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Abstract We discuss the proof of Kazhdan and Lusztig of the equivalence of the
Drinfeld category D(g, �) of g-modules and the category of finite dimensional
Uqg-modules, q = eπ i�, for � ∈ C \ Q∗. Aiming at operator algebraists the result is
formulated as the existence for each � ∈ iR of a normalized unitary 2-cochain F on
the dual Ĝ of a compact simple Lie group G such that the convolution algebra of
G with the coproduct twisted by F is ∗-isomorphic to the convolution algebra of
the q-deformation Gq of G, while the coboundary of F−1 coincides with Drinfeld’s
KZ-associator defined via monodromy of the Knizhnik–Zamolodchikov equations.

Keywords Quantum groups · Drinfeld category · Quasi-bialgebras · Unitary twist

Mathematics Subject Classifications (2010) Primary 17B37; Secondary 20G42 ·
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1 Introduction

One of the most beautiful and important results in quantum groups is the theorem of
Drinfeld [4, 5] stating that the category of Uhg-modules is equivalent to a category of
g-modules with the usual tensor product but with nontrivial associativity morphisms
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defined by the monodromy of the Knizhnik–Zamolodchikov equations from confor-
mal field theory. In defining the latter category, known as the Drinfeld category,
Drinfeld was inspired by a result of Kohno which states that the representation
of the braid group defined by the universal R-matrix of Uhg is equivalent to the
monodromy representation of the KZ-equations. Drinfeld proved equivalence of the
categories working in the context of quasi-Hopf algebras, which are generalizations
of Hopf algebras and are algebraic counterparts of monoidal categories with quasi-
fiber functors. In this language the result says that there exists F ∈ (Ug ⊗ Ug)[[h]]
such that the coproduct �̂h on Uhg ∼= Ug[[h]] is given by �̂h = F�̂(·)F−1 and that

(ι ⊗ �̂)(F−1)(1 ⊗ F−1)(F ⊗ 1)(�̂ ⊗ ι)(F)

coincides with the element �KZ defining the associativity morphisms in the
Drinfeld category. Drinfeld worked in the formal deformation setting and gave two
different proofs. Another proof of the equivalence of the categories that works
for all irrational complex parameters was given a few years later by Kazhdan and
Lusztig [12, 13]. Their approach was then used by Etingof and Kazhdan [7] to solve
the problem of existence of quantization of an arbitrary Lie bialgebra.

The result of Kazhdan and Lusztig can again be formulated in algebraic terms, that
is, there exists an analogue of the twist F in the analytic setting. In [17] we observed
that such an element can be used to construct a deformation of the Dirac operator
on quantum groups that gives rise to spectral triples. These notes originated from
a desire to understand better properties of F for the study of these quantum Dirac
operators. Another motivation is that the result of Kazhdan and Lusztig is not usually
formulated in the form we need. Even though the formulation we are using should
be obvious to a careful reader, to refer this away to a series of papers totaling several
hundred pages seems inappropriate. What makes the situation more complicated is
that Kazhdan and Lusztig prove a more general result allowing rational deformation
parameters, in which case the Drinfeld category has to be replaced by a category of
modules over the affine Lie algebra ĝ.

The notes are organized as follows.
Section 2 contains categorical preliminaries. The main point is Drinfeld’s notion

of a quasi-Hopf algebra [4]. Since the monoidal categories we are interested in are
infinite, one has to understand the coproduct in the multiplier sense, so we talk about
discrete quasi-Hopf algebras. Modulo this nuance Section 2 contains the standard
dictionary between categorical and algebraic terms: monoidal categories and quasi-
bialgebras, equivalence of categories and isomorphism of quasi-bialgebras up to
twisting, weak tensor functors and comonoids, rigidity and existence of coinverse.

In Section 3 we introduce the Drinfeld category D(g, �), � ∈ C \ Q∗. As men-
tioned above, it is the category of finite dimensional g-modules with the usual tensor
product but with nontrivial associativity morphisms �KZ defined via monodromy of
the KZ-equations. Alternatively one can think of the associator �KZ as a 3-cocycle
on the dual discrete group Ĝ. We follow Drinfeld’s original argument [4, 5] to prove
that D(g, �) is indeed a braided monoidal category. Remark that by specialization
and analytic continuation this can be deduced directly from the formal deformation
case, which is a bit more convenient to deal with. The simplifications are however not
significant, so to avoid confusion we work entirely in the analytic setting. Remark
also that there is a somewhat more conceptual proof showing that D(g, �) is the
monoidal category which corresponds to a genus zero modular functor, see e.g. [1].
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But as everywhere in these notes we sacrifice generality in favor of a hands-on
approach.

In Section 4 we formulate the main result, that is, equivalence of D(g, �) and
the category C(g, �) of finite dimensional admissible Uqg-modules, q = eπ i�. Fur-
thermore, the functor D(g, �) → C(g, �) defining this equivalence can be chosen
such that its composition with the forgetful functor C(g, �) → Vec is naturally
isomorphic to the forgetful functor D(g, �) → Vec. This means that the equivalence
can be expressed in algebraic terms, that is, the corresponding quasi-bialgebras are
isomorphic up to twisting. The proof of this theorem occupies the remaining part of
the paper. In fact, we prove it only for generic �. A simple compactness argument
then shows that the result holds at least for all � ∈ iR, which is the most interesting
case from the operator algebra point of view.

The actual proof starts in Section 5. Since we want a functor isomorphic to
the forgetful one, we first of all need a tensor structure on the forgetful functor
D(g, �) → Vec. If we have a module M representing this functor then to have a weak
tensor structure on the functor is the same thing as having a comonoid structure
on M. Clearly, no finite dimensional g-module can represent the forgetful functor.
In Section 5 we define a representing object M in a completion of D(g, �). It can
be thought of as an object in an ind-pro-category, but we prefer to think of it as a
topological g-module.

In Section 6 we define a comonoid structure on M thus endowing the functor
Homg(M, ·) with a weak tensor structure. We then check that for generic � we in
fact get a tensor structure. This already implies that Drinfeld’s KZ-associator is a
coboundary for generic �. It is interesting to note that up to this point the only
properties of �KZ which have been used are analytic dependence on the parameter
� and that the associator acts trivially on the highest weight subspaces. We end the
section with an algorithm of how to explicitly find F such that �KZ is a coboundary
of F−1. The word explicit should however be taken with a grain of salt, as one has to
make choices depending on values of solutions of differential equations.

In Section 7 we show that Uqg acts by natural transformations on the functor
Homg(M, ·), allowing the latter to be regarded as a functor D(g, �) → C(g, �). We
finally check that this is an equivalence of categories for generic �. Although the idea
of the definition of this action of Uqg is not difficult to convey, the right normalization
of the maps involved requires an ingenious choice, which is ultimately dictated by
classical identities for hypergeometric functions. This is by far the most technical
part of the proof of Kazhdan and Lusztig, and here we omit a couple of the most
tedious computations.

