytic dependence on the parameter
h and that the associator acts trivially on the highest weight subspaces. We end the
section with an algorithm of how to explicitly find F such that ® g is a coboundary
of F~!. The word explicit should however be taken with a grain of salt, as one has to
make choices depending on values of solutions of differential equations.

In Section 7 we show that U,g acts by natural transformations on the functor
Homg (M, -), allowing the latter to be regarded as a functor D(g, i) — C(g, h). We
finally check that this is an equivalence of categories for generic 4. Although the idea
of the definition of this action of U, g is not difficult to convey, the right normalization
of the maps involved requires an ingenious choice, which is ultimately dictated by
classical identities for hypergeometric functions. This is by far the most technical
part of the proof of Kazhdan and Lusztig, and here we omit a couple of the most
tedious computations.

2 Quasi-Bialgebras and Monoidal Categories

A monoidal category C is a category with a bifunctor ®: C xC — C, (U, V) —» U ®
V, which is associative up to a natural isomorphism

a:(U@V)QW ->U® (VW)
and has an object which is the unit 1 up to natural isomorphisms

rM1IU - U, p:U®1— U,
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such that A = p: 1® 1 — 1 and such that the pentagonal diagram

aQ@t 1234

UeVeaW)eX <— (UaV)dW)eX —— (U V) (W X)

®1,234 J{ \L 1,234

U ((VeW)® X) U (Ve We X))

and the triangle diagram

UehHeV UeA®V)

PR 2328
UV

commute.

We say that C has strict unit if both A and p are the identity morphisms. If also «
is the identity, then C is called a strict monoidal category.

A braiding in a monoidal category C is a natural isomorphismo: UQ V — V@ U
such that Ao (U ® 1) = p(U ® 1) and such that the hexagonal diagram

o o
VU)W =—— UV)W ——= U (VW)

o i l 01,23
o

Q0
VaWUeW) —= VeWeU) <— (VW)U

and the same diagram with o replaced by ¢ ~! both commute.

We say that a category is C-linear if it is abelian, the sets Hom(U, V) are vector
spaces over C and composition of morphisms is bilinear. Of course, when the
monoidal category is C-linear the tensor functor ® is required to be bilinear on
morphisms.

A C-linear category is called semisimple if any object is a finite direct sum of
simple objects.

A (weak) quasi-tensor functor between monoidal categories C and C’ is a functor
F: C — (C together with a (morphism) isomorphism Fy: 1" — F(1) in C’ and natural
(morphisms) isomorphisms

F FU)® F(V) - FU®V).
When the categories are braided then F is called braided if the diagram

P
FU)@ F(V) —— FUQ®YV)

o’ J{ \L F(o)
F

FV)® F(U) —— F(V®U)

commutes.
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A (weak) quasi-tensor functor is called a (weak) tensor functor if the diagram

F®u F
(FOQFV)®FW) — FU®V)Q F(W) —— F(U®V)® W)

o i \L F(a)
F, F

®
FO)QFV)Q F(W)) — FU)QFV®W) — FU® (VW)
(2.1)
and the diagrams
F> I3
FOHQFU) — FA®U) FU)® FQ) — FU®D
Fo® T J{ F()) ®F T i F(p)
Ve FU) ——— FU) FU) &1 ——~ F(U)

commute.
We say that a natural isomorphism n: F — G between two (weak) (quasi-)tensor
functors C — C’ is monoidal if the diagrams

R
FU)@ F(V) —— FU®YV)

1/
F() G[)
nen l i n / \
G n
GUY®GV) — GUYV) FQO) ——— G

commute.

An equivalence between two monoidal categories is called monoidal if the
functors and the natural isomorphisms defining the equivalence are monoidal. If
the functors are also (C-linear) (braided) then we speak of a (C-linear) (braided)
monoidal equivalence.

According to a theorem of Mac Lane any monoidal category can be strictified,
i.e. it is monoidally equivalent to a strict monoidal category, and if the category is
(C-linear) (braided) then the equivalence can be chosen to be (C-linear) (braided).
This is useful for obtaining new identities for morphisms from known ones: it implies
that an identity holds if it can be proved assuming that the associativity morphisms
are trivial. As is customary we regard the C-linear monoidal category Vec of finite
dimensional vector spaces as strict.

Consider now a direct sum A = @, End(V;) of full matrix algebras. Define
M(A) as the algebraic product [[,_, End(V;). If B is another such algebra, we say
that a homomorphism ¢: A — M(B) is nondegenerate if p(A)B = B.

Let A-Mod denote the C-linear category of nondegenerate finite dimensional
A-modules, so A-Mod; is semisimple with simple objects {V,},. We would like
A -Mod to be monoidal with tensor product and strict unit C defined in the usual
way via nondegenerate homomorphisms

A: A— M(A®A)=1_[End(VA®VM), g: A— C,

A
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and with associativity morphisms (U® V)@ W — U ® (V @ W) given by acting
with an element ® € M(A ® A ® A). This is indeed the case if and only if ® is
invertible and

ERUA=1=01QRe)A, (lReRNP=1®1,
(t® M)A =DARVAC)D,
(R RANP)ARLRNP)=(1RDP)(R@ARNDP)(PR D). (2.2)

We then call A a discrete quasi-bialgebra with coproduct A, counit ¢ and associator
®. Remark that Eq. 2.2 corresponds to the pentagonal diagram. Notice also that by
definition A -Mody is strictifand onlyif ? =1 ® 1 ® 1.

If we also have an element R € M(A® A) andlet Z: U® V — V ® U denote
the flip, then ¥R: U ® V — V ® U is a braiding if and only if A°”? = RA(-)R~! and

(A®V(R) = PR3P HR1P, (1 ® A)R) = &5 RizPaisRind " (2.3)

In this case we speak of a quasitriangular discrete quasi-bialgebra with R-matrix R.
Equation 2.3 correspond to the hexagonal diagrams.

Note that the forgetful functor F': A-Mod; — Vec is a quasi-tensor functor with
Fy and F, the identity morphisms. It is a tensor functor if and onlyif » = 1 ® | ® 1.

By a twist in a (quasitriangular) discrete quasi-bialgebra A we mean an invertible
element F in M(A ® A) such that (¢ ® ()(F) = (¢ ® ¢)(F) = 1. The twisting A r of
A by F is then the (quasitriangular) discrete quasi-bialgebra with comultiplication
Ar = FA()FL, counit e = g, associator

Pr=1Q0F)AF)PANF NWF'®1)
(and R-matrix Rr = Fo; RF ).

Proposition 2.1 Let A and A’ be (quasitriangular) discrete quasi-bialgebras,
F: A-Mody — Vecand F: A’'-Mody — Vec the forgetful quasi-tensor functors. Then

(i) the (quasitriangular) discrete quasi-bialgebras A’ and A are isomorphic if and
only if there exists a C-linear (braided) monoidal equivalence E: A-Mod; —
A’ -Mod such that F'E and F are monoidally naturally isomorphic;

(ii) the (quasitriangular) discrete quasi-bialgebra A’ is isomorphic to a twisting
Agr of A if and only if there exists a C-linear (braided) monoidal equivalence
E: A-Mody — A’-Mody such that F'E and F are naturally isomorphic.

If A and A’ are finite dimensional and quasi-Hopf (see below) then one does
not need a natural isomorphism of F'E and F in (ii), that is, A’ is isomorphic to
a twisting of A if and only if the categories A-Mod; and A’-Mod; are C-linear
(braided) monoidally equivalent [9]. This is no longer true in the infinite dimensional
case [2].

Proof of Proposition 2.1 Assume first that we have an isomorphism ¢: A" — Ar.
Then by restriction of scalars ¢ gives a functor E: A-Mod; — A’-Mod ;. We make it
a tensor functor by letting Ey = ¢ and E, = F~!. It is easy to see that E is a C-linear
(braided) monoidal equivalence. Furthermore, ignoring the quasi-tensor structure
we have F'E = F,and if ¥ = 1 ® 1 then F'E = F as quasi-tensor functors.
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Equivalence of Categories 903

Conversely, assume we have a C-linear (braided) monoidal equivalence
E: A-Mody — A’-Mody and a natural isomorphism n: F — F'E. The algebra
M(A) can be identified with the algebra Nat(F) of natural transformations of the
forgetful functor F to itself, and similarly M(A’) = Nat(F’). The map ¢: Nat(F') —
Nat(F) defined by ¢(a’) = n~'a'n is then an isomorphism of algebras.

Identifying M(A ® A) with Nat(F ® F), we define F € M(A ® A) by the diagram

F
UQV ——= UQ®V

Ey

EU®V) <— EWU)® EWV)

In other words, we have Fyy = (n;' ® ny,') E5 'nuev. The element F is clearly
invertible. It is easy to see that it has the property (¢ ® )(F) = (¢ ® ¢)(F) = 1 if and
only if the maps Ey, n: C — E(C) coincide. This is the case if 1 is a monoidal natural
isomorphism, and can be achieved in general by rescaling 5. Furthermore, if 7 is
monoidal then F is the identity map.

The element A(a) considered as an element of Nat(F ® F) is given by A(@)y,y =
aygy. Fora’ € M(A’) we then have

F @) NW@)F vy = Fgly(ng' @ 0y )dewerw, o @ nv)Fuv

-1 i —1 —1 i
= Nyev E20pw)e e B2 Musv = Nygylpwev)luev
= ¢(@)ygv = (Ap@))u,v,

0 (p®@p)A'p~ = AF.
The diagram (2.1) for the tensor functor E reads as

P =(1® Ey')Ey E(®)EL(E> ®0).
Using that E> @1 (EU)® E(V) ® EW) —» EU®V)® EW) is @ )(F '@
O ' ®n'®y,andthat E,: EU®V)® E(W) - E(U®V)® W)is
nweview Fuey.w(uey @ ny) = n(A @ 0(F H(n™'e@n™),
we see that E,(E, ® v) in the expression above equals (A @ )(F "N F '@~ ' ®
n~' ® n7!). Using a similar expression for (1 ® E,')E;" we get
P =nenNERF®AF)E@nA)F NF ' eon ! en o).

Since n~' E(®)n = ®, this is exactly the equality & = (¢! @ o' ® ¢ ) (D).
Finally, if our quasi-bialgebras are quasitriangular and the functor E is braided,
we have a commutative diagram

n E;'! n'en!
UV — EU®YV) — EU)QEYV) —— = UV

>R i E(XR) l i =R
E;!

VoU — s EVeU) —s EV)® EU)

l Z(p®¢)(R)
n'en™!

VeU
Therefore (¢ ® ¢)(R') = FXRF!, thatis, (¢ ® ¢)(R) = Rr. m]
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904 S. Neshveyev, L. Tuset

We will be interested in the case when A’ is a bialgebra, so &' =1@1® 1.
In this case F’ is a tensor functor, so if E: A-Mody — A’-Mody is a monoidal
equivalence then F'E: A-Mod; — Vec is a tensor functor. Therefore to show that
A’ is isomorphic to a twisting of A, by part (ii) of the above proposition, we at least
need a tensor functor A -Mod ; — Vec which is naturally isomorphic to the forgetful
functor.

We remark the following consequence of the proof of the above proposition: if
E: A-Mod; — Vec is a C-linear functor and n: F — FE is a natural isomorphism
then there is a one-to-one correspondence between weak tensor structures on E and
elements G € M(A ® A)suchthat (¢ ®0)(G) =1=(® ¢)(G) and

QARG =0®AGUARI).

Furthermore, E is a tensor functor if and only if G is invertible, and then ®r =1 ®
1®1with F =G

To define a tensor structure on a functor isomorphic to the forgetful one, it is
convenient to use the following notion. An object M in a monoidal category C with
strict unit is called a comonoid if it comes with two morphisms

eeM—1 §: M—- MM

suchthat (e ® ) =1=(®¢)dand ( ® §)§ = a(§ ® 1)4.

Lemma 2.2 Let A be a discrete quasi-bialgebra, M an object in A -Mod . Then there
is a one-to-one correspondence between

(i) weak tensor structures on the functor Hom(M, -): A-Mod; — Vec;
(i) comonoid structures on M.

Proof If M is a comonoid then we define E,: Hom(M, U) ® Hom(M, V) —
Hom(M,U® V)by fgr (f®g)§and Ey: 1 = C — Hom(M, C) by Ey(1) = e.

Conversely, if the functor £ = Hom(M, ) is endowed with a weak tensor structure,
we define : M — M ® M as the image of ¢ ® « under the map

E;: Hom(M, M) ® Hom(M, M) —- Hom(M, M ® M),

and ¢: M — C as the image of 1 € C under the map Ey: C — Hom(M, C). Using
naturality of E; one checks that the image of f ® gunder the map E,: Hom(M, U) ®
Hom(M, V) - Hom(M, U ® V) is (f ® g)é. It is then straightforward to check that
the axioms of a weak tensor functor translate into the defining properties of a
comonoid. m]

We are of course interested in the case when the functor Hom(M, -) is naturally
isomorphic to the forgetful one. Clearly, no such object M exists in A -Mod s unless
A is finite dimensional. So one needs to extend the category A-Mod to make the
lemma useful. We do not try to do this in general, as depending on the situation
different extensions might be useful.

Remark that in the finite dimensional case the unique object up to isomorphism,
representing the forgetful functor, is the module A; namely, Hom(A, U) — U,
f+— f(1), is a natural isomorphism. In this case the lemma and the discussion
before it show that there exists a one-to-one correspondence between comonoid
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Equivalence of Categories 905

structures on A and elements G € A ® A such that (¢ ® )(G) =1 = (1 ® ¢)(G) and
PARNGGR]) =1 A ®G). Explicitly, given such an element G one
defines§: A - A® Abyda) = A@)G.

Let A be a (quasitriangular) discrete quasi-bialgebra. By a x-operation on A we
mean an antilinear involutive antihomomorphism x — x* on A such that A(x*) =
A(x)*, e(x*) = e(x), ® is unitary (and R* = R,;). We also require any element of the
form 1 4+ x*x to be invertible in M(A), so that A can be completed to a C*-algebra.

Proposition 2.3 Let A and A’ be (quasitriangular) discrete x-quasi-bialgebras. Sup-
pose A’ is isomorphic to Ag for a twist E. Then there exists a unitary twist F such that
A’ and A r are x-isomorphic.

Proof Let ¢: A’ - Ag¢ be an isomorphism. Since every homomorphism of full
matrix algebras (with the standard x-operation) is equivalent to a x-homomorphism,
there exists an invertible element u € M(A) such that the homomorphism ¢, :=
up()u~' is x-preserving. We normalize u such that e(u) =1. Then & = u®
w)EA(u™") is a twist and it is easy to check that ¢,: A" — Ag, is an isomorphism.

Therefore we may assume that ¢ is *-preserving. Consider the polar decomposi-
tion £ = F|£|. Then F is a unitary twist and we claim that ¢ is an isomorphism of
discrete x-quasi-bialgebras A’ and Ax. As¢: A’ — A is x-preserving, we just have
to check that Ag = Ar.

Applying the *-operation to the identity (¢ ® p)A' = EAp(-)E™!, we get

(@@ P)A = (EH* Ap()E*.

It follows that £*€ commutes with the image of A, hence so does |£|. In particular,
Ag = Ar.

Now apply the map T(x) = (x*)~! to the identity (¢ ® ¢ ® P)(®') = Pe. As T
preserves &’ and & by unitarity, we get (¢ ® ¢ @ ¢)(P') = Dr(g). Therefore

(PgPFr = Pe =Py = (Pig-1) 7,
whence ®g) = ® g1 as Ajg; = A = Ag-1. Thus
(1RIENC® AIENDA @ )IEI™HIEIT ® 1)
=11 AMIEITHPAVIENIEI® 1)

Since (t ® A)(|€|) and 1 ® |£], as well as |£| ® 1 and (A ® 1)(|€]), commute, we can
write

(A ®IENCE® A)IEN*P = D((E] @ DA ®)(EN).
Consequently
1®IENE® A)END = @€ ® D(A @ )(IE]).

Thus @ = @, and using again Ag; = A we therefore get ®g = (Pg))r = Pr.
Finally, assume our quasi-bialgebras are quasitriangular. Applying the -
operation and then the flip to the equality (¢ ® ¢)(R) = £ RE™! we get

ENRE = (&) 'REY,
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906 S. Neshveyev, L. Tuset

so that (£*E), R = RE*E, whence €], R = RIE|, or in other words, Rig; = R. It
follows that Re = (Rig))Fr = RF. m|

We next discuss how the notion of a quasi-bialgebra arises naturally from the
Tannakian formalism. This will essentially not be used later.

Let C be a C-linear monoidal category. A (quasi-)fiber functor is a (quasi-)tensor
exact faithful C-linear functor C — Vec.

First one has the following reconstruction result [16].

Proposition 2.4 Let C be a small C-linear semisimple (braided) monoidal category
with simple strict unit. Suppose we have a quasi-fiber functor F: C — Vec. Then
there exists a (quasitriangular) discrete quasi-bialgebra A and a C-linear (braided)
monoidal equivalence E: C — A-Mody such that its composition with the forgetful
functor A-Mod ; — Vec is naturally isomorphic to F.

Remark that by Proposition 2.1 such a quasi-bialgebra A is unique up to isomor-
phism and twisting. We also remark that, as will be clear from the proof, if F is a fiber
functor then A can be chosen to be a discrete bialgebra.

Proof of Proposition 2.4 Let {V,},ca be representatives of isomorphism classes of
the simple objects in C. Put A = @, End(F(V})). Then M(A) =[], End(F(V,)) can
be identified with the algebra Nat(F) of natural transformations of F. Regarding
F as a functor E: C - A-Mody, we get an equivalence of C and A-Mod; as C-
linear categories, since E is exact and maps the objects V;, onto all simple objects of
A -Mod up to isomorphism.

Identifying M(A ® A) with Nat(F ® F) and considering F, as a natural trans-
formation from F® F to F(-® -),we define A: M(A) - M(A® A) by A(a) =
Fz_lan. Define also ¢: M(A) — C by e(a) = a1 € End(F(1)) = C. Finally, define
PeM(A® AR A) =Nat(F® F® F) by

P=(®F")F, ' F@)F(F,®).

Then by construction A becomes a discrete quasi-bialgebra and E a monoidal
functor.

If C has braiding o then define Re M(A® A) =Nat(F® F) by R=
Y F;'F(0)F>. Then A is quasitriangular and E is braided. m]

A right (resp. left) dual to an object U in a monoidal category C with strict unit
consists of an object U" (resp. ¥ U) and two morphisms

e:U'QU—>1, i:1-UUY, (esp. : U U—>1, i:1->"UU)
such that the compositions

US weUHheU3Ue W' oU) 2 U,
UV U e UeUY) Y (U eU) o UY <& UY
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(respectively,

U ﬁ”& UR(CURU) > U U)o U <&

v ®e

2 UU)QVU S VU WU U) =5 V)

QL

U,

are the identity morphisms. The category C is called rigid if every object has left and
right duals.

If t € Hom(U, V) then the transpose ¢V: V¥ — U is defined as the composition
et

Ve WUeUY) S (Vo)UY Y v e V) e UY <2 U

We then have the following identities:
tRVi=0wRtNi:1=->VUY, e®)H=et"®@): V' QU — 1.

This is not difficult to check directly, but is immediate if the category is strict, which
we may assume by Mac Lane’s theorem. Now if s € Hom(V, W), assuming that C
is strict to simplify computations, the morphism ¢¥s" is by definition given by the
composition

LRI QY LRSRL

W EWeve Vv 2 weve U X2 weweUY & UY.

But as (t ® 1)i = (¢ ® t¥)i, this is exactly the definition of (st)¥. Therefore V — V" is
a contravariant functor of C into itself.

Similar arguments show that if U is another right dual of U with corresponding
morphisms i and e, theny = (¢ ® Ve '®i): UY — UV hasinverse (e ® o~ (1 ® i).
Also é =e(y ®¢) and i iI=01® ¥~ hi. Therefore right duals are unique up to isomor-
phism. Similar statements hold for left duals. Finally note that

(e ®): U— YUY

is an isomorphism with inverse (¢t ® ¢ )x(i ® t), and similarly that (YU)" is isomorphic
to U.

The category Vec is rigid with UY = YU = U* and the morphisms e = ¢’ and i = 7'
(identifying U** with U), which we shall denote by e, and i,, are given by

e,:U"QU - C, fxr+— f(x), and i,: C - U ® U*, lr—>2xi®xi,

where {x;}; is a basis in U and {x'}; is the dual basis in U*. Then " is the usual dual
operator *.

Suppose we are given a nondegenerate anti-homomorphism § of a discrete quasi-
bialgebra A. Then for any A-module U we can define an A-module structure on
the dual space U* by af = f(S(a)-). To make U* a right dual object we look for
morphisms

e:U'QU - C, i:C—->UQU*

in the forme = ¢,(1 ® @) andi = (8 ® 1)i, for some elements «, B € M(A) (note that
if U is simple then any linear maps U* ® U — C and C — U ® U* must be of this
form). Then the maps e and i are morphisms if and only if

S(agyaap) =e@a, aqBSlag) =:c(@p (2.4)
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as endomorphisms of U, and then U* is a right dual of U in A -Mod  if and only if
S(@ )@, 'BS(P7) =1, ©18S(P)ad; =1, (2.5)

again as endomorphisms of U. If there exists an invertible anti-homomorphism S
and elements «, 8 € M(A) such that Egs. 2.4 and 2.5 are satisfied, then we say that
A is a discrete quasi-Hopf algebra with coinverse S. Then UY = U* with action af =
f(S(a) -) is a right dual of U, and YU = U* with action af = f(S~'(a) -) is a left dual
of Uwithe =e,(S @)@ ) and i’ = (1 ® S~(B))i.

If S is another coinverse with corresponding elements &, 4, then there exists a
unique invertible u € A such that § = uS(-)u~! and & = ua, f = pu~'. Conversely,
any S and &, B defined this way for an invertible u satisfy the same axioms as S and
a, . When ® = 1® 1 ® 1, then @ and 8 are inverses to each other, and setting u =
thus gives @ = f = 1, so A is a discrete multiplier Hopf algebra with coinverse S in
the sense of [21].

We have explained that if a discrete quasi-bialgebra A has coinverse then A -Mod ¢
is rigid. One has the following converse [10, 20, 23].

Proposition 2.5 Let A be a discrete quasi-bialgebra with A -Mod s rigid and such that
for every simple module U the dimensions of U and U" as vector spaces coincide.
Then A has coinverse.

Proof Recall that by definition A = @,cx End(V;). For each A the module V) is
simple, so there exists a unique A € A such that V) = V. Fix a linear isomor-
phism n,: V' — VY, which exists as the spaces V, and V) by assumption have
the same vector space dimension. Then there exists a unique anti-isomorphism
S, End(V3;) — End(V),) such that if we define an action of End(V3) on V; by
af = f(S,(a)-), then 1, is an End(V;)-module map. Since V = (VV,)", the set {A}iea
coincides with A. Thus our anti-isomorphisms S, define an anti-isomorphism §
of A onto itself such that for each A the dual module V) is isomorphic to V;
with action af = f(S(a)-). As explained above, the morphisms e: Vi ® V; — C and
i: C - V, ® Vi uniquely determine « and 8, making S a coinverse.

In more categorical terms the above proof goes as follows. Identify M(A) with
the algebra Nat(F) of natural transformations of the forgetful functor F. Extend
isomorphisms Vi = V) to a natural isomorphism 5 from the functor U — F(U)*
to the functor U — F(U"). Then S, « and B are defined by

S@y =n"ap)* @)™, ey =1®e)®n® )i, 1),
Bu=01®e)®n ' ®(I®0). O

In the case when A is finite dimensional the assumption on the dimensions of U
and U" is automatically satisfied [19]. The following example from [18] (see also [24])
shows that this is not the case in general.

Example 2.6 Let G be a discrete group, B C G a subgroup such that each double
coset BgB contains finitely many right and left cosets of B. Consider the category
C of G-graded B-bimodules M = @, M, such that M, is a finite dimensional
complex vector space for each g, and M, # 0 only for g in finitely many double
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cosets of B. Define a tensor structure on C by M ® N = M ®c(p; N. Note that
C[B] is a unit object. The category is rigid with right and left dual MV given by
MSY = (M;-1)* and B-bimodule structure given by (b, fby)(x) = f(baxb,) for f €
(Mg-)* and x € My, gp,)-1- The morphism i: C[B] — M ® M" is defined by i(e) =

2cG/B Zje 1, Xg.j ® x;j, where {xg j}jcs, is a basis in M, with dual basis {X;]-}jgg, and
e: MY ® M — C[B]is defined by e(f ® x) = f(x(gh)~")gh for f Mgv, and x € M,
when gh € B,and e(f ® x) = 0when gh ¢ B.

The category C is in general not semisimple. To define a semisimple subcategory
consider a functor E from C to the category of B\G-graded finite dimensional
right B-modules defined by E(M) = C @cyp M. It is not difficult to see that E is
an equivalence of categories. Furthermore, using E the simple objects of C can be
described as follows: the modules that are supported on a single double coset BgB
(sothat M), = Ofor h ¢ BgB),and such that the right action of BN g~! Bgon E(M) g,
is irreducible. Consider now only those modules in C which decompose into simple
ones such that the corresponding action of B N g~' Bg factors through a finite group.
Equivalently, we define a semisimple subcategory Cy of C consisting of modules M
such that the right action of B on E(M) factors through a finite group. Yet another
equivalent condition is that xb = (ghg~')x for all g € G, x € M, and b in a finite
index subgroup of B (where we use the convention that (ghg~")x = 0if ghg™' ¢ B).
Using the latter characterization we see that Cy is closed under tensor product, and if
M is in Cy then MY is also in Cy.

Consider the functor F: Cy — Vec defined by F(M) = C ®c(p; M. To make it a
quasi-fiber functor fix a set of representatives R for B\G. Then F(M) = ®gcrM,.
For g e G denote by [g] € R the representative of Bg. Then define F, as the
composition of the canonical isomorphisms

12

F(M)® F(N) = P Mgy ® N = P Mg @ N,

g.heR g.heR
=P M@ N), = FIM® N),
geR

where in the second step we used the isomorphisms Mg,-1; — Mg,-1 given by
x = (gh~'[gh~'1""x. Thus by Proposition 2.4 the functor F: Cy — Vec defines a
discrete quasi-bialgebra A such that A -Mod y is rigid. Notice now that the dimensions
of F(M) and F(MY) can be different. Indeed, let D = BgB be a double coset,
M = C[D]. Then MV =C[D~!']. We have dim F(M) = |B\D| and dim F(M") =

|B\D~!| = |D/B|. A simple example where these dimensions can be different is the
ax + b groups G = (% (? ,B= (1) % . So in this case the discrete quasi-bialgebra

A with rigid monoidal category A -Mod fails to be quasi-Hopf.

3 The Drinfeld Category

Let G be a simply connected simple compact Lie group, g its complexified Lie
algebra. Consider the tensor category C(g) of finite dimensional g-modules. For each
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h € C\ Q we shall introduce new associativity morphisms in C(g) via monodromy of
the Knizhnik—Zamolodchikov equations.

Consider the ad-invariant symmetric form on g normalized such that if we choose
a maximal torus in G and denote by h C g be the corresponding Cartan subalgebra,
then for the dual form on h* we have (a, @) = 2 for short roots. In other words,
if (a;j)1<; j<r 1s the Cartan matrix of g, and dj, ..., d, the coprime positive integers
such that (d;a;)); ; is symmetric, then (o, oj) = d,a;; for a chosen system {a, ..., o}
of simple roots. Let 1 =Y, x; ® x¥' € g ® g be the element defined by this form, so
{x;}; is a basis in g and {x'}; is the dual basis. Since ¢ is defined by an invariant form,
it is g-invariant, that is, [z, A(x)] =0 for all x € Ug, where A: Ug— Ug® Ugis the
comultiplication. Remark also that by definition of A we have

A0 =t +03, (®A)0) =1+t 3.1)
Let Vi, ..., V, be finite dimensional g-modules. Denote by Y, the set of points
(z1, ..., zn) € C" such that z; # z; for i # j. The KZ, equations is the system of

differential equations

v tii .
8—=h —Y w, i=1,...,n,
Zz ]#111_11

where v: Y, - V; ®---® V,. This system is consistent in the sense that the
differential operators V; = % -hy it zrffz commute with each other, or equiva-
i i—Zj

lently, they define a flat holomorphic connection on the trivial vector bundle over
Y, with fiber V| ® --- ® V,,. This can be checked using that ¢ is symmetric and that
[tij + tj, tir] = 0, which follows from Eq. 3.1 and g-invariance of t.

The consistency of the KZ,, equations implies that locally for each z° € Y, and
vp € Vi ®---® V, there exists a unique holomorphic solution v with v(z°%) = v,. If
y: [0, 1] — Y, is a path starting at ¥ (0) = z°, then this solution can be analytically
continued along y. The map vy — v(y(1)) defines a linear isomorphism M, of
Vi®---®V, onto itself. The monodromy operator M,, depends only on the homo-
topy class of y. In particular, for each base point z° € Y,, we get a representation
of the fundamental group m;(Y,; z%) on V| ®---® V,, by monodromy operators.
Recall that 7(Y,; z°) is isomorphic to the pure braid group PB,, which is the
kernel of the homomorphism B, — S,. If V| =--.- =V, then the monodromy
representation extends to the whole braid group B,;; we shall briefly return to this a
bit later.

The new associativity morphism (V; ® V) ® V3 — V| ® (V, ® V3) will be a cer-
tain operator which appears naturally in computing the monodromy representations
for KZ3, it can be thought of as the monodromy operator from the asymptotic zone
|z — z1] < |23 — 21| tothe zone |z3 — 22| < |z3 — z1|- To proceed rigorously we need
to recall a few facts about differential equations with regular singularities. Observe
first that if

Attt +t 22— 2
(21, 22, 23) = (23 — zq)Metistiy, (22 =2 )
73— 21
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then v is a solution of KZ; if and only if w is a solution of the equation

oy g B2 123
w(z)—h(z +Z_1)w(z), (3:2)

which we call the modified KZ;3 equation.

Proposition 3.1 Let V be a finite dimensional vector space, z +— A(z) € End(V) a
holomorphic function on the unit disc D. Assume A(0) has no eigenvalues that dif fer
by a nonzero integer. Then the equation

xG'(x) = A(x)G(x)

for G: (0,1) > GL(V) has a unique solution such that the function H(x) =
G(x)x~ 4O extends to a holomorphic function on D with value 1 at 0.