2 Quasi-Bialgebras and Monoidal Categories

A monoidal category C is a category with a bifunctor ⊗: C × C → C, (U, V) �→ U ⊗
V, which is associative up to a natural isomorphism

α : (U ⊗ V) ⊗ W → U ⊗ (V ⊗ W)

and has an object which is the unit 1 up to natural isomorphisms

λ : 1 ⊗ U → U, ρ : U ⊗ 1 → U,
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such that λ = ρ : 1 ⊗ 1 → 1 and such that the pentagonal diagram

(U ⊗ (V ⊗ W)) ⊗ X

α1,23,4

��

((U ⊗ V) ⊗ W) ⊗ X
α⊗ι

��
α12,3,4

�� (U ⊗ V) ⊗ (W ⊗ X)

α1,2,34

��
U ⊗ ((V ⊗ W) ⊗ X)

ι⊗α
�� U ⊗ (V ⊗ (W ⊗ X))

and the triangle diagram

(U ⊗ 1) ⊗ V
α

��

ρ⊗ι ������������
U ⊗ (1 ⊗ V)

ι⊗λ������������

U ⊗ V

commute.
We say that C has strict unit if both λ and ρ are the identity morphisms. If also α

is the identity, then C is called a strict monoidal category.
A braiding in a monoidal category C is a natural isomorphism σ : U ⊗ V → V ⊗ U

such that λσ(U ⊗ 1) = ρ(U ⊗ 1) and such that the hexagonal diagram

(V ⊗ U) ⊗ W

α

��

(U ⊗ V) ⊗ W
α

��
σ⊗ι

�� U ⊗ (V ⊗ W)

σ1,23

��
V ⊗ (U ⊗ W)

ι⊗σ
�� V ⊗ (W ⊗ U) (V ⊗ W) ⊗ U

α
��

and the same diagram with σ replaced by σ−1 both commute.
We say that a category is C-linear if it is abelian, the sets Hom(U, V) are vector

spaces over C and composition of morphisms is bilinear. Of course, when the
monoidal category is C-linear the tensor functor ⊗ is required to be bilinear on
morphisms.

A C-linear category is called semisimple if any object is a finite direct sum of
simple objects.

A (weak) quasi-tensor functor between monoidal categories C and C ′ is a functor
F : C → C ′ together with a (morphism) isomorphism F0 : 1′ → F(1) in C ′ and natural
(morphisms) isomorphisms

F2 : F(U) ⊗ F(V) → F(U ⊗ V).

When the categories are braided then F is called braided if the diagram

F(U) ⊗ F(V)
F2

��

σ ′

��

F(U ⊗ V)

F(σ )

��
F(V) ⊗ F(U)

F2
�� F(V ⊗ U)

commutes.
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A (weak) quasi-tensor functor is called a (weak) tensor functor if the diagram

(F(U) ⊗ F(V)) ⊗ F(W)

α′

��

F2⊗ι
�� F(U ⊗ V) ⊗ F(W)

F2
�� F((U ⊗ V) ⊗ W)

F(α)

��
F(U) ⊗ (F(V) ⊗ F(W))

ι⊗F2
�� F(U) ⊗ F(V ⊗ W)

F2
�� F(U ⊗ (V ⊗ W))

(2.1)
and the diagrams

F(1) ⊗ F(U)
F2

�� F(1 ⊗ U)

F(λ)

��
1′ ⊗ F(U)

λ′
��

F0⊗ι

��

F(U)

F(U) ⊗ F(1)
F2

�� F(U ⊗ 1)

F(ρ)

��
F(U) ⊗ 1′

ρ ′
��

ι⊗F0

��

F(U)

commute.
We say that a natural isomorphism η : F → G between two (weak) (quasi-)tensor

functors C → C ′ is monoidal if the diagrams

F(U) ⊗ F(V)
F2

��

η⊗η

��

F(U ⊗ V)

η

��
G(U) ⊗ G(V)

G2
�� G(U ⊗ V)

1′
G0

����
��

��
��F0

		��
��

��
��

F(1)
η

�� G(1)

commute.
An equivalence between two monoidal categories is called monoidal if the

functors and the natural isomorphisms defining the equivalence are monoidal. If
the functors are also (C-linear) (braided) then we speak of a (C-linear) (braided)
monoidal equivalence.

According to a theorem of Mac Lane any monoidal category can be strictified,
i.e. it is monoidally equivalent to a strict monoidal category, and if the category is
(C-linear) (braided) then the equivalence can be chosen to be (C-linear) (braided).
This is useful for obtaining new identities for morphisms from known ones: it implies
that an identity holds if it can be proved assuming that the associativity morphisms
are trivial. As is customary we regard the C-linear monoidal category Vec of finite
dimensional vector spaces as strict.

Consider now a direct sum A = ⊕λ∈� End(Vλ) of full matrix algebras. Define
M(A) as the algebraic product

∏
λ∈� End(Vλ). If B is another such algebra, we say

that a homomorphism ϕ : A → M(B) is nondegenerate if ϕ(A)B = B.
Let A -Mod f denote the C-linear category of nondegenerate finite dimensional

A-modules, so A -Mod f is semisimple with simple objects {Vλ}λ. We would like
A -Mod f to be monoidal with tensor product and strict unit C defined in the usual
way via nondegenerate homomorphisms

� : A → M(A ⊗ A) =
∏

λ,μ

End(Vλ ⊗ Vμ), ε : A → C,
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and with associativity morphisms (U ⊗ V) ⊗ W → U ⊗ (V ⊗ W) given by acting
with an element � ∈ M(A ⊗ A ⊗ A). This is indeed the case if and only if � is
invertible and

(ε ⊗ ι)� = ι = (ι ⊗ ε)�, (ι ⊗ ε ⊗ ι)� = 1 ⊗ 1,

(ι ⊗ �)� = �(� ⊗ ι)�(·)�−1,

(ι ⊗ ι ⊗ �)(�)(� ⊗ ι ⊗ ι)(�) = (1 ⊗ �)(ι ⊗ � ⊗ ι)(�)(� ⊗ 1). (2.2)

We then call A a discrete quasi-bialgebra with coproduct �, counit ε and associator
�. Remark that Eq. 2.2 corresponds to the pentagonal diagram. Notice also that by
definition A -Mod f is strict if and only if � = 1 ⊗ 1 ⊗ 1.

If we also have an element R ∈ M(A ⊗ A) and let � : U ⊗ V → V ⊗ U denote
the flip, then �R : U ⊗ V → V ⊗ U is a braiding if and only if �op = R�(·)R−1 and

(� ⊗ ι)(R) = �312R13�
−1
132R23�, (ι ⊗ �)(R) = �−1

231R13�213R12�
−1. (2.3)

In this case we speak of a quasitriangular discrete quasi-bialgebra with R-matrix R.
Equation 2.3 correspond to the hexagonal diagrams.

Note that the forgetful functor F : A -Mod f → Vec is a quasi-tensor functor with
F0 and F2 the identity morphisms. It is a tensor functor if and only if � = 1 ⊗ 1 ⊗ 1.

By a twist in a (quasitriangular) discrete quasi-bialgebra A we mean an invertible
element F in M(A ⊗ A) such that (ε ⊗ ι)(F) = (ι ⊗ ε)(F) = 1. The twisting AF of
A by F is then the (quasitriangular) discrete quasi-bialgebra with comultiplication
�F = F�(·)F−1, counit εF = ε, associator

�F = (1 ⊗ F)(ι ⊗ �)(F)�(� ⊗ ι)(F−1)(F−1 ⊗ 1)

(and R-matrix RF = F21RF−1).

Proposition 2.1 Let A and A′ be (quasitriangular) discrete quasi-bialgebras,
F : A -Mod f → Vec and F : A′ -Mod f → Vec the forgetful quasi-tensor functors. Then

(i) the (quasitriangular) discrete quasi-bialgebras A′ and A are isomorphic if and
only if there exists a C-linear (braided) monoidal equivalence E : A -Mod f →
A′ -Mod f such that F ′ E and F are monoidally naturally isomorphic;

(ii) the (quasitriangular) discrete quasi-bialgebra A′ is isomorphic to a twisting
AF of A if and only if there exists a C-linear (braided) monoidal equivalence
E : A -Mod f → A′ -Mod f such that F ′ E and F are naturally isomorphic.

If A and A′ are finite dimensional and quasi-Hopf (see below) then one does
not need a natural isomorphism of F ′ E and F in (ii), that is, A′ is isomorphic to
a twisting of A if and only if the categories A -Mod f and A′ -Mod f are C-linear
(braided) monoidally equivalent [9]. This is no longer true in the infinite dimensional
case [2].