Furthermore, if G(-; h) is an analogous solution of xG'(x; h) = hA(x)G(x; h),
which is well-defined for all h outside the discrete set A = {n(,A — )~ |ne N, A #
w, A and p are eigenvalues of A(0)}, then H(x; h) = G(x; h)x 4O is analytic on
D x (C\ A).

Proof We shall give a proof of this standard result (see e.g. [22]), mainly to remind
how the assumption on A(0) is used.

Write A(z) =Y o, Axz". We look for G(x) in the form H (x)x?, where H(x) =
> o Hux™ with Hy = 1. Then H must satisfy the equation

xH (x) = A(x)H(x) — H(x) A, (3.3)

or equivalently, [Ay, H,] —nH, = — Z?;ol A,—iH; for all n>1. The operator
ad4, —n on End(V) has zero kernel exactly when A, has no eigenvalues that differ
by n. So by our assumptions there exist unique H, satisfying the above conditions.
We then have to check that the series ), H,x" is convergent in the unit disc. Choose
¢ > 0 such that |[(ads, —n)~!|| < ¢ for all n > 1. Define numbers A, recursively
by ho =1, hy=cY ) | As_ilh; for n > 1. We clearly have |H,| < h,. On the
other hand, by construction the formal power series A(x) = fo’:o h,x" satisfies the
equation h(x) — 1 = ¢(x)h(x), where ¢(x) =c)_,., [l A,llx". Since ¢ is analytic on
D and ¢(0) = 0, we see that 4(x) = (1 — ¢(x))~! is convergent in a neighbourhood of
zero. Hence ), H,x" is also convergent in the same neighbourhood. Since a solution
of Eq. 3.3 can be continued analytically along any path in D \ {0}, we conclude that
the convergence must hold on the whole disc. Furthermore, as G(x) is invertible for
small x, it must be invertible everywhere.

Finally, if A(z; h) is analytic in two variables, then the above argument implies that
for any bounded open set U such that the assumption on A(0; f) is satisfied for all
h € U, there exists a neighbourhood W of zero such that the corresponding solution
H(x; h) of Eq. 3.3 with A replaced by A(-; ), is analytic on W x U. Fixing x, €
W\ {0}, we can consider H(-; h) as a solution of a differential equation depending
analytically on a parameter and with the analytic initial value H(xo; k) at x = xo.
Hence H(-; ) is analyticon D x U. O
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Remark 3.2 Uniqueness of G is equivalent to the following statement: if A is an
operator with no eigenvalues that differ by a nonzero integer, and the function x
xATx~* defined for positive x extends to an analytic function in a neighbourhood of
zero with value 1 at x =0, then 7 = 1. This is easy to see directly. More generally,
if x4 Tx~4 extends to an analytic function in a neighbourhood of zero then A and T
commute.!

We will also need a multivariable version of Proposition 3.1.

Proposition 3.3 Let Ay, ..., A, : D™ — End(V) be analytic functions. Assume the
dif ferential operators V; = z,-a% — Ai(2), 1 <i < m, pairwise commute. Assume also
that none of the operators A;(0) has eigenvalues which differ by a nonzero integer.
Then the system of equations

G
oy, ) =A0GW), 1T<i=m,

Xi

has a unique GL(V)-valued solution on (0, 1) such that the function G(x)xl_A‘(O) e

x;, 4O extends to an analytic function on D™ with value 1 at x = 0.

Remark that the flatness condition [V}, V;] = 0 reads as zi% -z
In particular, it implies that [ A;(0), A;(0)] = 0.

A
%Z/ - [Aiv A]]

Proof The proposition can be proved by induction on m. To simplify the notation
we shall only sketch a proof for m = 2, which is actually the only case we shall need
later.

The unknown function H(x1, x2) = G(x1, X2)x;
of equations

A‘(O)x; A0 must satisfy the system

H
XIL=A1H—HA1(O), (34)
8)(1
H
X287 = AzH — HAz(O) (35)
8)(2

By the proof of Proposition 3.1 Eq. 3.4 for x, = 0 has a unique holomorphic solution
H, with Hy(0) = 1. Using that [V}, V,] =0 it is easy to check that A,(-,0)Hj is
a holomorphic solution of Eq. 3.4 (for x, = 0) with initial value A,(0) at x; =0,
hence A»(x;,0)Hy(x;) = Ho(x;)A2(0) for all x; by uniqueness. Then an argument
similar to that in the proof of Proposition 3.1 shows that in a neighbourhood of
zero there exists a unique holomorphic solution of Eq. 3.5 of the form H(x;, x,) =

In the formal deformation setting a similar result holds without any assumption on the spectrum
of A. Namely, if x — X" ATx"A e Mat, (C)[[h]] extends analytically, meaning that every coefficient
in the power series extends analytically, then A and T commute. Indeed, we have x4 Tx~"4 =
T+ h[A, T]logx + ..., which forces [A, T] = 0. Moreover, we see that already existence of the limit
of x"ATx~"4 as x — 0" implies that A and T commute. As a result replacing analytic functions by
formal power series would simplify some of the subsequent arguments.
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Z;’o:o H, (x1)x}, so that H(x,0) = Hy(x;) for small x;. It remains to show that H
also satisfies Eq. 3.4. For this one checks, using [V}, V,] = 0, that
oH
X1 — — A1H+ HA](O)
3x1
is again a solution of Eq. 3.5. Since it is zero at x, = 0, we conclude that it is zero
everywhere. O

Turning to the modified KZ; Eq. 3.2, consider more generally the equation

z—1

w'(z) = (? + i) w(z), (3.6)

where A and B are operators on a finite dimensional vector space V such that neither
A nor B has eigenvalues that differ by a nonzero integer. By Proposition 3.1 there
is a unique GL(V)-valued solution Gy (x) on (0, 1) such that Gy(x)x~4 extends to a
holomorphic function on ID with value 1 at 0. Fix x° € (0, 1). If wy € V then Go(x)wy
is a solution of Eq. 3.6 with initial value Gy(x°)wp. If we continue it analytically
along a loop y starting at x° and turning around O counterclockwise then at the
end point we get Go(x")e**w,. Thus the monodromy operator defined by y; is
Go(x")e*™ 4 Gy (x*)~!. Using the change of variables z — 1 — z we similarly conclude
that there is a unique GL(V)-valued solution G| (x) of Eq. 3.6 such that G;(1 — x)x?
extends to a holomorphic function on D with value 1 at 0. Then the monodromy
operator defined by a loop y, starting at x° and turning around 1 counterclockwise
is G (x*)e*™ B G (x*)~!. The fundamental group of C \ {0, 1} with the base point x° is
freely generated by the classes [yy] and [y;] of 3, and y;. Therefore the monodromy
representation defined by Eq. 3.6 with the base point x? is

Yol = Go(x")e™ A Go(x") 7", ]+ Gi(x")e™BG(x) . (3.7)

The operator ®(A, B) = G(x)~'Gy(x) does not depend on x, since a solution of
Eq. 3.6 is determined by its initial value. We then see that the above representation
is equivalent to the representation

[yol = €4, [l ®(A, B)y '8 (A, B),

which does not depend on the choice of the base point. In fact it can be interpreted
as the monodromy representation with the base point 0 as follows.

Let I be the space of solutions of Eq. 3.6 on (0, 1). For each x° € (0, 1) denote by
mw: V — I the isomorphism such that w0 (wy) is the solution of Eq. 3.6 with initial
value wy at x°. If y is a curve in (0, 1) then the monodromy operator M, is n;(ll)ﬂy(o).
Define m: V — T for x° = 0, 1 by letting 7¢(wo) = Go(-)wo and 7 (wo) = Gy (-)wo.
Then Go(x°) = 7;,'my, G (x°) = w;'7; and ®(A, B) = m; '7y can be thought of as
the monodromies from 0 to x°, from 1 to x°, and from 0 to 1, respectively. This
interpretation agrees with formulas (3.7) since the monodromy operator defined by
an infinitesimal loop around zero should of course be ™4,

It is sometimes convenient to define 7 as follows. Let wy be an eigenvector of
A with eigenvalue A. Then Go(x)wy = x*Go(x)x~“wy. Therefore u = my(wp) is a
solution of Eq. 3.6 such that x~*u(x) extends to a holomorphic function on D with
value wy at 0. This completely determines g if A is diagonalizable. Similarly, if wy is
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an eigenvector of B with eigenvalue A then u = 7 (wy) is a solution of Eq. 3.6 such
that x~*u(1 — x) extends to a holomorphic function on D with value wy at 0.

We remark the following simple properties of ®(A, B): if an operator C com-
mutes with A and B then it also commutes with ®(A, B), and in addition ®(A, B)
coincides with ®(A + C, B) and ®(A, B + () if the latter operators are well-defined.
Indeed, to prove the first claim observe that e* Go(-)e~*C has the defining properties
of Gy for every s € R, hence it coincides with Gy, so Gy commutes with C and
similarly G; commutes with C. For the second claim observe that if we replace A by
A + C then Gy(x) and G (x) get replaced by Go(x)x® and G, (x)x®, whence ®(A +
C, B) = ®(A, B). In particular, if A and B commute then ®(A, B) = ®(0,0) = 1.

Furthermore, by the second part of Proposition 3.1 for any fixed A and B the
function C 3 h — ®(hA, hB) is well-defined and analytic outside a discrete set. This
discrete set does not contain zero, more precisely, ®(hA, hB) is defined at least for
|h| < (2max{r(A), r(B)})~!, where r denotes the spectral radius. It can be shown [3]
that the first terms of the Taylor series look like

®(hA,hB) =1 — R (2)[A, Bl— FPt(3)(A, [A, BN+ [B,[A, BI) +...,

where ¢ is the Riemann zeta function; see [11, 14] for more on this expansion.

Finally, if V is a Hermitian vector space and A* = — A, B* = —B, then ®(A, B)
is unitary. Indeed, for any xo € (0, 1) the function Go(-)Gy(xo)~! with value 1 at
X = xy takes values in the unitary group, being an integral curve of a time-dependent
right-invariant vector field on this group. Letting x, — 0 in the equality Gy(x) =
(Go(x) Go(xo)‘l)(Go(xo)xO’ A)xg‘, we conclude that Gy(x) is unitary for any x € (0, 1).
We similarly see that G (x) is unitary, and hence ®(A, B) is unitary as well.

Returning to the modified KZ; equation notice first that the image of the element
t in End(V; ® V>) has rational eigenvalues for any finite dimensional g-modules V;
and V,. To see this, we need to recall that

t:%@@%&@C—C@& (3.8)

where C =), x;x' is the Casimir, and that the spectrum of C consists of rational
numbers since the image of C under an irreducible representation with highest
weight A is (A, A + 2p), where p is half the sum of the positive roots. It follows that
for any fixed i € C \ Q* and all finite dimensional g-modules V, V, and V3 we have
a well-defined natural isomorphism ®(ht,, hta3) of V =V, ® V, ® V3 onto itself.
Consider the GL(V)-valued solutions Gy and G, of Eq. 3.2 as described above. Then

X2 — X .

R(tin a3+t _

Wi(x17x25 x3) = (x3 - .XI) EREE ]3)Gi (ﬁ) , L= 0, 1,
37— Al

are GL(V)-valued solutions of KZ; on {x; < x» < x3}. We have ®(ht|», hty3) =
Wi (297 'Wy(z% for any z° = (29, x9, x9). Furthermore, our considerations imply
that ®(Aty,, htr3) can be thought of as the monodromy operator of KZ; from the
asymptotic zone x, — x; < x3 — x; to the zone x3 — x, < x3 — x, and by conjugating
by Wy(z%)~! the monodromy operators of KZ; with the base point z° can be written
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as expressions of e and ®(ht2, hitr3),2 which can be thought of as monodromy
operators with the base point at infinity in the asymptotic zone x; — x; < x3 — X;.

Theorem 3.4 Let i € C\ Q*. Denote by D(g, h) the category of finite dimensional g-
modules. Then the standard tensor product, o« = ®(hty, hty3) and o = seriht define
on D(g, h) a structure of a braided monoidal category.

By definition D(g, h) is the category of non-degenerate finite dimensional (C/[E]—

modules, where ((3/[5] is the discrete bialgebra of matrix coefficients of finite di-
mensional representations of G with convolution product, coproduct A(g) =g® g

—

and counit £(g) =1 for g € G ¢ M(C[G]). We can then reformulate Theorem 3.4
by saying that (C[G], A, &, @ (B, Aity3), €7) is a quasitriangular discrete quasi-

bialgebra. Remark that the algebra M ((C/[E]) can be identified with the algebra U (G)
of closed densely defined operators affiliated with the group von Neumann algebra
W*(G) of G.

The element ®(ht,, hty3) € U(G x G x G) is called the Drinfeld associator and
is often denoted by ®x . Since from now on we are not going to consider any
other associativity morphisms apart from the trivial one and @ (hty,, hity3), we write ®

instead of ® (ht,, ht»3) if the value of A is clear from the context.

Proof of Theorem 3.4 The only nontrivial relations that we have to check are
Egs. 2.2 and 2.3 with R = ™.

2To be precise our discussion of the monodromy of the modified KZ3 equation is not quite
enough for this conclusion because the additional factor (x3 — x;)?"12+23+13) has nontrivial mon-
odromy. In other words, the monodromy of the KZ3 equations does not reduce completely to
that of the modified KZ3 equation. This is not surprising since the map Y3 — C\ {0, 1}, z =
(X1, X2, X3) > x = 23 l , induces a surjective homomorphism of the fundamental groups which is
however not injective. Namely, consider the standard generators g; and g» of Bj3. It is known
that PBj; is generated by g7, g3 and goglg;y'. For z0 = (x¥,x9, x0) with x0 < x < xJ, represent
gi by a path y; interchanging x? with x?+1 such that x? passes below x?ﬂ. Then the images of

g2 and g3 in m;(C\ {0, 1}; x%) can be represented by the curves yy and y; introduced earlier,
so the monodromy operators of KZ3 corresponding to g7 and g3 with the base point z° are
Wo (20 e2m M2 Wi (2" ~1 and W, (2%)e? 23 W (z%)~1. But we still have to compute the operator
corresponding to gzg%gz’l, Consider a more general problem. By embedding V| ® V> ® V3 into
Vi@V V3)® we may assume V| =V, = V3 = W. Extend the representation of PB3 to a
representation of B3 on V = W®3 defined by g1 = Z12Mj and g > Zo3 My, If X0 is the image of
70 = 71(0) in C \ {0, 1} then the image of 7 (1) is X(’,‘—il It follows that M, = Wo (7 (1) Wy (7(0)~! =
(1 = x%Ptto3tu3) G (ng%l) Go(x")~1. Here G (wx—il is obtained by analytic continuation of
Gy along the image of y;, that is, by going through the upper half-plane. It is not difficult to
see that T12(1 — x)2+m3+03) G (ﬁ) 212 = Go(x)e™ 2 by checking that the left hand side is

a solution of the modified KZ3 equation. It follows that X, M; = Go(x"e™ 231, Go(x0) ! =
Wo(z%)em "2 51, Wy (z%)~!. Similarly one checks that £o3 M;, =W, (z%)em "3 253 W (z9)~!. Thus by
conjugating by Wy (z%)~! we see that the representation of B3 on V is equivalent to the one given by
g1 > €M Ty gy > D (R, Rip3) T e B B3 @ (b2, Bin3).
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916 S. Neshveyev, L. Tuset

To prove Eq. 2.2 consider the system KZ, in the real simply connected domain
{x1 < x2 < x3 < x4}. Put

T =112+ ti3 + tia + o3 + by + 134.