Proof of Proposition 2.1 Assume first that we have an isomorphism ϕ : A′ → AF .
Then by restriction of scalars ϕ gives a functor E : A -Mod f → A′ -Mod f . We make it
a tensor functor by letting E0 = ι and E2 = F−1. It is easy to see that E is a C-linear
(braided) monoidal equivalence. Furthermore, ignoring the quasi-tensor structure
we have F ′ E = F, and if F = 1 ⊗ 1 then F ′ E = F as quasi-tensor functors.
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Conversely, assume we have a C-linear (braided) monoidal equivalence
E : A -Mod f → A′ -Mod f and a natural isomorphism η : F → F ′ E. The algebra
M(A) can be identified with the algebra Nat(F) of natural transformations of the
forgetful functor F to itself, and similarly M(A′) = Nat(F ′). The map ϕ : Nat(F ′) →
Nat(F) defined by ϕ(a′) = η−1a′η is then an isomorphism of algebras.

Identifying M(A ⊗ A) with Nat(F ⊗ F), we define F ∈ M(A ⊗ A) by the diagram

U ⊗ V
F

��

η

��

U ⊗ V

η⊗η

��
E(U ⊗ V) E(U) ⊗ E(V)

E2
��

In other words, we have FU,V = (
η−1

U ⊗ η−1
V

)
E−1

2 ηU⊗V . The element F is clearly
invertible. It is easy to see that it has the property (ε ⊗ ι)(F) = (ι ⊗ ε)(F) = 1 if and
only if the maps E0, η : C → E(C) coincide. This is the case if η is a monoidal natural
isomorphism, and can be achieved in general by rescaling η. Furthermore, if η is
monoidal then F is the identity map.

The element �(a) considered as an element of Nat(F ⊗ F) is given by �(a)U,V =
aU⊗V . For a′ ∈ M(A′) we then have

(F−1(ϕ ⊗ ϕ)�′(a′)F)U,V = F−1
U,V

(
η−1

U ⊗ η−1
V

)
a′

E(U)⊗E(V)(ηU ⊗ ηV)FU,V

= η−1
U⊗V E2a′

E(U)⊗E(V)E−1
2 ηU⊗V = η−1

U⊗Va′
E(U⊗V)ηU⊗V

= ϕ(a′)U⊗V = (�ϕ(a′))U,V,

so (ϕ ⊗ ϕ)�′ϕ−1 = �F .
The diagram (2.1) for the tensor functor E reads as

�′ = (
ι ⊗ E−1

2

)
E−1

2 E(�)E2(E2 ⊗ ι).

Using that E2 ⊗ ι : (E(U) ⊗ E(V)) ⊗ E(W) → E(U ⊗ V) ⊗ E(W) is (η ⊗ ι)(F−1 ⊗
ι) (η−1 ⊗ η−1 ⊗ ι), and that E2 : E(U ⊗ V) ⊗ E(W) → E((U ⊗ V) ⊗ W) is

η(U⊗V)⊗WF−1
U⊗V,W

(
η−1

U⊗V ⊗ η−1
W

) = η(� ⊗ ι)(F−1)
(
η−1 ⊗ η−1

)
,

we see that E2(E2 ⊗ ι) in the expression above equals η(� ⊗ ι)(F−1)(F−1 ⊗ ι)(η−1 ⊗
η−1 ⊗ η−1). Using a similar expression for

(
ι ⊗ E−1

2

)
E−1

2 we get

�′ = (η ⊗ η ⊗ η)(ι ⊗F)(ι ⊗ �)(F)η−1 E(�)η(� ⊗ ι)(F−1)(F−1 ⊗ ι)
(
η−1 ⊗ η−1 ⊗ η−1

)
.

Since η−1 E(�)η = �, this is exactly the equality �′ = (ϕ−1 ⊗ ϕ−1 ⊗ ϕ−1)(�F ).
Finally, if our quasi-bialgebras are quasitriangular and the functor E is braided,

we have a commutative diagram

U ⊗ V

�R
��

η
�� E(U ⊗ V)

E(�R)

��

E−1
2

�� E(U) ⊗ E(V)

�R′

��

η−1⊗η−1

�� U ⊗ V

�(ϕ⊗ϕ)(R′)
��

V ⊗ U
η

�� E(V ⊗ U)
E−1

2
�� E(V) ⊗ E(U)

η−1⊗η−1

�� V ⊗ U

Therefore �(ϕ ⊗ ϕ)(R′) = F�RF−1, that is, (ϕ ⊗ ϕ)(R′) = RF . 
�
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We will be interested in the case when A′ is a bialgebra, so �′ = 1 ⊗ 1 ⊗ 1.
In this case F ′ is a tensor functor, so if E : A -Mod f → A′ -Mod f is a monoidal
equivalence then F ′ E : A -Mod f → Vec is a tensor functor. Therefore to show that
A′ is isomorphic to a twisting of A, by part (ii) of the above proposition, we at least
need a tensor functor A -Mod f → Vec which is naturally isomorphic to the forgetful
functor.

We remark the following consequence of the proof of the above proposition: if
E : A -Mod f → Vec is a C-linear functor and η : F → E is a natural isomorphism
then there is a one-to-one correspondence between weak tensor structures on E and
elements G ∈ M(A ⊗ A) such that (ε ⊗ ι)(G) = 1 = (ι ⊗ ε)(G) and

�(� ⊗ ι)(G)(G ⊗ 1) = (ι ⊗ �)(G)(1 ⊗ G).

Furthermore, E is a tensor functor if and only if G is invertible, and then �F = 1 ⊗
1 ⊗ 1 with F = G−1.

To define a tensor structure on a functor isomorphic to the forgetful one, it is
convenient to use the following notion. An object M in a monoidal category C with
strict unit is called a comonoid if it comes with two morphisms

ε : M → 1, δ : M → M ⊗ M

such that (ε ⊗ ι)δ = ι = (ι ⊗ ε)δ and (ι ⊗ δ)δ = α(δ ⊗ ι)δ.

Lemma 2.2 Let A be a discrete quasi-bialgebra, M an object in A -Mod f . Then there
is a one-to-one correspondence between

(i) weak tensor structures on the functor Hom(M, ·) : A -Mod f → Vec;
(ii) comonoid structures on M.

Proof If M is a comonoid then we define E2 : Hom(M, U) ⊗ Hom(M, V) →
Hom(M, U ⊗ V) by f ⊗ g �→ ( f ⊗ g)δ and E0 : 1 = C → Hom(M, C) by E0(1) = ε.

Conversely, if the functor E = Hom(M, ·) is endowed with a weak tensor structure,
we define δ : M → M ⊗ M as the image of ι ⊗ ι under the map

E2 : Hom(M, M) ⊗ Hom(M, M) → Hom(M, M ⊗ M),

and ε : M → C as the image of 1 ∈ C under the map E0 : C → Hom(M, C). Using
naturality of E2 one checks that the image of f ⊗ g under the map E2 : Hom(M, U) ⊗
Hom(M, V) → Hom(M, U ⊗ V) is ( f ⊗ g)δ. It is then straightforward to check that
the axioms of a weak tensor functor translate into the defining properties of a
comonoid. 
�

We are of course interested in the case when the functor Hom(M, ·) is naturally
isomorphic to the forgetful one. Clearly, no such object M exists in A -Mod f unless
A is finite dimensional. So one needs to extend the category A -Mod f to make the
lemma useful. We do not try to do this in general, as depending on the situation
different extensions might be useful.