Note that 7" commutes with #; for all i and j. We consider five solutions of KZ, in
our domain of the form (xs — x;)"? F(u, v), where u and v are certain fractions of
xj — x; corresponding to five asymptotic zones. Each asymptotic zone is associated
to a vertex of the pentagon diagram according to the following rule: if V; and
V; are between parentheses and V is outside, then |x; — x;| < |xx — x;|. E.g. the
zone corresponding to (Vi ® Vo) ® V3) Q@ Vy is x; — x; K x3 — X1 < x4 — X1, and
we claim that there exist a unique GL-valued solution W, of KZ, of the form

Wi (x1, X2, X3, X2) = (x4 — x)"T Fy (L XIa . XI>

X3 — X1 X4 — X1

and a function H, (-, -) analytic on D? such that H;(0,0) = 1 and
Fi(u, v) = Hy(u, v)u2phtetinto) for 4 o e (0, 1).

Indeed, one checks that F; must satisfy the system of equations

oF u uv
u—- ="t + s + ty | Fi,
ou u—1 uv — 1
oF uv v
vl =n 4tz + s + by + 1 | Fi. (3.9)
v uv — 1 v—1

By Proposition 3.3 this system has a unique solution of the required form. Similarly
there exist solutions W,, W3, W,, W5 such that

AT X3 — X2 X3 — X
Wax1, x2, x3,x4) = (x4 —x1)"" F, <7 —_—

X3 — X1 X4 — X

AT X3 — X2 X4 — Xp
Wi(x1, x2, x3, x4) = (x4 —x1)"" F3 (7 —,

X4—X27X4—X|

X4 — X X4 — X
AT 4 3 X4 2
Walxi, x2,x3,x4) = (x4 —x)" Fy | ———, ———

X4 — X2 X4 — X

AT X — X1 X4 — X3
Ws(x1, x2, x3, x4) = (x4 —x1)"" Fs (7 S

X4—X17X4—X1

and holomorphic functions H;(-,-), i =2, 3,4, 5, in a neighbourhood of zero with
H;(0,0) = 1 and such that for positive u, v we have

Fo(u, v) = H(u v)uht23vh(t|z+t|3+f23)
F3(u, v) = Hs(u, v)uhfzsvfi(tzz-*-tzzx+l34)7
Fu(u, v) = Ha(u v)uﬁf34vﬁ(123+124+f34)

) ) )

Fs(u,v) = Hs(u, v)u™2y
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Explicitly, one checks that F, F3, Fy and Fs satisfy

oF u uv
u—="n(ns+ tip + by | Fa,
ou u—1 1—v+uv
(3.10)
o2 it s+ =Y bt ) F
70 12l s T T et ol [,
oF uv u
u=—==nh(ts+ tiz + B34 | F3,
ou uv —v+1 u—1
(3.11)
s v v —uv
v— =h|tyn+ts+1t34+ 112+ Fs,
v v—1 uv — 1
BF uv u
e+ i3 + s | Fy,
8u uv — 1 u—1
8F v uv
2 = h( a3+ tag + 134 + tio + ti3 | Fa,
Bv —1 uv — 1
6F5 u u
=hit t toy | Fs,
L <12+u+v_123+u_124) 5
8F5 v v
=h(t t ty; | Fs.
Voo <24+ —113+u+v—123> 5
It turns out that the solutions W; are related as follows:
Wi =Wy o 1), (3.12)
Wy =W ® A ®0)(P), (3.13)

W =Wi(1Q D),
Wy=Ws(®1® A) (D,
Ws=Wi(A®:® )@,

which immediately implies Eq. 2.2. We shall only check Eqgs. 3.12 and 3.13.
To prove Eq. 3.12 denote by ® the operator such that W, = W,0. Then

Fi(u,v) = F,(1 —u,v)0.
For any fixed u € (0, 1) the functions v > F(u, v)v~"+15+2) and v > Fp(1 —
u, v)v~Me+hs+h) extend analytically to a neighbourhood of zero. It follows that
ettt @ ~hitie+hs+ts) extends analytically as well. By Remark 3.2 this is possible
only when ® commutes with ¢, + ;3 + f23. It follows that

Fi(u U)vfh(t12+t13+t23) =FK(1-u U)v*ﬁ(llz‘H‘lﬁsz,z)@.

Letting v =0 in this equality and introducing g, () = F(u, v)v ettt o —
Hy(u, 0)u™2 and gy () = Fs(u, v)v Mettst)| o = H,(u, 0)u™>, we then get

g1(w) =g —uo.
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918 S. Neshveyev, L. Tuset

Furthermore, letting v = 0 in Eq. 3.9 and in the first equation of Eq. 3.10, we see that

g1 and g, satisfy
d
lz% &1, Mﬁ =h(1s + 2 ) 8.
du -1

The functions g (u)u~"" = H;(u,0) and g,(u)u""> = H,(u, 0) extend to analytic
functions on the unit disc with value 1 at 0. Thus by definition

dgl
—— =h(t
udu (12+

® = O (htyp, hty3) = PR 1.

To prove Eq. 3.13 denote again by ® the element such that W, = W30. Then

Fu,v)=F (L,l—v—i—uv) ®.
l—v+uv

As in the argument for Eq. 3.12, but now fixing v instead of u, we first conclude that
® commutes with t,3. Thus

Fo(u, v)u~ sy~

—hiys
R (—" i _vtw) (2 (1 = v+ uv) 0
1—v+4+uv 1—v+uv

So letting u = 0 and introducing g;(v) = F;(u, v)u="3v="2|,_, fori = 2, 3, we get
&) = g3(1 —v)O.

Furthermore, from the second equations in Egs. 3.10 and 3.11 we obtain

d v
8 =h (tlz + i3 +
dv v—

1 (trs + 134)) g,

d v
298 _ (tz4 + t34 + — l(flz + 113)) 83

dv

The functions gs(v)v~ "+ = H,(0,v) and gs3(v)v "2+ = H3(0, v) extend to
analytic functions in the unit disc with value 1 at 0. Therefore

® = O (ht1p + hty3, htog + hit3s).
Astin+13=(0®A®1)(f) and fy + 134 = (1 ® A ® 1)(1a3), e get
O =01®A)(P(N, hr) = (1 ®A®)(P).

To prove Eq. 2.3 observe that the second relation in Eq. 2.3 follows from the
first one by flipping the first and the third factors and using that ¢ = f;; and ®3;; =
®~!. The latter equality is easily obtained from the change of variables z — 1 — z
in Eq. 3.2.

Turning to the proof of the first identity in Eq. 2.3, consider the system KZj; in the
simply connected space

= {(z1, 22, 23) € Y3 | Sz1 < Jz5 < Jz3}).
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Consider the real domain {(x, x5, x3) | X; < X2 < x3} and two GL-valued solutions of
KZ; in this domain of the form

htyo
X, — X X, — X 2
h(tip+taz+t 2 1 2 1
Wo(x1, X2, x3) = (x3 — xp)"eths '3)H0( ) ( ,

X3 — Xi X3 — X1
X3 — X X3 — X hixs
Tutia+to3+t - -
Wi(xy, x2, x3) = (x3 — x1) (t12+123 13)1_11 .
X3 — Xi X3 — X|

Similarly we have solutions of KZ; in the real domain {(x;, x2, x3) | X; < x3 < X3}
such that

hty3
X3 — X| X3 — X ’
Rttt +, : 3
Wa(xi, X2, x3) = (xp — xp)P0t0s '3)H2< > ( > ,

X2 — X1 Xy — X
Btz
%% — Xy — X Xr — X >
h(tia+tas+t 2 3 2 3
3(x1, X2, X3) = (g — xp) /M ths) pp, )
X2 — X1 Xy — X

and solutions in the real domain {(x;, X3, x3) | X3 < X; < X,} such that

ht3
R(tin4taz+t X1 —X3 X1 — X3
Wa(xy, X2, x3) = (xp — x3)""0tt0s) ( > ( ,

X2 — X3 X2 — X3
htis
Xy — X X) — X
R(tio+t3+t 2 1 2 1
Ws(x1, X2, X3) = (xp — x3)/ 02 40) g .
Xy — X3 X2 — X3

We require the functions H; to be analytic on the unit disc with value 1 at 0. The
functions W; extend uniquely to solutions of KZ; on I'. By definition of ® we
immediately have

Wo =W 0, Wy =W3di3, Wi= Wsds,. (3.14)
We next compare W, and W,. Consider the set
Qo ={(z1,22,23) €'t |z3 — 21| < |22 — z1l}.

It has two connected components, Q3 and Q;, corresponding to the two possible
orientations of the pair of vectors (z; — z1, z3 — z1) (if the vectors are colinear, first
perturb (z1, 22, z3) in T'). The initial real domain of definition of W, is contained in
Q7,50

hti3
73 — 21 3 — 21
Wa(z1, 22, 23) = (22 — 21) "+ |,
22 — 21 22 — 21

for (z1, 22, 23) € Q3. (3.15)

Similarly the set Q4 = {(z1,22,23) € ' : |23 — 21] < |22 — z3|} has two connected
components Q; and €, with Q} containing the initial domain of definition of Wi,
and

hti3
21— 23 1 — 13
Wi(z1. 22, 23) = (22 — 23)" 29 1,y
32— 13 22— 23

for (z1, 22, 23) € Q7. (3.16)
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In the latter expression (z; — z3)™5 means the function on I' obtained by analytic
continuation of (x; — x3)™3 from the real domain {x3 < x; < x,}. On the other hand,
(z3 — ;)™ in Eq. 3.15 is obtained by analytic continuation from {x; < x3 < x}.
Going from the first real domain to the second within I' changes the argument of
x| — x3 by —x, so that (x; — x3)"> in the second domain is (x3 — x;)"3e=""3_ In
other words, we can rewrite Eq. 3.16 as

htrs
<] — 413 i3 — 21 g

Wi(z1. 22, 23) = (22 — 23)" 2Tt H, ( ) < ) e~mihs(3.17)
22— X3 22— 23

for (z1,22,23) € Qj, and now all the power functions on the right hand sides of
Egs. 3.15 and 3.17 are obtained by analytic continuation from the real domain
{x1 <x3 < x2}.

We are now in a position to compute the operator ® such that W, = W,;0. For a
real point (x;, X, x3) such that x; < x3 < x; and x3 — x; < x, — x3, which belongs to
Q1 NQJ, put

X3 — X|
o X2 — X1 '

Then by virtue of Egs. 3.15 and 3.17 the equality W, = W40 implies

hity3
Hz(x)xm” =(1-— x)h(t12+t23+t13)H4 (xf 1> (1 fx> 13 .

Since H, and Hj are analytic in a neighbourhood of zero and H,(0) = H4(0) =1,
we see that the function xse~"hi@x~h3 extends to an analytic function in a
neighbourhood of zero with value 1 at 0. By Remark 3.2 this is possible only when
e—zrihllg,@ - 1.

Similar considerations apply to the pairs (W, W3) and (W,, Ws), and we get

Wo = Wsem st - W = Wit W, = Wyemihins, (3.18)
Equations 3.14 and 3.18 imply
e*ﬂl’h(t13+t23)q)312671iht]3 q>l—31267[l'ht23 P = 1

As (A ® 0)(t) = 113 + b3, this is exactly the first identity in Eq. 2.3. a)

4 Theorem of Kazhdan and Lusztig

For g € C\ {0} not a root of unity consider the quantized universal enveloping
algebra U,g. To fix notation recall that it is generated by elements E;, F;, K;, K; L
1 <i < r, satistying the relations

a

KK'=K'Ki=1, KK;=K;K;, KEK "'=q"E; KFK"'=q "F;

S (=1k [1 _k”"f] EFEETF =, > (=1F [1 _k“if] FKFF T =0,
qi qi

i k=0

i
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m [m] n_g"
where [k] MW [mly,! = [mlg,Im — 1, ... [, [nl, = ‘j;ﬁ;’:,l and q; =

qi

q%. This is a Hopf algebra with coproduct Aq and counit &, defined by

AyK) =K ®Ki, AJE)=E®1+K®E, A(F)=F®K'+1®F,
E4(E) = 8,(F) =0, &,(K;)=1.

If V is a finite dimensional U,g-module and A € P C h* is an integral weight,
denote by V(i) the space of vectors v € V' of weight A, so that Kjv = qw’)v for
all i, where h; € b is such that «;(h;) = a;. Recall that V is called admissible if
V = ®,epV(1). Consider the tensor category of finite dimensional admissible U, g-
modules. It is a semisimple category with simple objects indexed by dominant

integral weights A € P,. For each A € P, we fix an irreducible U,g-module V; with
hlghest weight L. Denote by (C[ 41 the discrete bialgebra defined by our category, so
(C[Gq] = ®;cp, End(V}). Denote by U(G,) the multiplier algebra M(C[G,]).

The discrete bialgebra C[G,] is quasitriangular. The universal R-matrix Ry
depends on the choice of i € C such that ¢ = ¢™". From now on we write ¢* instead
of emihx, provided the choice of & is clear from the context. The R-matrix Ry can
can be defined by an explicit formula, see e.g. [3, Theorem 8.3.9], but for us it will be
enough to remember that it is characterized by AL =Ry A,,(-)Rg1 and the following
property. Let A, u € P.. Denote by » € P, the weight —wyA, where wy is the longest
element in the Weyl group. Then —X is the lowest weight of Vg, so there exists a
nonzero vector ¢ € VI(—2) such that F;¢/ = 0. Denote also by &; a highest weight
vector of Vi, so Ei&! = 0. Then

Ru(f] @&l) =q "Ml @&l (4.1)

This indeed characterizes Ry, since &; ® ¢/’ is a cyclic vector in Vi ® V7. Notice that
there exists d € N such that d(x, n) € Z for all A, u € P. Therefore for each g we get
only finitely many different R-matrices Rp,.

Denote by C(g, ) the strict braided monoidal category of admissible finite
dimensional U,g-modules with braiding defined by Rp.

Finally, if ¢ > 0 then C[G,] is a discrete -bialgebra, with the %-operation defined
on U,g by for example K = K;, Ef = F;K;, I} = Ki’lE,-. Furthermore, g = ™"
for a unique & € iR. Then R = (Rp)21, SO (@, Aq, &4, Rp) is a quasitriangular
discrete *-bialgebra.

Since the irreducible U,g-modules and g-modules are both parameterized by
dominant inte/gra\l weights, we have a canonical isomorphism between the centers

of (C/[E] and C[G,]. We can now formulate the main result.
Theorem 4.1 Let g > 0 and h € iR be such that q = e™". Then there exists a uni-
tary b twist F e U(G x G) such that the quasnrmngular discrete x-quasi-bialgebras

((C[G] A, 8, ®(hty, hita3), €M) £ and ((C[ 0], Aq, &4, 1, Rp) are x-isomorphic, via an
isomorphism extending the canonical identification of the centers.

We call an element F in the above theorem a unitary Drinfeld twist.
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922 S. Neshveyev, L. Tuset

We shall say that a statement holds for generic % if it holds for & outside a
countable set.

Lemma 4.2 Assume a unitary Drinfeld twist exists for generic h € iR. Then a unitary
Drinfeld twist exists for all h € iR.

Proof 1t suffices to show that if 2, — h € iR* and a unitary Drinfeld twist exists for
every h, then it exists for A.

For each n fix a x-isomorphism ¢,: U(G,,) — U(G), where g, = ™", and a
unitary Drinfeld twist F,. By compactness of finite dimensional unitary groups,
passing to a subsequence we may assume that {F, }, converges (in the strong operator
topology) to a unitary F € W*(G)@W*(G).

Denote the generators of U, g by Ei(g.), Fi(g.), Ki(q,). Denote also by
7" Ug,g — End(V{"), resp. m: Ug — End(V;), an irreducible *-representation
of U, g, resp. Ug, with highest weight A. We claim that the sequences {(m; o
on)(Ei(qn))}n are bounded for any X. Indeed, since ¢, extends the canonical iden-
tification of the centers by assumption, the representation r; o ¢, is unitarily equiva-
lent to 7;"". Normalize the scalar product on V;" by requiring that the highest weight
vector £, has norm one. Then the scalar products

(n)i],l(Fil (qn) ce Fik (Qn))sg"7 ﬂ)?n(Fj] (Qn) s Fj/(Qn))E)L”)
wih

ik,

converge to similar scalar products for g = ¢™", which can easily be checked by
induction on k +/ using F¥ = K} 'E; and the quantum Serre relations. Choose a
set of multiindices (i, ..., ix) such that the vectors (nf(F,-] @q)...F, (q))&f form a
basis in V. It then follows that the same expressions for g, define a basis in V}"
whenever 7 is sufficiently large. By applying the orthonormalization procedure we
obtain an orthonormal basis in V. The matrix coefficients of 7" (E;(g,)) in this
basis are determined by the scalar products

(" (Ei(gn)m" (Fi (qn) - .. Fi ()&, 71" (Fji(qn) - .. Fji(@n)&]").

It follows that they converge to the corresponding matrix coefficients of 7] (E;(q)).
In particular, the sequence {ni’"(E,-(q,,))}n is bounded, and hence so is {(m; o
©n)(Ei(gn))},- Similar arguments apply to the other generators of U, g.

By passing to a subsequence, we may therefore assume that the operators (r; o
vn)(T(qn)), where T(q,) is any of the generators E;(q,), Fi(qn), Ki(g,) of Ug,g,
converge for every dominant integral weight A. For each A the operators we get in
the limit define a s-representation 7, : U,g — End(V),). It is a representation with
highest weight A, so for dimension reasons it must be equivalent to the irreducible
representation with highest weight A. The representations 7, define a *-isomorphism
0: UGy) = U(G). As {(m). 0 9,)(T(qn))}n converges to (m, o ¢)(T(q)) for each gen-
erator T'(q,) of Uy, g, the limit F of {F,}, is a unitary Drinfeld twist with respect to
¢ (e.g. the identity @ (ht,, htr3) 7 = 1 holds because @ (h,t12, hutrz) — P (hty2, htrz)).

]

Therefore it suffices to prove Theorem 4.1 for generic / € iR. Furthermore,
by Proposition 2.3 it is enough to show that (((T[E], A, &, ®(hty,, Btz3), €M) 7 and
(@, Aq, &4, 1, Rp) are isomorphic for a (not necessarily unitary) twist 7 € U(G x
G). By Proposition 2.1(ii) the existence of such an isomorphism can be reformulated
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in categorical terms as follows, where we now consider complex parameters instead
of only purely imaginary ones.

Theorem 4.3 For generic h € C and q = ™" there exists a C-linear braided monoidal
equivalence F: D(g, h) — C(g, h) such that F maps an irreducible g-module with
highest weight ) onto an irreducible Ugsg-module with highest weight A, and the
composition of F with the forgetful functor C(g, h) — Vec is naturally isomorphic to
the forgetful functor D(g, h) — Vec.

We will start proving this theorem in the next section. In the remaining part of this
section we want to make a few remarks that will not be important later.

The result holds for all 2 ¢ Q* by [8, 12, 13]. Recall that since U,g is a Hopf
algebra, the category C (9. h) is rigid, with a right dual to V defined by VY = V*,
af = f(S (a) -), where S is the coinverse. It follows that D(g, /) is a rigid tensor
category as well. Let us show that rigidity for all i ¢ Q* follows already from
Theorem 4.3;% in particular, ((C/[E], A, &, @ (hty2, hita3), €M) is a discrete quasi-Hopf
algebra for all i+ ¢ Q* by Proposition 2.5. As we have said, this result will not be used
later, but it is in fact the first step in extending Theorem 4.3 to all /2 ¢ Q*.

For an element 8 = )", n;a; of the root lattice put Ks =[], K;" € U,g and hg =
> nidih; € b, so that A(hg) = (&, B). For a finite dimensional g-module V' denote by
d(V) the dimension of V and by d,(V) the quantity Tr(gq’), where p is half the sum
of the positive roots. We use the same notation d, (V) for the quantum dimension
Tr(K>,) of amodule V in C(g, h).

Recall that we denote by i,: C - V ® V*ande,: V* ® V — C the standard maps
making V* a right dual of V in Vec.

Corollary 4.4 Let h ¢ Q%, g = ™" and V be an irreducible g-module. Then a right
dual of V in D(g, h) can be defined by V¥ = V* with the usual g-module structure

givenby Xf=—f(X.) for X e g, and iy = i,, ey = ‘Z:((%) e,.

Proof We shall only check that the composition

lv®t ey

(V®V*)®V—> VoWV V) —

is the identity map. By continuity it suffices to prove this for generic .
Assume V is an irreducible module with highest weight A. The map ey coincides
with the composition

1 ()“+2/”)“)d \% v

vigv I ygyr L 4ON ¢
where £y is the unique left inverse of iy in D(g, h), thatis, £y (v ® f) = d(V)~ f(v).
To see this one just has to check how both maps act on the one-dimensional

submodule iy (C) and then observe that ¢ acts on this submodule as multiplication
by — (A + 2p, A), which follows from Eq. 3.8.

3 As well as from the original result of Drinfeld in the formal deformation case.
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It follows that we equivalently have to show that the composition

iy ®u ®%q' 1@q M2 d, (V)ey
SN

VIR Ve VHe V3 VeV eV) 2L ve (Ve VY 1%

is the identity map. This computation can be done in the equivalent strict tensor
category C(g, h). In other words, we have to check that for an irreducible module V'
with highest weight 2 in C(g, /) the composition
i ® ® (04200 g 4 Y4

VIS yeviev SR y oy gy 2T A0y, (42)
is the identity map, where i},: C — V ® V* is an isomorphism onto the submodule
with trivial U,g-action and ¢}, is the unique left inverse of 7},. To show this, first of
all notice that as i}, is unique up to a scalar, the composition does not depend on the
choice of i},. Hence we may assume that 7}, is given by the same formula as i,. Then
the left inverse map ¢/, in C(g, h) is given by

VRV = C, v® fisdy (V) f(Kapv),

as can be checked using that the coinverse S’q has the property Sfl(a) = K,aK; pl.

Computing composition (4.2) we are then left to check that S'q((’Rh)o)sz(Rh)l
acts on V as multiplication by ¢g~**?»*_ As V is irreducible, we know that
S'q((Rh)o)sz(Rh)l acts as a scalar, so it suffices to check how it acts on a highest
weight vector, which is easy to compute using the explicit formula for the R-matrix.

]

5 Representing the Forgetful Functor

To prove Theorem 4.3 we first of all have to introduce a tensor structure on the
forgetful functor D(g, h) — Vec. The goal is to represent this functor by an object,
then by Lemma 2.2 a weak tensor structure on the functor is equivalent to a
comonoid structure on the representing object.

It is clear that within D(g, h) we do not have a representing object. If we
however allow infinite dimensional modules then there is an obvious choice, the
universal enveloping algebra Ug. Namely, for any g-module V we have a canonical
isomorphism

Homg(Ug, V) = V, f— f(1).

It is however more convenient to consider the Lie algebra g = g & h. Viewing g-
modules as g-modules (with the second copy of b acting trivially), the forgetful
functor is clearly naturally isomorphic to Homg(Ug, ). Recall that g comes with a
structure of a Manin triple. Namely, denote by b, and b_ the Borel subalgebras
of g, and by ny C by their nilpotent subalgebras. Consider b, and b_ as Lie
subalgebras of g via the embeddings ny: b — g @ b, nL(x) = (x, £X), where x > X
is the projection g =n; @ hdn_ — h. Then (g, b, b_) is a Manin triple with the
symmetric form on § given by ((x1, y1), (x2, y2)) = (x1, X2) — (y1, y2). Denote by 7
the element of g ® g defined by this symmetric form.

Identifying Ub, with Ug ®y,_ C, we consider Ub,. as a g-module, which we de-
note by M, . Similarly define M_ as Ug Qup, C. Then M = M, ® M_ is isomorphic
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to Ug as a g-module by the Poincare-Birkhoff-Witt theorem, so M represents the
forgetful functor. We now want to define a comonoid structure on M.

Denote by 1, the canonical cyclic vector of M. Then there exists a unique g-
module map 8,: M, — M, ® M, such that 1, +— 1, ® 1,. This is nothing else
than the comultiplication A:Ub, — Ub, @ Ub,.In particular, &, is coassociative.
Ignore for the moment that M, is infinite dimensional and observe that &, is
also coassociative with respect to ® = @ (hf,,, hfs3), thatis, (1 ® 8,)8,. = P54 ® 1)d..
Indeed, formally it is enough to check this on the vector 1., and this follows immedi-
ately as ® acts trivially on the vector 1, ® 1, ® 1, since the vector is annihilated
by 71> and f3. We thus see that M, is a comonoid. For similar reasons M_ is a
comonoid. Now we want to define a comonoid structure on M = M, ® M_, and
there is basically one way to define a morphism §: M — M ® M using &4 and §_,
namely, as the composition

5, ®5_
MooM- X85 (Mo M) M_® M)
@)@L)‘i’]_z{s,zt
—_— (M+ ® (M+ ® M,)) ® M,
f emh? .
CEE My ® (M_® My) @ M-

P1p34(@7 01
L@ B My @ M) ® (My ® M_). (5.1)

As M, and M_ are infinite dimensional, it is not obvious how to make sense of this
construction. So our first goal is to find a representing module which is approximated
by finite dimensional ones.

For every dominant integral weight u fix an irreducible g-module V, with highest
weight p. Fix also a highest weight vector &, € V,,. We assume that V; = C and
& = 1. The construction of the representing object is based on the following standard
representation theoretic fact, see e.g. [25]: if V' is a finite dimensional g-module and
A an integral weight then the map

Homg (Vi ® Vi V) = V), [ f(5a ® &iip), (52)

is an isomorphism for sufficiently large dominant integral weights u, where V(L) C V
is the subspace of vectors of weight A and ¢;; is a lowest weight vector in Vj;. Remark
that the above map is always injective as the vector {; ® &4, is cyclic.

We need to make a consistent choice of lowest weight vectors. For this recall that
if we fix Chevalley generators e;, f;, h;, 1 <i <r, of g then for any g-module V there
is an action of the braid group By associated to g on V, see e.g. [15]. Consider the
canonical section Wy — By and denote by 6 € B the transformation corresponding
to the longest element wy in the Weyl group Wy. Then 6: V — V is a natural
isomorphism having the following properties. If V and W are g-modules then the
action of # on V ® W coincides with 6 ® 6. Next, 6 maps V(1) onto V(wor). In
particular, 6£, is a lowest weight vector in V,,, which we denote by ¢,,. Finally, for
all 1 <i<rwehave §f; = —e;0, where i is such that o; = & = —woa;.

For an integral weight A and dominant integral weights . and 5 such that A + p is
dominant consider the composition of morphisms

T i®Typtn 1®S,®1

trZ,HH: Vﬁ+ﬁ ® V)u+;/.+7] Vﬂ ® V;] ® V,] ® V),Hl e Vﬁ ® V)\—Hu (53)
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where the morphisms 7" and S are uniquely determined by
Tyt Viern = Vi ®Vy, Sugy > 5,88,
and
S Vi®oV,—-C, ;& — 1.
Notice that T, ,¢,4+y = ¢, ® ¢, by the properties of 6. It follows that

trz,pm Cati @ Entprn) = Ea ® Entprs

and this completely determines trz, s+, Using these morphisms define the inverse
limit g-module

My =1m V; ® Vi

n

We consider M, as a topological g-module with a base of neighborhoods of zero
formed by the kernels of the canonical morphisms M), — V; ® V,,. Observe that
tr) , 4, is surjective since its image contains the cyclic vector £; ® &.,,,. It follows
that the morphisms M, — V; ® V,,, are surjective. Hence, if V is a g-module
with discrete topology, then any continuous morphism M, — V factors through
Vi ® Vyqp for some p, so that the space Homg(M,, V) of such morphisms is the
inductive limit of Homg(Vj; ® V4, V)4 In particular, for any finite dimensional g-
module V the maps (5.2) induce a linear isomorphism

Homg(M,, V) — V(A).

Therefore the topological g-module M = &,.pM,, where P is the lattice of integral
weights, represents the forgetful functor.

There is an obvious deficiency in the construction of the module M;: we did not
take into account the associativity morphisms in the composition (5.3). So a more
natural morphism in D(g, k) is the composition

(<I>®‘><D172],3A4
Vit @ Vigpan = (Vi@ V) @ (Vy ® Vi) ———— (Va @ (V3 9 V)

® V)H—;L — Vﬂ K VA—Hp
Remark that we could instead use (t ® ®~!)®; 534 as the middle morphism, but by
the coherence theorem of Mac Lane we would get the same composition.
The problem now is that we do not get a coherent system of morphisms V17 ®

Vitu+n = Vi ® Vg It turns out that this can be rectified by rescaling. First we
need a lemma.

Lemma 5.1 Denote by gﬁqn the image of ¢y ® &4, under the composition

T77®Tyu ®S,®)B Sy
Vi ® Viey 22205 v g vi0 v, 0V, 222 gy, 5 c,

4 Alternatively one can consider M; as an object in the category pro-C(g) obtained by free completion
of C(g) under inverse limits. Then by definition Hom(M;,, V) is the inductive limit of Homg (V; ®
Vit V).
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where B = (® ® L)CDI’2"3’4. Then for generic h the map (i, n) — gﬁyn is a C*-valued
symmetric normalized 2-cocycle on the semigroup P. of dominant integral weights,
that is,

h h n h
8 = &> 80 = 8o = 1 gx+u ngx w gx M+ngu -
In fact using that D(g, A) is rigid one can show that gﬁﬁn # 0 for all i ¢ Q*.