Remark that in the finite dimensional case the unique object up to isomorphism,
representing the forgetful functor, is the module A; namely, Hom(A, U) → U ,
f �→ f (1), is a natural isomorphism. In this case the lemma and the discussion
before it show that there exists a one-to-one correspondence between comonoid
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structures on A and elements G ∈ A ⊗ A such that (ε ⊗ ι)(G) = 1 = (ι ⊗ ε)(G) and
�(� ⊗ ι)(G)(G ⊗ 1) = (ι ⊗ �)(G)(1 ⊗ G). Explicitly, given such an element G one
defines δ : A → A ⊗ A by δ(a) = �(a)G.

Let A be a (quasitriangular) discrete quasi-bialgebra. By a ∗-operation on A we
mean an antilinear involutive antihomomorphism x �→ x∗ on A such that �(x∗) =
�(x)∗, ε(x∗) = ε(x), � is unitary (and R∗ = R21). We also require any element of the
form 1 + x∗x to be invertible in M(A), so that A can be completed to a C∗-algebra.

Proposition 2.3 Let A and A′ be (quasitriangular) discrete ∗-quasi-bialgebras. Sup-
pose A′ is isomorphic to AE for a twist E . Then there exists a unitary twist F such that
A′ and AF are ∗-isomorphic.

Proof Let ϕ : A′ → AE be an isomorphism. Since every homomorphism of full
matrix algebras (with the standard ∗-operation) is equivalent to a ∗-homomorphism,
there exists an invertible element u ∈ M(A) such that the homomorphism ϕu :=
uϕ(·)u−1 is ∗-preserving. We normalize u such that ε(u) = 1. Then Eu = (u ⊗
u)E�(u−1) is a twist and it is easy to check that ϕu : A′ → AEu is an isomorphism.

Therefore we may assume that ϕ is ∗-preserving. Consider the polar decomposi-
tion E = F |E |. Then F is a unitary twist and we claim that ϕ is an isomorphism of
discrete ∗-quasi-bialgebras A′ and AF . As ϕ : A′ → AF is ∗-preserving, we just have
to check that AE = AF .

Applying the ∗-operation to the identity (ϕ ⊗ ϕ)�′ = E�ϕ(·)E−1, we get

(ϕ ⊗ ϕ)�′ = (E−1)∗�ϕ(·)E∗.

It follows that E∗E commutes with the image of �, hence so does |E |. In particular,
�E = �F .

Now apply the map T(x) = (x∗)−1 to the identity (ϕ ⊗ ϕ ⊗ ϕ)(�′) = �E . As T
preserves �′ and � by unitarity, we get (ϕ ⊗ ϕ ⊗ ϕ)(�′) = �T(E). Therefore

(�|E |)F = �E = �T(E) = (�|E |−1)F ,

whence �|E | = �|E |−1 as �|E | = � = �|E |−1 . Thus

(1 ⊗ |E |)(ι ⊗ �̂)(|E |)�(�̂ ⊗ ι)(|E |−1)(|E |−1 ⊗ 1)

= (1 ⊗ |E |−1)(ι ⊗ �̂)(|E |−1)�(�̂ ⊗ ι)(|E |)(|E | ⊗ 1).

Since (ι ⊗ �̂)(|E |) and 1 ⊗ |E |, as well as |E | ⊗ 1 and (�̂ ⊗ ι)(|E |), commute, we can
write

((1 ⊗ |E |)(ι ⊗ �̂)(|E |))2� = �((|E | ⊗ 1)(�̂ ⊗ ι)(|E |))2.

Consequently

(1 ⊗ |E |)(ι ⊗ �̂)(|E |)� = �(|E | ⊗ 1)(�̂ ⊗ ι)(|E |).
Thus �|E | = �, and using again �|E | = � we therefore get �E = (�|E |)F = �F .

Finally, assume our quasi-bialgebras are quasitriangular. Applying the ∗-
operation and then the flip to the equality (ϕ ⊗ ϕ)(R′) = E21RE−1 we get

E21RE−1 = (E∗
21)

−1RE∗,
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so that (E∗E)21R = RE∗E , whence |E |21R = R|E |, or in other words, R|E | = R. It
follows that RE = (R|E |)F = RF . 
�

We next discuss how the notion of a quasi-bialgebra arises naturally from the
Tannakian formalism. This will essentially not be used later.

Let C be a C-linear monoidal category. A (quasi-)fiber functor is a (quasi-)tensor
exact faithful C-linear functor C → Vec.

First one has the following reconstruction result [16].

Proposition 2.4 Let C be a small C-linear semisimple (braided) monoidal category
with simple strict unit. Suppose we have a quasi-f iber functor F : C → Vec. Then
there exists a (quasitriangular) discrete quasi-bialgebra A and a C-linear (braided)
monoidal equivalence E : C → A -Mod f such that its composition with the forgetful
functor A -Mod f → Vec is naturally isomorphic to F.

Remark that by Proposition 2.1 such a quasi-bialgebra A is unique up to isomor-
phism and twisting. We also remark that, as will be clear from the proof, if F is a fiber
functor then A can be chosen to be a discrete bialgebra.

Proof of Proposition 2.4 Let {Vλ}λ∈� be representatives of isomorphism classes of
the simple objects in C. Put A = ⊕λ End(F(Vλ)). Then M(A) = ∏

λ End(F(Vλ)) can
be identified with the algebra Nat(F) of natural transformations of F. Regarding
F as a functor E : C → A -Mod f , we get an equivalence of C and A -Mod f as C-
linear categories, since E is exact and maps the objects Vλ onto all simple objects of
A -Mod f up to isomorphism.

Identifying M(A ⊗ A) with Nat(F ⊗ F) and considering F2 as a natural trans-
formation from F ⊗ F to F(· ⊗ ·),we define � : M(A) → M(A ⊗ A) by �(a) =
F−1

2 aF2. Define also ε : M(A) → C by ε(a) = a1 ∈ End(F(1)) = C. Finally, define
� ∈ M(A ⊗ A ⊗ A) = Nat(F ⊗ F ⊗ F) by

� = (
ι ⊗ F−1

2

)
F−1

2 F(α)F2(F2 ⊗ ι).

Then by construction A becomes a discrete quasi-bialgebra and E a monoidal
functor.

If C has braiding σ then define R ∈ M(A ⊗ A) = Nat(F ⊗ F) by R =
�F−1

2 F(σ )F2. Then A is quasitriangular and E is braided. 
�

A right (resp. left) dual to an object U in a monoidal category C with strict unit
consists of an object U∨ (resp. ∨U) and two morphisms

e : U∨ ⊗ U → 1, i : 1 → U ⊗ U∨, (resp. e′ : U ⊗ ∨U → 1, i′ : 1 → ∨U ⊗ U)

such that the compositions

U
i⊗ι−→ (U ⊗ U∨) ⊗ U

α−→ U ⊗ (U∨ ⊗ U)
ι⊗e−→ U,

U∨ ι⊗i−→ U∨ ⊗ (U ⊗ U∨)
α−1−−→ (U∨ ⊗ U) ⊗ U∨ e⊗ι−→ U∨
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(respectively,

U
ι⊗i′−−→ U ⊗ (∨U ⊗ U)

α−1−−→ (U ⊗ ∨U) ⊗ U
e′⊗ι−−→ U,

∨U
i′⊗ι−−→ (∨U ⊗ U) ⊗ ∨U

α−→ ∨U ⊗ (U ⊗ ∨U)
ι⊗e′−−→ ∨U)

are the identity morphisms. The category C is called rigid if every object has left and
right duals.

If t ∈ Hom(U, V) then the transpose t∨ : V∨ → U∨ is defined as the composition

V∨ ι⊗i−→ V∨ ⊗ (U ⊗ U∨)
α−1−−→ (V∨ ⊗ U) ⊗ U∨ (ι⊗t)⊗ι−−−−→ (V∨ ⊗ V) ⊗ U∨ e⊗ι−→ U∨.