. 0 _ h . . . . .
Proof Itis easy to see that g, , = 1. As g, , is analytic in /i outside a discrete set, we
conclude that gﬁqﬂ # 0 for generic h.
That ggf "= gZ_O': 1 is immediate as the associator is equal to 1 as long as one of
the modules is trivial.
To show that gﬁ'n is a cocycle first observe that the compositions

Totpn

VA+M+U—)V)»+;L®V —>VA®V ®V —>VA®V ®V

and

T ity ®T,,

Vl+u+n — V)L® V,u+7] —_— V)L®V ®V

coincide. To see this we just have to check how these morphisms act on the highest
weight vector and then observe that ® acts trivially on &, ® &, ® ,, since both ),
and t,3 preserve the one-dimensional space spanned by this vector and in particular
commute on this space. Next observe that the composition in the formulation of the
lemma coincides with gﬁqn S,4+n by definition. It turns out that these two properties

are enough to establish the cocycle property g, el =gl . ¢ Toshow this we
can and shall strictify the category D(g, /) and thus omit @ in all computations. For
example the equality of the above two compositions now reads as

(T @) Ty = € Tyu) To - (5:4)
Then the morphisms
Vitisi ® Visprn > C
given by
$0®8,00®® 8, ®:@)0® Tii® Tyyu ®O(Ti 5 ® Tuins)
and
008, @(T5.4 @ Tyun)t @ Sy @ (Ts4.7 ® Tyn)

coincide. On the other hand, the first morphism is equal to

$.(0® gty Sen ® )(T5 15 ® Tunr) = & n8Y iy bt
whereas the second morphism equals

gf,,tSHu (t® 8, @) (T4 ® Tyatu) = gf,ugfw,n St

ho ok
Since Sy4 4+, # 0 we get g# ngx wtn = 8 u&itun:
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It remains to check that the cocycle is symmetric. First observe that T, , coincides
with the composition

Ty —(u-n)):qt

Vi 25V, 0V, 5L v, eV,

where g = e™". To see this we again look at the action on the highest weight vector.
Then the claim follows from

tE ®E) = (1, ME Q& (5.5)

which is a consequence of Eq. 3.8 and the fact that C acts on V, as multiplication by
(A, & + 2p). We now strictify D(g, i) and do all computations omitting ®. Denote by
o the braiding in our new strict category. By definition we have

Su(‘ ®S,® L)(T/lii ® Trm) = gZA,nSlHn-

Ty,=q""oc"'T,,, (5.6)
we can rewrite this as
gZ,nS/Hn =5.®8,800'® o) (T ® Tpun)-

By the hexagon identities 0123 = (0 ® )(t®0) and 0], = (' @V @) we
have

o' ®0 = (073 ®1)(®013).

Therefore by naturality of o we get

gﬁ,nSﬁ,} =8,0® 8, ® (0750 ®0123) (T ® Ty.y)
=85,(50:)(t® 012,3)(Tﬁ,,1 ® Tﬂ_n)
=5,00:® S)0®0123)(Tj.:® Tyu.y)
=5,®8,®0(T5.5® Tyuy)
= 8y uSutn-
Hence g/}, = g . O

It is well-known that a symmetric cocycle must be a coboundary. We formulate
this in the following a bit more precise form.

Lemma 5.2 Let (i, n) — ¢, be a C*-valued symmetric normalized 2-cocycle on Py.
Then for any nonzero complex numbers by, ..., b, there exists a unique map P, >
w > b, € C*such that

Cpup = b,Hrﬂb;lb_1 bo=1, by, =b; fori=1,...,r.

n

Here w;, ..., w, are the fundamental weights.

@ Springer



Equivalence of Categories 929

Proof 1t is clear that the map b is unique if it exists. To show existence, for a weight
nwe Py, u=kw +...+ ko, put |u| =k +...+k,. Define b, by induction on
|| as follows. If u — w; is dominant for some i then put b, = ¢j—w, 0,0 ;D ;- We
have to check that b, is well-defined. In other words, if i = v 4 w; + w; then we must
show that

cv+w/,w;b v+w/-ba); = Cerw,,wjb v+w,bwj-

Using the cocycle identities

Cotw;,wCv,w; = Cv,wi+w;Coo; and Cotw,w;Cv0; = Cv0j+0;Cojo;

and that Corw; = Cojwr WE equivalently have to check that

cv,w,b u+wjbwi = Cv,wjb v+a),'b ;-

Since ¢y,0, = bbb, and ¢, 0, = by, b 'b ! by the inductive assumption, the
identity indeed holds.

Therefore we have constructed a map b such that by =1, b,, = b; and ¢, ., =
butwb,'b, fori=1,...,r and u € P,. By induction on || one can easily check
that the identity ¢, , = b 4,0, 'b, " holds for all u, n € P;. O

For generic /i fix amap P, 5 u — g/t € C* such that

h h_h _ _h
guqngugn _g/H—ri'

In Section 7 we shall require an additional property of this map, which determines
the cochain gﬁ up to a character of the quotient P/Q of the weight lattice by the root

lattice, but in this section as well as in the next one any gﬁ will do.
Define Sh gMS Vi ® V, — C. We modity Eq. 5.3 by introducing the maps

Ti® Ty (®SI®)B
tru i Vi ® Vigpry ——— Vi ®@ Vi @V, @ Vi ——— Vi ® Vi,

(5.7)

where B = (d) ®[«)(D12';4

Lemma 5.3 The morphisms (5.7) are coherent, that is, the composition

[E .1

tr,
u+r1 Akt oAt
Vﬂ+ﬁ+\7 ® VA+;L+77+1} V/1,+n ® V}»+M+T] — V;;_ ® V)L+p.

.. . n+v,h
coincides with tr,,; 1.
Proof We strictify D(g, h) once again. Then the composition trﬂ it r#fn b

equals

(1®8) @ 0)(Ti ® Tyou) (0 ® SI @ 1) (Tt ® Toyin)
=(1®850)(®®S®®)(Tui ®:®t® Tyury)(Taris ® Toirutn)-
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Using Eq. 5.4 this can be written

(@S @)@ @Si@@)(t® T ® Ty ®)(Tuits ® Tyivit)-

h

By definition of giu and using that g,’},v 8y

gh= g,7+v we have
S;i(l ® S? ® L)(Tf]’f) %) TVJ?) = S§+v'

Therefore the above expression equals

(@S, ®)(Triws ® Tyruisn) = trZK”;Z : o

n.h

Using the morphisms tr, ;. ,

we can therefore define a g-module

M =1mV; ® Vi

I

Again we consider M as a topological g-module with a base of neighbourhoods of
zero given by the kernels of the maps M — V; ® V., while any module in D(g, h)
is considered with discrete topology.

Proposition 5.4 For ) € P and generic h € C the topological module M! is isomor-
phic to M,. In particular, for any such h the functor D(g, h) — Vec, V > V1), is
naturally isomorphic to Homg (Mf )

Proof Fix a regular dominant integral weight p (that is, u lies in the interior of the
Weyl chamber). Then niu dominates any other weight for sufficiently large n. Choose
ng € N such that nop + 1 > 0. Then M, is isomorphic to the inverse limit of

"
W itmg

Vnoﬂ ® VM—nou V("(H-l)l_t ® V)~+(m>+1)lt

i
g+ D a4+ ng+ D
«—

Virna ® Vivmpton <— -+

and M? is the inverse limit of

h

I,
[rno M Atng

Vioir @ Vitnon Vit ® Vitoo+

"::(?Mm.ﬂ(noﬂm
Vi @ Vivmpsayu <— -+

It is therefore enough to find isomorphisms f, of V,; ® V1, onto itself such that
for all n > ng we have

f” trZ/L.)H—nu = trrﬁzt,if)d—nu f"+l :
We construct f, by induction on n. Take f,, to be the identity map. Assuming
that f, is constructed, observe that tr), . is surjective since it maps the vector
St @ Er+mt1yp ONto the cyclic vector £,; ® & 44y, 1t follows that for generic A the
map trﬁ,‘l‘fA +ny. 18 surjective as well. Therefore both maps f, tr),, ., and trfjlfA oy ATE
surjective. This is enough to conclude that f,,; exists. Indeed, the claim is that if
g1 and g, are surjective morphisms V — W of finite dimensional g-modules then

there exists an isomorphism f of V onto itself such that g; f = g». To see this we can
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reduce to the situation when V = U ® C" and W = U ® C™ for some irreducible g-
module U. Then g; =t ® h;, where h;: C" — C™ is a linear surjective map. Clearly
we can find an invertible linear map 4: C" — C” such that h;h = h;, and then put
f=t®h. O

6 A Comonoid Structure on the Representing Object

In the previous section we showed that for generic & € C the topological g-module
M" = @, pM!

represents the forgetful functor D(g, i) — Vec. In this section we shall turn the
functor Homg (M", ) into a tensor functor. To do this we introduce a comonoid
structure on M".

Define
M)I?1®M)Z = (hl (Vlll ® VMHM) ® (Vﬂz ® V)»zﬂtz)
ysm
and then

MheM' = [ M}oM].
A A EP

Higher tensor powers of M" are defined similarly. We want to define

st MM — MMM
The restriction of 8" to M]' composed with the projection M"@M" — M @ M} will
be nonzero only if A = A; + Ay, so 8" is determined by maps

h . oagh
8P M

h 5 h
SRS - MM(X)MM'

Motivated by Eq. 5.1 we define these morphisms using the compositions

h

Tﬂlvﬁ®Tk|+u,k2+n
My i Viti ® Viitaotutn >

Va® Vi) ® Viitn ® Vigtn)

q*1* "B~ (1®%q'®) B

(Vg_ ® VA]+,U.) ® (Vr'] ® V?»2+77)’
6.1)
where g = ™" and B = (® ® )@}, 5 4.

Lemma 6.1 The morphisms m" are consistent with the morphisms tr'" defining the

. . . . . h . h h A h
inverse limits, so they define morphisms §;' , : M3’ ., — M, @M;’.
Proof We have to check that
v,h w.h h _ . h vtw,h
(tru,MﬂL ® ) ot )mu+v,n+w,h,kz = My Wy e agbpn - (6:2)

Since

v.h w.h _ v,.h w,h
tr;t,)u|+[l ®trn,kg+n - (trp,,)u]-%—u QU L) (L ®L® trn,)»2+n )’

@ Springer



932 S. Neshveyev, L. Tuset

it suffices to check this assuming that either v or w is zero. We shall only consider the
case w = 0. We therefore have to check that

v,h h _ h v,h
(tru,?»lﬂt R L)mu+v,n.)»|,)»z = e tr/t+n,)»|+kz+u+n : (6‘3)

We strictify D(g, k). Denote by o the braiding in the strict tensor category. In the
computation below we omit subindices of the morphisms 7 since they are completely
determined by the target modules. We will keep track of some of them to get the right
power of ¢. Thus by definition of tr-" and m" the left hand side of Eq. 6.3 is equal to

q(hﬂ‘“"’)(t ® Sl'? RIRL® L)(Tﬁ,g T® R)1®c)(Tit5;@7T)
=gM (R ST I®)1®®0n )T ®L® T ®)(Tiy; ® 7).

Using the identity (75 ® t) Tji+5,5 = (¢ ® T5.5) Tji5+5, see Eq. 5.4, the above expres-
sion can be written as

grT (R SI @RI IR I®0n®)1® Tr;® e T (Tim;® T).
By Eq. 5.6 we have T ; = ¢~ ""o T;5 = ¢~ """o Tj.5, s0 we get
g (RS ®I®I®)I®I®0sNI®cT® e TNT®T.

By the hexagon identity we have (1t ® 01.23)(0 ® t ® t) = 0] 234, SO the above expres-
sion equals

g (RSI®I®I®)1®0mNR TR TNT®T).
Using again that (T ® )T = (® T)T, we get
g (R SI®I®I®)(®0m®NT® R TNT®T)
=q" 1 Rce)(1®eS"® ) (T et TNT®T)
=q" @ @NTRT(®SI @ )T T),
which is exactly the right hand side of Eq. 6.3. O

Using the morphisms Sfl 1, We can in an obvious way define morphisms
" @ 08", (& sMs": M" > M"&M"@M".
Lemma 6.2 We have ®(8" ® 1)8" = (1 ® §7)8".

Proof For A1, A2, A3 € P we have to check that

B B h B
Q(all,lz ® L)8M+)nzq)»3 = ([ ® 8)»2,)»3)5)»14)L2+)n3'
This reduces to showing that

h h
®12*34’56(mﬂlsltzq)»|,)~z Y t)mltl+lt2,u3,)»1+)~z,)~3

— h h
- (L ®L® muz,ll«,z.)nz,)»})mltl,Itz+lt3,)»|,)»2+)»3'

Let us first check that the powers of ¢ in the definition of m" match. On the left
hand side we have g®1+#:#)+0a+iatiu+iz.1) whereas on the right hand side we get

@ Springer



Equivalence of Categories 933

qPetram) TRt tis) which obviously coincide. Strictifying and omitting subindices
in T, as we did in the proof of the previous lemma, it remains to show that

(R @NTRTR® RN QNT®T)
=3RRI RTRIT(®c@NT®T).

By naturality of the braiding, the left hand side equals

(R IR ANIR L0113 RNTRRTRNTRT),
whereas the right hand side equals

(R ®I®cRN(LRon3@tRVRTRRTN(T®T).
As(T® )T = (® T)T, we thus only need to check that

(@) ®01,23) =(1®1®0) (0123 1),

which is immediate from the hexagon identities 013 = (t ® 0)(0 ® ) and o3 =
R o). O

We next introduce a morphism &”: M" — C by requiring it to be nonzero only
on M(’?, where we set it to be the canonical morphism Mg — V5 ® Vo =C, so that
¢: M - C is determined by the morphisms

tr(‘)‘,‘of1 =Shv,eV, > C.
Lemma 6.3 We have (¢" ® )8" = 1 = (1 ® e™)s".

Proof We have to check that on M{L we have (" ® L)(ngA =1=0® 8’7’)5)}}’0. This
follows from the fact that m(’;‘ p.0. and mﬁ,O, ».0 are the identity maps. ]

Therefore M" is a comonoid, so Homg(Mh, -) becomes a weak tensor functor
D(g, h) — Vec.

Proposition 6.4 For generic h € C the weak tensor functor Homg (M Ry D(g, h) -
Vec is a tensor functor.

Proof Let V and W be finite dimensional g-modules. We have to show that for
generic i the map

Homg(M", V) @ Homg(M", W) — Homg(M", V@ W), f®g— (f®g)s",

is a linear isomorphism. As Homg(MrL, V) = ®)cp Homg (M, V) (notice that the
direct sum is finite, because Homg (MPF, V) #£0 only if V(1) # 0), we equivalently
have to check that for any A € P the map

@ Hom, (Mfl, V) ® Homyg (MZ’ W) — Homyg (Mf, V& W),

Ait+Aia=A

f)»l ® &, > (f)»l ®g)»2)8)}?|,)\2’
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is an isomorphism for generic h. As Homy(M}, V) is the inductive limit of
Homg (V; ® V4, V), it suffices to check that for fixed A € P and all sufficiently large
w1 and p, the map

B Homg(Vi, ® Vi, i, V) @ Homg (Viz, ® Vi, iy, W)

Ai+Ar=A

— Homg(vﬂlﬂlz ® VM+A2+M1+/427 Vew),

which maps f;, ® gy, onto (fi, ® gh)mZI, 1i21p0 1S @n isomorphism for generic A.
As the map is analytic in % outside a discrete set, it suffices to check that it is an
isomorphism for i = 0. For sufficiently large u; we have isomorphisms Homg(V;, ®
Vit V) = VA, f = f(&i, @ &, +u,), and similar isomorphisms for W and V ®
W. It is then easy to verify that under these isomorphisms the above map (for & = 0)
becomes

P Vi eWwi) > Ve, vewr vl w,
o=k

which is clearly an isomorphism. O

Recall that the construction of the comonoid M" depends on the choice of a 1-
cochain gﬁ” with coboundary gZ,n'

Lemma 6.5 Up to an isomorphism the comonoid M" does not depend on the
choice of gZ.