We then have the following identities:

(t ⊗ ι)i = (ι ⊗ t∨)i : 1 → V ⊗ U∨, e(ι ⊗ t) = e(t∨ ⊗ ι) : V∨ ⊗ U → 1.

This is not difficult to check directly, but is immediate if the category is strict, which
we may assume by Mac Lane’s theorem. Now if s ∈ Hom(V, W), assuming that C
is strict to simplify computations, the morphism t∨s∨ is by definition given by the
composition

W∨ ι⊗i−→ W∨ ⊗ V ⊗ V∨ ι⊗ι⊗t∨−−−→ W∨ ⊗ V ⊗ U∨ ι⊗s⊗ι−−−→ W∨ ⊗ W ⊗ U∨ e⊗ι−→ U∨.

But as (t ⊗ ι)i = (ι ⊗ t∨)i, this is exactly the definition of (st)∨. Therefore V �→ V∨ is
a contravariant functor of C into itself.

Similar arguments show that if Ũ∨ is another right dual of U with corresponding
morphisms ĩ and ẽ, then γ = (ẽ ⊗ ι)α−1(ι ⊗ i) : Ũ∨ → U∨ has inverse (e ⊗ ι)α−1(ι ⊗ ĩ).
Also ẽ = e(γ ⊗ ι) and ĩ = (ι ⊗ γ −1)i. Therefore right duals are unique up to isomor-
phism. Similar statements hold for left duals. Finally note that

(ι ⊗ e)α(i′ ⊗ ι) : U → ∨(U∨)

is an isomorphism with inverse (ι ⊗ e′)α(i ⊗ ι), and similarly that (∨U)∨ is isomorphic
to U .

The category Vec is rigid with U∨ = ∨U = U∗ and the morphisms e = e′ and i = i′
(identifying U∗∗ with U), which we shall denote by ev and iv , are given by

ev : U∗ ⊗ U → C, f ⊗ x �→ f (x), and iv : C → U ⊗ U∗, 1 �→
∑

i

xi ⊗ xi,

where {xi}i is a basis in U and {xi}i is the dual basis in U∗. Then t∨ is the usual dual
operator t∗.

Suppose we are given a nondegenerate anti-homomorphism S of a discrete quasi-
bialgebra A. Then for any A-module U we can define an A-module structure on
the dual space U∗ by af = f (S(a) ·). To make U∗ a right dual object we look for
morphisms

e : U∗ ⊗ U → C, i : C → U ⊗ U∗

in the form e = ev(1 ⊗ α) and i = (β ⊗ 1)iv for some elements α, β ∈ M(A) (note that
if U is simple then any linear maps U∗ ⊗ U → C and C → U ⊗ U∗ must be of this
form). Then the maps e and i are morphisms if and only if

S(a(1))αa(2) = ε(a)α, a(1)βS(a(2)) = ε(a)β (2.4)
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as endomorphisms of U , and then U∗ is a right dual of U in A -Mod f if and only if

S
(
�−1

1

)
α�−1

2 βS
(
�−1

3

) = 1, �1βS(�2)α�3 = 1, (2.5)

again as endomorphisms of U . If there exists an invertible anti-homomorphism S
and elements α, β ∈ M(A) such that Eqs. 2.4 and 2.5 are satisfied, then we say that
A is a discrete quasi-Hopf algebra with coinverse S. Then U∨ = U∗ with action af =
f (S(a) ·) is a right dual of U , and ∨U = U∗ with action af = f (S−1(a) ·) is a left dual
of U with e′ = ev(S−1(α) ⊗ 1) and i′ = (1 ⊗ S−1(β))iv .

If S̃ is another coinverse with corresponding elements α̃, β̃, then there exists a
unique invertible u ∈ A such that S̃ = uS(·)u−1 and α̃ = uα, β̃ = βu−1. Conversely,
any S̃ and α̃, β̃ defined this way for an invertible u satisfy the same axioms as S and
α, β. When � = 1 ⊗ 1 ⊗ 1, then α and β are inverses to each other, and setting u = β

thus gives α̃ = β̃ = 1, so A is a discrete multiplier Hopf algebra with coinverse S̃ in
the sense of [21].

We have explained that if a discrete quasi-bialgebra A has coinverse then A -Mod f

is rigid. One has the following converse [10, 20, 23].

Proposition 2.5 Let A be a discrete quasi-bialgebra with A -Mod f rigid and such that
for every simple module U the dimensions of U and U∨ as vector spaces coincide.
Then A has coinverse.

Proof Recall that by definition A = ⊕λ∈� End(Vλ). For each λ the module V∨
λ is

simple, so there exists a unique λ̄ ∈ � such that V∨
λ

∼= Vλ̄. Fix a linear isomor-
phism ηλ : V∗

λ → V∨
λ , which exists as the spaces Vλ and V∨

λ by assumption have
the same vector space dimension. Then there exists a unique anti-isomorphism
Sλ : End(Vλ̄) → End(Vλ) such that if we define an action of End(Vλ̄) on V∗

λ by
af = f (Sλ(a)·), then ηλ is an End(Vλ̄)-module map. Since Vλ

∼= (∨Vλ)
∨, the set {λ̄}λ∈�

coincides with �. Thus our anti-isomorphisms Sλ define an anti-isomorphism S
of A onto itself such that for each λ the dual module V∨

λ is isomorphic to V∗
λ

with action af = f (S(a)·). As explained above, the morphisms e : V∗
λ ⊗ Vλ → C and

i : C → Vλ ⊗ V∗
λ uniquely determine α and β, making S a coinverse.

In more categorical terms the above proof goes as follows. Identify M(A) with
the algebra Nat(F) of natural transformations of the forgetful functor F. Extend
isomorphisms V∗

λ
∼= V∨

λ to a natural isomorphism η from the functor U �→ F(U)∗
to the functor U �→ F(U∨). Then S, α and β are defined by

S(a)U = η∗(aU∨)∗(η∗)−1, αU = (ι ⊗ e)(ι ⊗ η ⊗ ι)(iv ⊗ ι),

βU = (ι ⊗ ev)(ι ⊗ η−1 ⊗ ι)(i ⊗ ι). 
�

In the case when A is finite dimensional the assumption on the dimensions of U
and U∨ is automatically satisfied [19]. The following example from [18] (see also [24])
shows that this is not the case in general.

Example 2.6 Let G be a discrete group, B ⊂ G a subgroup such that each double
coset BgB contains finitely many right and left cosets of B. Consider the category
C of G-graded B-bimodules M = ⊕g∈G Mg such that Mg is a finite dimensional
complex vector space for each g, and Mg �= 0 only for g in finitely many double
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cosets of B. Define a tensor structure on C by M ⊗ N = M ⊗C[B] N. Note that
C[B] is a unit object. The category is rigid with right and left dual M∨ given by
M∨

g = (Mg−1)∗ and B-bimodule structure given by (b 1 f b 2)(x) = f (b 2xb 1) for f ∈
(Mg−1)∗ and x ∈ M(b 1gb 2)−1 . The morphism i : C[B] → M ⊗ M∨ is defined by i(e) =∑

g∈G/B

∑
j∈Ig

xg, j ⊗ x∗
g, j, where {xg, j} j∈Ig is a basis in Mg with dual basis {x∗

g, j} j∈Ig , and
e : M∨ ⊗ M → C[B] is defined by e( f ⊗ x) = f (x(gh)−1)gh for f ∈ M∨

g and x ∈ Mh

when gh ∈ B, and e( f ⊗ x) = 0 when gh /∈ B.
The category C is in general not semisimple. To define a semisimple subcategory

consider a functor E from C to the category of B\G-graded finite dimensional
right B-modules defined by E(M) = C ⊗C[B] M. It is not difficult to see that E is
an equivalence of categories. Furthermore, using E the simple objects of C can be
described as follows: the modules that are supported on a single double coset BgB
(so that Mh = 0 for h /∈ BgB), and such that the right action of B ∩ g−1 Bg on E(M)Bg

is irreducible. Consider now only those modules in C which decompose into simple
ones such that the corresponding action of B ∩ g−1 Bg factors through a finite group.
Equivalently, we define a semisimple subcategory C0 of C consisting of modules M
such that the right action of B on E(M) factors through a finite group. Yet another
equivalent condition is that xb = (gbg−1)x for all g ∈ G, x ∈ Mg and b in a finite
index subgroup of B (where we use the convention that (gbg−1)x = 0 if gbg−1 /∈ B).
Using the latter characterization we see that C0 is closed under tensor product, and if
M is in C0 then M∨ is also in C0.

Consider the functor F : C0 → Vec defined by F(M) = C ⊗C[B] M. To make it a
quasi-fiber functor fix a set of representatives R for B\G. Then F(M) ∼= ⊕g∈R Mg.
For g ∈ G denote by [g] ∈ R the representative of Bg. Then define F2 as the
composition of the canonical isomorphisms

F(M) ⊗ F(N) ∼=
⊕

g,h∈R

M[gh−1] ⊗ Nh
∼=

⊕

g,h∈R

Mgh−1 ⊗ Nh

∼=
⊕

g∈R

(M ⊗ N)g
∼= F(M ⊗ N),

where in the second step we used the isomorphisms M[gh−1] → Mgh−1 given by
x �→ (gh−1[gh−1]−1)x. Thus by Proposition 2.4 the functor F : C0 → Vec defines a
discrete quasi-bialgebra A such that A -Mod f is rigid. Notice now that the dimensions
of F(M) and F(M∨) can be different. Indeed, let D = BgB be a double coset,
M = C[D]. Then M∨ = C[D−1]. We have dim F(M) = |B\D| and dim F(M∨) =
|B\D−1| = |D/B|. A simple example where these dimensions can be different is the

ax + b groups G =
(

Q∗ Q

0 1

)

, B =
(

1 Z

0 1

)

. So in this case the discrete quasi-bialgebra

A with rigid monoidal category A -Mod f fails to be quasi-Hopf.

3 The Drinfeld Category

Let G be a simply connected simple compact Lie group, g its complexified Lie
algebra. Consider the tensor category C(g) of finite dimensional g-modules. For each
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� ∈ C \ Q we shall introduce new associativity morphisms in C(g) via monodromy of
the Knizhnik–Zamolodchikov equations.

Consider the ad-invariant symmetric form on g normalized such that if we choose
a maximal torus in G and denote by h ⊂ g be the corresponding Cartan subalgebra,
then for the dual form on h∗ we have (α, α) = 2 for short roots. In other words,
if (aij)1≤i, j≤r is the Cartan matrix of g, and d1, . . . , dr the coprime positive integers
such that (diaij)i, j is symmetric, then (αi, α j) = diaij for a chosen system {α1, . . . , αr}
of simple roots. Let t = ∑

i xi ⊗ xi ∈ g ⊗ g be the element defined by this form, so
{xi}i is a basis in g and {xi}i is the dual basis. Since t is defined by an invariant form,
it is g-invariant, that is, [t, �̂(x)] = 0 for all x ∈ Ug, where �̂ : Ug → Ug ⊗ Ug is the
comultiplication. Remark also that by definition of �̂ we have

(�̂ ⊗ ι)(t) = t13 + t23, (ι ⊗ �̂)(t) = t12 + t13. (3.1)

Let V1, . . . , Vn be finite dimensional g-modules. Denote by Yn the set of points
(z1, . . . , zn) ∈ Cn such that zi �= z j for i �= j. The KZn equations is the system of
differential equations

∂v

∂zi
= �

∑

j�=i

tij
zi − z j

v, i = 1, . . . , n,

where v : Yn → V1 ⊗ · · · ⊗ Vn. This system is consistent in the sense that the
differential operators ∇i = ∂

∂zi
− �

∑
j�=i

tij
zi−z j

commute with each other, or equiva-
lently, they define a flat holomorphic connection on the trivial vector bundle over
Yn with fiber V1 ⊗ · · · ⊗ Vn. This can be checked using that t is symmetric and that
[tij + t jk, tik] = 0, which follows from Eq. 3.1 and g-invariance of t.

The consistency of the KZn equations implies that locally for each z0 ∈ Yn and
v0 ∈ V1 ⊗ · · · ⊗ Vn there exists a unique holomorphic solution v with v(z0) = v0. If
γ : [0, 1] → Yn is a path starting at γ (0) = z0, then this solution can be analytically
continued along γ . The map v0 �→ v(γ (1)) defines a linear isomorphism Mγ of
V1 ⊗ · · · ⊗ Vn onto itself. The monodromy operator Mγ depends only on the homo-
topy class of γ . In particular, for each base point z0 ∈ Yn we get a representation
of the fundamental group π1(Yn; z0) on V1 ⊗ · · · ⊗ Vn by monodromy operators.
Recall that π1(Yn; z0) is isomorphic to the pure braid group PBn, which is the
kernel of the homomorphism Bn → Sn. If V1 = · · · = Vn then the monodromy
representation extends to the whole braid group Bn; we shall briefly return to this a
bit later.

The new associativity morphism (V1 ⊗ V2) ⊗ V3 → V1 ⊗ (V2 ⊗ V3) will be a cer-
tain operator which appears naturally in computing the monodromy representations
for KZ3, it can be thought of as the monodromy operator from the asymptotic zone
|z2 − z1| � |z3 − z1| to the zone |z3 − z2| � |z3 − z1|. To proceed rigorously we need
to recall a few facts about differential equations with regular singularities. Observe
first that if

v(z1, z2, z3) = (z3 − z1)
�(t12+t23+t13)w

(
z2 − z1

z3 − z1

)

,
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then v is a solution of KZ3 if and only if w is a solution of the equation

w′(z) = �

(
t12

z
+ t23

z − 1

)

w(z), (3.2)

which we call the modified KZ3 equation.

Proposition 3.1 Let V be a f inite dimensional vector space, z �→ A(z) ∈ End(V) a
holomorphic function on the unit disc D. Assume A(0) has no eigenvalues that dif fer
by a nonzero integer. Then the equation

xG′(x) = A(x)G(x)

for G : (0, 1) → GL(V) has a unique solution such that the function H(x) =
G(x)x−A(0) extends to a holomorphic function on D with value 1 at 0.

Furthermore, if G(· ; �) is an analogous solution of xG′(x; �) = �A(x)G(x; �),
which is well-def ined for all � outside the discrete set � = {n(λ − μ)−1 | n ∈ N, λ �=
μ, λ and μ are eigenvalues of A(0)}, then H(x; �) = G(x; �)x−�A(0) is analytic on
D × (C \ �).

Proof We shall give a proof of this standard result (see e.g. [22]), mainly to remind
how the assumption on A(0) is used.