Proof Assume that gﬁ is another cochain. Denote by M”" the new comonoid.
The map x: P, — C* defined by x(u) = gh(gh)~" is a homomorphism. Then it
is straightforward to check that the morphisms V; ® V4, — V; ® V,4, given by
multiplication with yx (;¢) induce an isomorphism of M" and M" which respects their
comonoid structures. O

So far we have constructed for generic i € C a tensor functor D(g, h) — Vec.
Up to natural isomorphisms of tensor functors the construction is canonical. Fur-
thermore, disregarding the tensor structure the functor is naturally isomorphic to
the forgetful functor. By the discussion after Proposition 2.1 (or by combining
Propositions 2.4 and 2.1(ii)) it already follows that for generic i a twisting of
((C/[E], A, 8, @ (htya, Aty3), €7 is isomorphic to a discrete bialgebra, or equivalently,
there exists a twist 7™ € U(G x G) such that ®(hty2, Aty3) 7n = 1. In the next section
we will show that this bialgebra is isomorphic to (C/[-G\q] by turning the tensor functor
D(g, h) — Vec into an equivalence of the braided monoidal categories D(g, h)
and C(g, h).

In the remaining part of the section we will summarize how one gets a twist F”
such that @ (it1,, fitr3) 7» = 1 in the form of an “algorithm”.

1. For pu,n € P, compute the image gZ',n of ¢z4i ® &,4y under the composition

T:;®Ty (®S,®)B S,
Viii @ Vyrn — 5 Vi V; 0V, @V, ——— ViV, — C,
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where Bis (® ® L)<I>1’2',3,4. Fix nonzero numbers zy, ..., z,. For u = w;, + -+ - + w;,
put

k—1

h_ h ‘
gy, - Zl] ngll+."+wl['wi[+l ZUH .
=1

2. Fix aregular dominant integral weight u. For each A € P choose 1, € Nsuch that
n; i+ A > 0. Then inductively choose isomorphisms f*, n > ny, of V,z ® Vi,
onto itself such that f is the identity map and for each n > n; the following
diagram commutes:

[T
np g
Viia ® Vignpe <—— Viur1ia @ Vgt

fﬁl lf;—%—l

LR
nuanp

Vi ® Vidny <—— Vs ® Vitmsus

w.h . ..
where tr, ' ., , is the composition

T g ® Ty onu

Virna ® Vicmsnu Vi @ Vi@V, ® Vi

(®ghs,®)B
EEEE— Vnﬁ. ® Vk+nu

with B = (¢ ® L)CD1_21,3, pandtr, . is defined similarly with gl and @ trivial.
3. Letn,v e P,. Then F" is defined by requiring that it acts on the space V, ® V,
by the operator }',ZV such that for weights A; and 1, with V; (A1) # 0, V,(x2) # 0

and A = | + A, the following diagram commutes:

Homg (Viyjz ® Vi, 4y Vi) ® Homg (Vipi ® Viy e Vo) —— Homg (Vi ® Vit Vir ® Vo)

l Fr~! l

Vi) ® Vy(32) Vi ® Vi)(n)

where the left vertical arrow is the map

F®g [ Cni @ Envnp) ® &L Cmi ® Enymps)

the right vertical arrow is the map

e AR Cormi ® Extmimp)
and finally the top horizontal arrow maps f ® g onto the composition

Tnﬁ,mﬁ@ T)‘l +np,hy+mu
- -

(le ® Vmﬁ) ® (VAHrnu ® sz+mu)

qC1HemD B @ Sq'@0) B

V(n+m);l ® Vl+(n+m)u

(Vi ® Vi) ® (Vm,z ® Vigmu)

%y oV,
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936 S. Neshveyev, L. Tuset

with ¢ = ¢™" and B = (& ® 1)@},  ,. Here n and m can be any natural numbers
large enough so that n > n,,, m > n,,,n +m > n, ., and the vertical arrows are
isomorphisms.

7 Representing U, g by Endomorphisms of the Functor

In this section we will show that U,g, ¢ = e can be represented by endomor-
phisms of the functor Homg(Mh, -), SO Homg(Mh, -) can be considered as a functor
D(g, h) — C(g, h). For this it is natural to try to define an action of the opposite
algebra (U,g)°? on M". We will show a bit less, namely, that there is an action of a
larger algebra U, g such that the corresponding action on the functor factors through
Uyg.

Denote by U,g the universal algebra generated by elements E;, F;, K;, Ki’l, 1<
i < r, such that

KK'=K 'K =1, KK;=K;K;, K,E;K]'=q,“E;j,
0 a K;— K
KiFjK,' = ql-IF,', EiF/'— F/'Ei = _81777] .

qi — 4;

This is a Hopf algebra with coproduct Aq defined by
AyK)=Ki®Ki, AJE)=E®1+K®E:, A(F)=F®K;'+1® Fi.
The action of U,g on M = EBAGPMQ will be such that

hi
EM] C Mf_ai, EM!' C Mf+ai, Kilyn = q".

From now on we shall write A(i) instead of A(h;) to simplify notation. Therefore
A(D), ..., A(r) are the coefficients of A in the basis w, ..., o,.

Recalling that M,’f is the inverse limit of V; ® V,4,, to define F; we need
consistent morphisms

Vi @ Vitutn = Via ® Vi

These will be defined using morphisms V4,4, = V; ® Viqa4p, Or in other words,
morphisms

Vit = Vi ®Vy.

Up to a scalar there exists only one such morphism. Indeed, if (i), n(i) > 1, then the
weight space (V,, ® V,))(u + n — «;) is spanned by the vectors fi§, ® &, and £, @ fi&,.
The vector

M(i)fn ® ftfn - n@) fié‘.u ® éfn

is the only vector in this space, up to a scalar, which is killed by ¢;. The corresponding
morphism is defined by

Tt Vidn—a = Ve ® Vi, Epuqyea, > w1, ® fify — () fif, ® &, (7.1)
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Remark that we also have

Ti;u,n(gpﬁn—a,-) = _M(i)gu ® €&y + ﬂ(i)@;fﬂ ® &ys (72)

as can be easily checked using the properties of 6 discussed in Section 5.

Up to a scalar the morphism Vi1 ® Viiutn = Vi ® Vigg4n Will be defined as
the composition

T ®Tisy, rta+n ®ShenB

V[Hrr'] ® Vk+u+n B Vﬁ ® Vr'] ® Vr] ® V)»+ai+u I Vﬂ ® Vk+ai+u,
where B = (® ® )@, ,. To find the right normalization we want these maps to
define the usual action of g on the forgetful functor for & = 0. It is not difficult to
check that for & =0 we have to divide the above map by 7(i). More importantly,
we want the above maps to be consistent with tr-” for all h. We are then forced to
find out how the associator ¢ composes with morphisms V.4, 1v—o, = V, @V, ® V,,
obtained by combining the maps v and 7. The space of all possible morphisms is
isomorphic to the two-dimensional subspace of V, ® V,, ® V, of vectors of weight
u+n+v —q; killed by e;. Therefore we have to compute the operator (A, B) for
two-by-two matrices A and B.

Lemma 7.1 Let A = (a —ic_ b 8) and B = <_b0_ ¢ g) be such that the numbers

a,b,c,a+b,a+c,b +c,a+ b + care non-integral. Consider the eigenvectors

~(12%) =)
(20 5 ()

of A and the eigenvectors

of B. Then
b —c \ (el _(0a+b\(f
0b+c)\ea)  \b —a P
and
sintb —sinwc
CD(A,B)< 0 sinn(b+c)>
1
0
« | TU+a+b)T U+ (1 —(@+b +c)) { <61>
€
0 F(1+a)C(1+b)T(1—(a+b))
_ 0 sinm(a+b)
" \sinth —sinma
! 0
« [ TU+aTrA+b+or (1~ (a+b +c) { <f‘>
L)
0

ra+nra+orad—(o+c)
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Proof The equation v’ = (2 + £} v, where v: (0, 1) — C?, has the form

a+b b+c a
— v + U1
X x—1 x—1

/
Yo

, Cc
vy = —Vo.
X

It follows that u = v; satisfies the Gauss differential equation
x(1—x)u" +(y — (a+ B+ DHx)u' —afu =0, (7.3)

where « = —a, 8 =c¢, y =1 —a—b. Denote by I' the space of solutions of this
equation on (0, 1). By our discussion on page 14 the operator ®(A, B) can be written
as nl’lno, where the linear isomorphisms g, 7, : C> — T are defined as follows. If &
is an eigenvector of A with eigenvalue A then 7y (&) is the unique solution u € I" such
that the vector valued function

x

—u/(x)

O, Hosx—x*|c
u(x)

extends to a holomorphic function on the unit disc with value £ at x = 0. Similarly,
if £ is an eigenvector of B with eigenvalue A then 7 (§) is the unique solution u € T’
such that the vector valued function

1—
xu/(l —X)

0,1)> x> x* c
u(l —x)

extends to a holomorphic function on the unit disc with value & at x = 0.

Recall that the Euler hypergeometric function F(«, 8, y; -) is the unique solution
u of Eq. 7.3 which is analytic on the unit disc and such that u(0) = 1, «/(0) = «/y.
Consider the following four solutions of Eq. 7.3:

U =x"71—x) " PF1 —a, 1 —B,2—y; %),

u, = F(a, B, y; x),

u3 = F(e, B, 1+a+p—y;1—x),

uy =x""70—x)"" " PFl—a, 1 =B, 1—a—B+y;1—x).

Then it is immediate that the isomorphisms 7y and 7, are given by

bc
mo(e1) = cuy, mo(er) =buy, mi(fi) = +ousz, m(fr)= T p M
We have the following identity, see e.g. [6]:
')l F')'Bra —
()T (B) e — ()BT —y) 1+ T(y — Dy

Fa+B—y+D ' T@-y+DFB-y+D
Substituting x for | —x and y for 1 + « + 8 — y we also get

F@I() _ T@LAIy —a—p)
Ty) °  Ty-—aly-§A)

us + (e + B — y)uy.
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A direct but tedious computation using these identities together with the identities
I'(l+x) =xI'(x) and I'(x)['(1 — x) = 7/ sin wx yields the result. O
Define morphisms

R Ti; .

Fiwn = T (1 + hde )T (1 + hdin ()T (1 — hdi(2() + 1))

V;H»nfa; i V/I. ® V )

(7.4)

where 7;., , is defined by Eq. 7.1.
The subspace of V,, ® V,, ® V, of vectors of weight u + n 4+ v — «; killed by e; is
spanned by the vectors

ﬂ(i)gu ® Sr] ® fz'fv - V(i)éu ® ﬁén ®é&, and /’L(i)‘i:u ® ﬁSrz ®& — n(i)ﬁ'gu ® 'i'_rz ®&,.

This space is invariant under the operators #, and 3. In the above basis these
operators have the form

. ((M,n) 0 ) e — ((n, v) —din(i) — d;v (i) diu(i))
2= \dw) () — dipG) —dimGh ) 0 v

To see this first recall that 1(§, ® &,) = (1, n)§, ® &, by Eq. 5.5. Using g-invariance
of t we therefore get

t(ﬁé/f- 02 gn + ‘i:u X flén) = ﬁf(éu ® 517) = (u, n)(ﬁSu (2 ‘i:n + 5/1. 02 flén) (75)
Using (i, ;) = d;u(i) and (o, p) = d; and arguing as for Eq. 5.5 we get
e Visy oy = (s 1) — dipt (i) — din (@), (7.6)

whence

t(ﬂ(i)s,u ® flsn —n(@) ﬁgu ® gn)
= (1, n) —dip(i) — dzn(l))(ﬂ(l)gu 02 flén - n(@) fiéu 2 Srz)
By virtue of this identity and Eq. 7.5 we conclude that

1(fiEw ® &) = (. ) — din() fi€, ® & + dip(DE, ® fi&.
Applying the flip we also get
(5 ® figy) = (. n) — dim(0)&, ® fig, + dipn (i) iy @ &y

These two identities and Eq. 5.5 imply the above matrix forms of ¢, and #,3.

Recall now that ®(A, B) = ®(A — «, B — B) for any scalars « and . So replacing
tip by t1o — (0, ) — di(@) — din(i))1 and ty3 by t,3 — (n, v)1 we are in a position to
apply Lemma 7.1 with a = hd;u(i), b = hdin(i) and ¢ = hd;v(i). One checks that
the vectors ey, ey, fi, f» in the lemma are exactly the images of Adin(i)&,4ntv—o
under the morphisms (7, ® OTiptyvs Tipn @ O T ptn—aivs € ® Ty )Ty p+v and
(t ® Tiigw) Ty ntv—a;» TESPECtively. As
@ —-aq"  q—q
/-1 21

sinhd;x = [x]g,,
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Lemma 7.1 can therefore be reformulated as the following identity between mor-
phisms V1 iv—0, > V. ® V, ® Vy:

@l @l \ [ T ®0th,,
q’(m”’m”)( 0 [n(i)+v<i>]qi) ((rf#,,,@)T,ﬁnfa,.,u

(0 [uG) + 0], (t®Tn,v>a-?,+v>
‘([n(i)]q,. — ()], ><<L®rﬁ,,,u>Tu,’Z+"v—a,. ' @7

It is remarkable that the proof of this identity is the first and only place where one
uses nontrivial specific properties of ® beyond being an associator; the only special
property which we used before Lemma 7.1 was that & acts trivially on the highest
weight spaceof V,, ® V,, ® V.

Proposition 7.2 The morphisms
lﬂ(i)J;i] Tﬁﬁ®’i§7.x+ai+u
Vier ® Vipoty — 25 o @ Vi ® Vy @ Vivart
(®SI'®nB
—— Vi ® Vitatus (7.8)

where B = (® ® )®,,,, are consistent with tr"

Fi: M — M?. . Similarly the morphisms

and hence define a morphism

[n(i)l,;l.'r{jﬂai'ﬁ@»ﬂ,ﬂu ®She) B
Visi @ Vi ———————Via, @ Vi @V, @ Vi ——— Viya, ® Vi

(1.9)

define a morphism E;: M} — M, .
Furthermore, for generic h we can choose the 1-cochain gZ such that for each i the
composition

h h
Ti;fbﬁh[ ®ri:w, \0; (1®S.,;®)B So;
S e @ Vi @ Vi ® Ve, 2 v @V,

(7.10)

Vasi—a ® Vawi—a

e,
(et)
F; together with the morphism K;: M" — M" acting on M as multiplication by q?(i),
define an action of the algebra U,g on M™. This action respects the comonoid structure
of M" in the sense that 8™ (wx) = Aq ()8"(x) and " (wx) = &g (w)e"(x) forall w € U,9
and x € M".

coincides with — (214,200 If gZ is chosen this way then the morphisms E; and

. U«h .
Proof Denote the morphism Eq. 7.8 by W, , . . . For consistency we have to check
that
nh v,h _ gy ntv.h nh v,h _ gy ntv.h
tr/t,k+a,+u lIji:;H—n,M—om—;wn - lpi;u,x—o—a,—o—u and lI'li;u,k+otl+u tru+n,k+m+u+n - lIji:/z,k—%—oq—t—u'
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We shall only check the first identity. Once again we strictify D(g, i). As we have
done before, we shall often skip the lower indices of maps when they are determined
by the target modules. By definition we have

n+v.h 1

- I I
A — 0 + 0l (t ® SrH—v & t)(T ®7T").