Write A(z) = ∑∞
n=0 Anzn. We look for G(x) in the form H(x)xA0 , where H(x) =∑∞

n=0 Hnxn with H0 = 1. Then H must satisfy the equation

xH′(x) = A(x)H(x) − H(x)A0, (3.3)

or equivalently, [A0, Hn] − nHn = − ∑n−1
i=0 An−i Hi for all n ≥ 1. The operator

adA0 −n on End(V) has zero kernel exactly when A0 has no eigenvalues that differ
by n. So by our assumptions there exist unique Hn satisfying the above conditions.
We then have to check that the series

∑
n Hnxn is convergent in the unit disc. Choose

c > 0 such that ‖(adA0 −n)−1‖ ≤ c for all n ≥ 1. Define numbers hn recursively
by h0 = 1, hn = c

∑n−1
i=0 ‖An−i‖hi for n ≥ 1. We clearly have ‖Hn‖ ≤ hn. On the

other hand, by construction the formal power series h(x) = ∑∞
n=0 hnxn satisfies the

equation h(x) − 1 = ϕ(x)h(x), where ϕ(x) = c
∑

n≥1 ‖An‖xn. Since ϕ is analytic on
D and ϕ(0) = 0, we see that h(x) = (1 − ϕ(x))−1 is convergent in a neighbourhood of
zero. Hence

∑
n Hnxn is also convergent in the same neighbourhood. Since a solution

of Eq. 3.3 can be continued analytically along any path in D \ {0}, we conclude that
the convergence must hold on the whole disc. Furthermore, as G(x) is invertible for
small x, it must be invertible everywhere.

Finally, if A(z; �) is analytic in two variables, then the above argument implies that
for any bounded open set U such that the assumption on A(0; �) is satisfied for all
� ∈ U , there exists a neighbourhood W of zero such that the corresponding solution
H(x; �) of Eq. 3.3 with A replaced by A(· ; �), is analytic on W × U . Fixing x0 ∈
W \ {0}, we can consider H(· ; �) as a solution of a differential equation depending
analytically on a parameter and with the analytic initial value H(x0; �) at x = x0.
Hence H(· ; ·) is analytic on D × U . 
�
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Remark 3.2 Uniqueness of G is equivalent to the following statement: if A is an
operator with no eigenvalues that differ by a nonzero integer, and the function x �→
xATx−A defined for positive x extends to an analytic function in a neighbourhood of
zero with value 1 at x = 0, then T = 1. This is easy to see directly. More generally,
if xATx−A extends to an analytic function in a neighbourhood of zero then A and T
commute.1

We will also need a multivariable version of Proposition 3.1.

Proposition 3.3 Let A1, . . . , Am : Dm → End(V) be analytic functions. Assume the
dif ferential operators ∇i = zi

∂
∂zi

− Ai(z), 1 ≤ i ≤ m, pairwise commute. Assume also
that none of the operators Ai(0) has eigenvalues which dif fer by a nonzero integer.
Then the system of equations

xi
∂G
∂xi

(x) = Ai(x)G(x), 1 ≤ i ≤ m,

has a unique GL(V)-valued solution on (0, 1)m such that the function G(x)x−A1(0)
1 . . .

x−Am(0)
m extends to an analytic function on Dm with value 1 at x = 0.

Remark that the flatness condition [∇i, ∇ j] = 0 reads as zi
∂ A j

∂zi
− z j

∂ Ai
∂z j

= [Ai, A j].
In particular, it implies that [Ai(0), A j(0)] = 0.

Proof The proposition can be proved by induction on m. To simplify the notation
we shall only sketch a proof for m = 2, which is actually the only case we shall need
later.

The unknown function H(x1, x2) = G(x1, x2)x−A1(0)
1 x−A2(0)

2 must satisfy the system
of equations

x1
∂ H
∂x1

= A1 H − H A1(0), (3.4)

x2
∂ H
∂x2

= A2 H − H A2(0). (3.5)

By the proof of Proposition 3.1 Eq. 3.4 for x2 = 0 has a unique holomorphic solution
H0 with H0(0) = 1. Using that [∇1,∇2] = 0 it is easy to check that A2(·, 0)H0 is
a holomorphic solution of Eq. 3.4 (for x2 = 0) with initial value A2(0) at x1 = 0,
hence A2(x1, 0)H0(x1) = H0(x1)A2(0) for all x1 by uniqueness. Then an argument
similar to that in the proof of Proposition 3.1 shows that in a neighbourhood of
zero there exists a unique holomorphic solution of Eq. 3.5 of the form H(x1, x2) =

1In the formal deformation setting a similar result holds without any assumption on the spectrum
of A. Namely, if x �→ xhATx−hA ∈ Matn(C)[[h]] extends analytically, meaning that every coefficient
in the power series extends analytically, then A and T commute. Indeed, we have xhATx−hA =
T + h[A, T] log x + . . ., which forces [A, T] = 0. Moreover, we see that already existence of the limit
of xhATx−hA as x → 0+ implies that A and T commute. As a result replacing analytic functions by
formal power series would simplify some of the subsequent arguments.
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∑∞
n=0 Hn(x1)xn

2 , so that H(x1, 0) = H0(x1) for small x1. It remains to show that H
also satisfies Eq. 3.4. For this one checks, using [∇1,∇2] = 0, that

x1
∂ H
∂x1

− A1 H + H A1(0)

is again a solution of Eq. 3.5. Since it is zero at x2 = 0, we conclude that it is zero
everywhere. 
�

Turning to the modified KZ3 Eq. 3.2, consider more generally the equation

w′(z) =
(

A
z

+ B
z − 1

)

w(z), (3.6)

where A and B are operators on a finite dimensional vector space V such that neither
A nor B has eigenvalues that differ by a nonzero integer. By Proposition 3.1 there
is a unique GL(V)-valued solution G0(x) on (0, 1) such that G0(x)x−A extends to a
holomorphic function on D with value 1 at 0. Fix x0 ∈ (0, 1). If w0 ∈ V then G0(x)w0

is a solution of Eq. 3.6 with initial value G0(x0)w0. If we continue it analytically
along a loop γ0 starting at x0 and turning around 0 counterclockwise then at the
end point we get G0(x0)e2π iAw0. Thus the monodromy operator defined by γ0 is
G0(x0)e2π iAG0(x0)−1. Using the change of variables z �→ 1 − z we similarly conclude
that there is a unique GL(V)-valued solution G1(x) of Eq. 3.6 such that G1(1 − x)x−B

extends to a holomorphic function on D with value 1 at 0. Then the monodromy
operator defined by a loop γ1 starting at x0 and turning around 1 counterclockwise
is G1(x0)e2π iBG1(x0)−1. The fundamental group of C \ {0, 1} with the base point x0 is
freely generated by the classes [γ0] and [γ1] of γ0 and γ1. Therefore the monodromy
representation defined by Eq. 3.6 with the base point x0 is

[γ0] �→ G0(x0)e2π iAG0(x0)−1, [γ1] �→ G1(x0)e2π iBG1(x0)−1. (3.7)

The operator �(A, B) = G1(x)−1G0(x) does not depend on x, since a solution of
Eq. 3.6 is determined by its initial value. We then see that the above representation
is equivalent to the representation

[γ0] �→ e2π iA, [γ1] �→ �(A, B)−1e2π iB�(A, B),

which does not depend on the choice of the base point. In fact it can be interpreted
as the monodromy representation with the base point 0 as follows.

Let � be the space of solutions of Eq. 3.6 on (0, 1). For each x0 ∈ (0, 1) denote by
πx0 : V → � the isomorphism such that πx0(w0) is the solution of Eq. 3.6 with initial
value w0 at x0. If γ is a curve in (0, 1) then the monodromy operator Mγ is π−1

γ (1)πγ (0).
Define πx0 : V → � for x0 = 0, 1 by letting π0(w0) = G0(·)w0 and π1(w0) = G1(·)w0.
Then G0(x0) = π−1

x0 π0, G1(x0) = π−1
x0 π1 and �(A, B) = π−1

1 π0 can be thought of as
the monodromies from 0 to x0, from 1 to x0, and from 0 to 1, respectively. This
interpretation agrees with formulas (3.7) since the monodromy operator defined by
an infinitesimal loop around zero should of course be e2π iA.