Using that S, = §"(® $" ® )(T ® T,,,) by definition, we can rewrite the right
hand side as

1 h h h
TICERIGIM t®S80)et®S; )T T,, @ )(T®ry"). (7.11)

On the other hand,

n,h \Ijuh

tru,)»+a,-+u I A, Ao+

1
=oastesiegrenies e)(Tex/)
qi

1
v, (O S eNeesiow)Tee (o)
qi

Using that (T ® ()T = (¢ ® T)T by Eq. 5.4 we can rewrite this as

[v(;)] ((®S'®@)(1®®S)®e)eT®® (T (7.12)
qi

It follows from Eq. 7.7 that up to a scalar factor the difference

1
(Ty, ® L)t,-h — t® T)tf‘

1
[n@) +v(D]y, v®]lg

(in our strictified category) is equal to (¢/* ® \) T. Therefore to show that Eqgs. 7.11
and 7.12 are equal we have to check that the morphism

(®5"0)(®®5'®e)(1eT®r'®@)NT®T):
Viitiias @ Vidpantv = Vi ® Vit

is zero. In fact already S? (t® Sh® L)(T ® rih) = 0 since zero is the only morphism
from Vii5 @ Viyyv—o, to C.

Thus F; is well-defined. Similarly one proves that E; is well-defined.

Next we have to check that under a specific choice of gZ the morphisms E;, F;, K;
satisfy the defining relations of U,g. The only nontrivial relation is

K;— K

EiF/' — F/'Ei = —(Si]‘ T
qgi — g,

(7.13)
The rest clearly holds without any assumptions on the cochain by using that
o /(l) = ajj.

The composition Eq. 7.10 coincides with S,,,_,, up to a scalar factor since the
space of morphisms V54,4, ® Vau,—o; — C is one-dimensional. This factor is nonzero
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for generic A since it is equal to —2 for & = 0. Indeed, by virtue of Eqs. 7.1 and 7.2 we
have to show that the image of

(—%a, ® €ila, +eils, ®Ls) @ (Euw, ® [ibw, — [ibw ®Eu)

under the map S,,(t ® S, ® t) equals —2. This follows from S, (€ils ® fifw) = —1
used twice, which in turn follows from the identities

ei;t?)i ® ﬁsw, - ei({&)[ ® ﬁEw,-) - g(;),' ® ei ﬁgw, - ei({@, ® ﬁSw;) - ;6),' ® Swi'

So to show that we can make the specific choice of the cochain gﬁ stated in the

formulation we just have to check that the ratios g?wha[ / (gZ)2 can take arbitrary
values. As we already remarked in the proof of Lemma 6.5, the cochain gﬁ is defined
up to multiplication by a homomorphism y: P — C*. If we replace gﬁ by gﬁ’ x ()

then g, ./ (ng,)2 changes by the factor x(«;)~'. Therefore the claim follows from
the fact that any homomorphism from the root lattice Q into C* can be extended
to the weight lattice P. This is well-known and easy to see using infinite divisibility
of C*.

Assuming now that the cochain gZ is chosen as stated we want to check Eq. 7.13.

n.h

Denoting the composition Eq. 7.9 by @, ", .,

to show that

to prove Eq. 7.13 for i = jit suffices

q>w1.h LIJwi’h _ \ij,-,h w;. h
It Ao+ T L Ao At I o, Ao G pAotop A pHo;
_ . 2wi—a;,h
S A O} P o (7.14)

The first term on the left hand side in our strictified category is
(@S @)(d"eT)(®S! @) (T
=(esheo)ue®s®e)(te e T)(Te).
Expressing similarly the second term we get that the left hand side of Eq. 7.14 equals
(18,8885, ®:8)((!®1etaT)(Ter") - (Teeer) (5 e T)).

Next we use identities Eq. 7.7 to express (¢! ® (@ 1@ T)(T® /') and (T® 1 ®: ®
rih)(r;h ® T) in the form (: ® * ® * ® 1)(x ® *). A tedious but straightforward com-
putation keeping track of subindices shows that the terms ( ® T® T ® L)('L’;ﬁ ® rﬁ)

%(L ® t"® 1/ ® |)(T' ® T) and scalar multiples
of (1®T®T®!1) (r;h ® T)and (1 ® T{L ® T ®()(T ® 7). The last two terms vanish
when composed with (1 ® S" ®1)(:® ¢ ® S" ® 1 ®) for the same reason as in the

proof of consistency of W-", Therefore the left hand side of Eq. 7.14 equals

cancel, and what is left is the term

(A D],

[ (@S @)(t®:®Sh @)1t @1 @)T®T).
qi
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We have S (1 ® S} ®@ 1) (¢! @ 1/') = —[21,, 5%,
the above expression is equal to

)] (t® Sh,, o, @ NT @ T,

which by definition is the right hand side of Eq. 7.14.
The relation E;F; — F;E; = 0 fori # jis proved similarly by showing that

by our choice of the cochain g

2w;i—a;

n.h v, n,h v,k _
th i, At q"j;u+n,)»+a,+u+n \IJ] Mg, At ©i;u+ai+n,k+u+n =0

We only remark that in this case the morphism S)'(: ® S} ® ¢)(z/" ® /") vanishes as
there are no nonzero morphisms Vi 5 ® Vo, —

It remains to show that the action of U, g respects the comonoid structure of M".
We shall only check that " (Fix) = Aq(F,-)rSh(x), that is,

8 Fi=q " (Fi®08 . +®F)l, .
The morphisms 8" are induced by the morphisms m" defined by Eq. 6.1. Therefore

it suffices to check that

h \I}v,h
WA dy ke, A Aoty

— —)v; (i) (\IJ

m

h v,k h
QL® ‘)mu+v,n-kl—m,kz +®® \Ili;n,)\z+n)mﬂ,n+v,/\1,Az—a,"

(7.15)

l,u,)n]‘HJL

The left hand side multiplied by [v(7)], in our strictified category with braiding o is
(Mﬂ‘ MNiEQo ® O(Ti5 @ Thyu, A2+,,)(L ® S ® L)( it @ rl ) M+>~2+M+ﬂ)
=q" M RcV(1® DS ®®)(Ti;i®t®® Thtpinin)
X (T+is ® Tifbv,xl+xz+u+n)~
We claim that
(® TM+M,)\z+n)fi?u,xl+xz+u+n = ‘L_M(l) n(l)(tt vt ® L) T —art v atn

+ gt (e @) (t ® T,-?,,,Aﬁ,,) Tt ro—acitnto-

(7.16)
We postpone the proof of this equality. Using it we see that the left hand side of
Eq. 7.15 multiplied by [v(i)],, is the sum of the term

q“‘ﬂ"")q._“(i)_"(i)(t Qo ® L)(L RL® SCL RI® L)
X (T ®10 ), 1 ® ) (Taras ® Th—atutvintn)
= g, n)qfhv(l) M0 ®0® L)(L RL® S RL® L)
x(t®o T ® ‘L'i ®)(Tisrs®T)
gt g 2010 86 01010 8" @) @O L® Y
x(T®er'®) (T T, (7.17)
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where we have used (T® )T = (® T)T twice and that T;; = ¢ o~ T; ; by
Eqgs. 5.4 and 5.6, and the term

g R )(19eSI®I®)1®®iRc ' eN(T®TNTRT)

=" (R0 e)(1®®SI®®)(1®® e ' @)(I®T® T NT®T).
(7.18)

On the other hand, the first term on the right hand side of Eq. 7.15 multiplied by
[v(D)]y, equals

q;;\z(i)q(»\_aﬂrwrv,n)(t ® Sl’:’ RIRL® L)(T ® rl.h RURANRoQNTRT).
By naturality of o this expression can be written as
q; gt (@900 ) (1803 )T )T ®T).
As (o, n) = din(i), to see that this is equal to Eq. 7.17 we just have to check that
c(t®S'e)(c"'®i®) = (S"®1® 1)1 ®amn).

Writingo: UQV > VUas(1®c)oc®1): URCRV - C® V ® U and using
naturality of o we have

o(1®S/®)=(S/®®)1®®0) (012 ®).
As 1 ®1®0)(0123®1) = (t®0123)(0 ®t® ) by the hexagon identities, we get the
required equality.
Similarly it is proved that Eq. 7.18 coincides with the second term on the right
hand side of Eq. 7.15 multiplied by [v(i)]y,.

Therefore it remains to check identity Eq. 7.16. Replacing A; + 1 by pwand A, + n
by n, we have to show that

t® Tﬂsﬂ)ti{iv,u+n = qi_n(i) (Ti;hv.u ® ‘) Tyiv—ain + "o ' ® ‘)(‘ ® fi?u,n)Tu,Hv—ar

It follows from identities Eq. 7.7 that

(1@ + v ® Tu)T, iy

= [v)]g(Ty, @ t)ffwv,,, + [n@ +n0) + V(i)]qi(fi?v,ﬂ ® ) Tysv—ain-
Therefore we equivalently have to check that
WD)]g 0 To @ 0Ty + [1@D + 00 +1D]g, (07, e ® ) Tyitvan
= ;" n@ +vlg (07), , ® ) Tyt
+ "V @+ vD)lg, (@ Tl ,) Tnsv—ar-
But up to the factor g% this is exactly the identity
g (T @ 0T, — D1 (T ® ) Thv—ary

= (1) + vy, (¢ ® ) Tnva
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from Eq. 7.7, if we take into account that o T, , = ¢"“"T,, , by Eq. 5.6 and

I W) ,—@O—v@) _h
Gri;v,u = _q(ll V)qi ti;p.,v’
which in turn follows from Eq. 7.6 and X7, , = —Tj:p0- O

Remark 7.3 1f we replace the cochain gﬁ' by the cochain gZ’ x (), where y: P — C*
is a homomorphism, then by Lemma 6.5 the comonoid remains unaltered up to
an isomorphism. One can easily check that if use the same formulas to define the
morphisms F; and E; with the new cochain then the morphism F; remains unchanged,
while E; changes to x (o) E;.

Lemma 7.4 Let V be a finite dimensional g-module. Assume the cochain gZ is chosen

as in Proposition 7.2. Then for generic h the action of U,g on M" defines an action of
U,g on Homg(M", V).

Proof The action of U,§ on M" by g-endomorphisms defines an action of (U,g)°"
on Homg(Mh, V). To show that this action defines an action of U,g we just have to
check that the relations

1—ajj 1—a;

k|1 —ai X l—ay—k k|1 —ai k popl-ai—k _
> =D [ o EESE, =0and ) (=D FEFE, =0
k=0 qi k=0 q

(7.19)
are satisfied for i # .

We may assume that V =V, for some 1. The morphisms try f Va® Vi —
Vo ® V;, =V, define a morphism gf: Mf — V,, which we consider as a vector in
Homg(Mh, V). We have E,-éf = Sf o E; =0 as there are no nonzero morphisms
Mf o, = Vi 80 S{L is a highest weight vector in Homg(Mh, V). In particular, if we
denote by Gj; € (Uy;9)? the left hand side of the first equation in Eq. 7.19 then
Gl-]-g-‘f = 0. Using the relations in U,g it can be checked that G;; commutes with F;
for all /. Therefore to prove that G;; = 0 on Homg (M h V,) it suffices to show that
Homg(M", V,) is spanned by F;, ... F; &' =&} o F, o---o F;. By Remark 7.3 the
latter property is independent of the choice of gZ, so we may assume that g,’} is an
analytic function in & with gﬁ = 1, e.g. by choosing gzk = 1 for all k.

Choose a finite set / of multiindices (iy, ..., i,) such that the vectors f; ... fi, &
form a basis of V. Since dim Homg(Mh, V,) < dim V, it then suffices to check that
for generic h the vectors Fj, ... F,-me, @iy, -..,iy) € I, are linearly independent. The
vectors

Fi ... F;, & € Hom, (Mfl_o,iI ey V)

are defined by morphisms V; ® V;_q, —..—a,,+u = V. Therefore it suffices to check
that the latter morphisms are linearly independent for generic /. Since they depend
analytically on 7, it is enough to check linear independence for 7 = 0. Under
the injective maps Homg (Vi @ Vi_yipu, Vo) = Vi(h — 1), = f(Li ® &i—y4p), the
morphisms are mapped onto the vectors f;, ... f; &, which are linearly independent
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946 S. Neshveyev, L. Tuset

by assumption. To see that we indeed get the vectors f; ... f;, & we just have to
observe that tr& .0 Vi ® Vi — Vi is mapped onto &, and that the diagrams

7.0
kvt

Homg(vﬁ & Vv+ozk+w V) — Homg(V[H—ﬁ ® Vv+ﬂ+ns Vi)

| fk i

Vi(v + o) Vi)

oW

commute, where the top arrow is defined by the morphism

7,0
‘Ilk

vt Viri © Vi = Vi @ Vo

given by Eq. 7.8 (with & = 0 and g’ = 1).
Therefore we have proved the first relation in Eq. 7.19. The second is proved
similarly by considering the lowest weight vector /' € Homg(M", V) defined by

W Vi@V, > Vi@ Vo= Vi o

Thus for generic i we have a well-defined action of U,g on Homg(Mh, V), so
Homg(Mh, -) can be considered as a functor D(g, h) — C(g, h). By Proposition 6.4
and the last part of Proposition 7.2 it is a tensor functor. Furthermore, by Proposi-
tion 5.4 for generic / the module M" is isomorphic to the module M representing the
forgetful functor. Therefore the following theorem finishes the proof of Theorem 4.3
and thus also of Theorem 4.1.

Theorem 7.5 If the cochain gﬁ is chosen as in Proposition 7.2 then for generic h and
q = €™ the functor Homg(M", ) is a C-linear braided monoidal equivalence of the
categories D(g, h) and C(g, h). This functor maps an irreducible g-module with highest

weight X onto an irreducible U,g-module with highest weight A.

Proof We have already proved that for generic / the functor F* = Homg(M", ") is
a tensor functor. Furthermore, by the proof of Lemma 7.4 for any A € P the U,g-
module F"(V) has a highest weight vector £/ of weight A. Since the dimension of this
module is not bigger than that of V,, we conclude that F h(V,) must be an irreducible
U,g-module with highest weight A. Therefore the image of the functor contains all
simple objects in C(g, k) up to isomorphism. Since the functor F" respects direct
sums, we conclude that it is an equivalence of tensor categories.
It remains to check that the functor respects braiding, that is, the diagram

SR
FU) @ F'(V) — FV)® F"U)

F i i Fl
FM(Zq")

FMU®V) —— F'(V QU)

commutes. It suffices to consider U = Vj and V = V.. Consider the lowest weight
vector {Xh e F h(V;) and the highest weight vector & f eF h(Vﬂ) defined in the proof
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of Lemma 7.4. It suffices to compute how the morphisms in the above diagram act
on ¢! ® &P By Eq. 4.1 we have R (¢ ® £ = g~ * ¢ @ & Recalling that F7' is
defined using 8": M" — M"&M", we just have to check that

g~ (gf ® ;{L)Sh = th(fjfi ® SS)SE

as morphisms M" — V, ® V;. Recall that §" is induced by the morphisms m”

defined by Eq. 6.1. Since S/’} and {{L are defined by the morphisms tr&’Z and trK’E,

respectively, by equality Eq. 6.2 it suffices to show the following equality of endo-
morphisms of V, ® Vj:

—(A0) 00 _ t _h
q M5 p—x = 24 M5 0 5 -

This is immediate by definition Eq. 6.1, since the associator ® acts trivially on a tensor
product of three modules if at least one module is trivial. O

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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