It is sometimes convenient to define π0 as follows. Let w0 be an eigenvector of
A with eigenvalue λ. Then G0(x)w0 = xλG0(x)x−Aw0. Therefore u = π0(w0) is a
solution of Eq. 3.6 such that x−λu(x) extends to a holomorphic function on D with
value w0 at 0. This completely determines π0 if A is diagonalizable. Similarly, if w0 is
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an eigenvector of B with eigenvalue λ then u = π1(w0) is a solution of Eq. 3.6 such
that x−λu(1 − x) extends to a holomorphic function on D with value w0 at 0.

We remark the following simple properties of �(A, B): if an operator C com-
mutes with A and B then it also commutes with �(A, B), and in addition �(A, B)

coincides with �(A + C, B) and �(A, B + C) if the latter operators are well-defined.
Indeed, to prove the first claim observe that esCG0(·)e−sC has the defining properties
of G0 for every s ∈ R, hence it coincides with G0, so G0 commutes with C and
similarly G1 commutes with C. For the second claim observe that if we replace A by
A + C then G0(x) and G1(x) get replaced by G0(x)xC and G1(x)xC, whence �(A +
C, B) = �(A, B). In particular, if A and B commute then �(A, B) = �(0, 0) = 1.

Furthermore, by the second part of Proposition 3.1 for any fixed A and B the
function C � � �→ �(�A, �B) is well-defined and analytic outside a discrete set. This
discrete set does not contain zero, more precisely, �(�A, �B) is defined at least for
|�| < (2 max{r(A), r(B)})−1, where r denotes the spectral radius. It can be shown [5]
that the first terms of the Taylor series look like

�(�A, �B) = 1 − �
2ζ(2)[A, B] − �

3ζ(3)([A, [A, B]] + [B, [A, B]]) + . . . ,

where ζ is the Riemann zeta function; see [11, 14] for more on this expansion.
Finally, if V is a Hermitian vector space and A∗ = −A, B∗ = −B, then �(A, B)

is unitary. Indeed, for any x0 ∈ (0, 1) the function G0(·)G0(x0)
−1 with value 1 at

x = x0 takes values in the unitary group, being an integral curve of a time-dependent
right-invariant vector field on this group. Letting x0 → 0 in the equality G0(x) =
(G0(x)G0(x0)

−1)(G0(x0)x−A
0 )xA

0 , we conclude that G0(x) is unitary for any x ∈ (0, 1).
We similarly see that G1(x) is unitary, and hence �(A, B) is unitary as well.

Returning to the modified KZ3 equation notice first that the image of the element
t in End(V1 ⊗ V2) has rational eigenvalues for any finite dimensional g-modules V1

and V2. To see this, we need to recall that

t = 1

2
(�̂(C) − 1 ⊗ C − C ⊗ 1), (3.8)

where C = ∑
i xixi is the Casimir, and that the spectrum of C consists of rational

numbers since the image of C under an irreducible representation with highest
weight λ is (λ, λ + 2ρ), where ρ is half the sum of the positive roots. It follows that
for any fixed � ∈ C \ Q∗ and all finite dimensional g-modules V1, V2 and V3 we have
a well-defined natural isomorphism �(�t12, �t23) of V = V1 ⊗ V2 ⊗ V3 onto itself.
Consider the GL(V)-valued solutions G0 and G1 of Eq. 3.2 as described above. Then

Wi(x1, x2, x3) = (x3 − x1)
�(t12+t23+t13)Gi

(
x2 − x1

x3 − x1

)

, i = 0, 1,

are GL(V)-valued solutions of KZ3 on {x1 < x2 < x3}. We have �(�t12, �t23) =
W1(z0)−1W0(z0) for any z0 = (x0

1, x0
2, x0

3). Furthermore, our considerations imply
that �(�t12, �t23) can be thought of as the monodromy operator of KZ3 from the
asymptotic zone x2 − x1 � x3 − x1 to the zone x3 − x2 � x3 − x1, and by conjugating
by W0(z0)−1 the monodromy operators of KZ3 with the base point z0 can be written
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as expressions of eπ i�t and �(�t12, �t23),2 which can be thought of as monodromy
operators with the base point at infinity in the asymptotic zone x2 − x1 � x3 − x1.

Theorem 3.4 Let � ∈ C \ Q∗. Denote by D(g, �) the category of f inite dimensional g-
modules. Then the standard tensor product, α = �(�t12, �t23) and σ = �eπ i�t def ine
on D(g, �) a structure of a braided monoidal category.

By definition D(g, �) is the category of non-degenerate finite dimensional Ĉ[G]-
modules, where Ĉ[G] is the discrete bialgebra of matrix coefficients of finite di-
mensional representations of G with convolution product, coproduct �̂(g) = g ⊗ g

and counit ε̂(g) = 1 for g ∈ G ⊂ M(Ĉ[G]). We can then reformulate Theorem 3.4
by saying that (Ĉ[G], �̂, ε̂, �(�t12, �t23), eπ i�t) is a quasitriangular discrete quasi-
bialgebra. Remark that the algebra M(Ĉ[G]) can be identified with the algebra U(G)

of closed densely defined operators affiliated with the group von Neumann algebra
W∗(G) of G.

The element �(�t12, �t23) ∈ U(G × G × G) is called the Drinfeld associator and
is often denoted by �KZ . Since from now on we are not going to consider any
other associativity morphisms apart from the trivial one and �(�t12, �t23), we write �

instead of �(�t12, �t23) if the value of � is clear from the context.

Proof of Theorem 3.4 The only nontrivial relations that we have to check are
Eqs. 2.2 and 2.3 with R = eπ i�t.

2To be precise our discussion of the monodromy of the modified KZ3 equation is not quite
enough for this conclusion because the additional factor (x3 − x1)

�(t12+t23+t13) has nontrivial mon-
odromy. In other words, the monodromy of the KZ3 equations does not reduce completely to
that of the modified KZ3 equation. This is not surprising since the map Y3 → C \ {0, 1}, z =
(x1, x2, x3) �→ x = x2−x1

x3−x1
, induces a surjective homomorphism of the fundamental groups which is

however not injective. Namely, consider the standard generators g1 and g2 of B3. It is known
that PB3 is generated by g2

1, g2
2 and g2g2

1g−1
2 . For z0 = (x0

1, x0
2, x0

3) with x0
1 < x0

2 < x0
3, represent

gi by a path γ̃i interchanging x0
i with x0

i+1 such that x0
i passes below x0

i+1. Then the images of
g2

1 and g2
2 in π1(C \ {0, 1}; x0) can be represented by the curves γ0 and γ1 introduced earlier,

so the monodromy operators of KZ3 corresponding to g2
1 and g2

2 with the base point z0 are
W0(z0)e2π i�t12 W0(z0)−1 and W1(z0)e2π i�t23 W1(z0)−1. But we still have to compute the operator
corresponding to g2g2

1g−1
2 . Consider a more general problem. By embedding V1 ⊗ V2 ⊗ V3 into

(V1 ⊕ V2 ⊕ V3)
⊗3 we may assume V1 = V2 = V3 = W. Extend the representation of PB3 to a

representation of B3 on V = W⊗3 defined by g1 �→ �12 Mγ̃1 and g2 �→ �23 Mγ̃2 . If x0 is the image of

z0 = γ̃1(0) in C \ {0, 1} then the image of γ̃1(1) is x0

x0−1
. It follows that Mγ̃1 = W0(γ̃ (1))W0(γ̃ (0))−1 =

(1 − x0)�(t12+t23+t13)G0

(
x0

x0−1

)
G0(x0)−1. Here G0

(
x0

x0−1

)
is obtained by analytic continuation of

G0 along the image of γ̃1, that is, by going through the upper half-plane. It is not difficult to

see that �12(1 − x)�(t12+t23+t13)G0

(
x

x−1

)
�12 = G0(x)eπ i�t12 , by checking that the left hand side is

a solution of the modified KZ3 equation. It follows that �12 Mγ̃1 = G0(x0)eπ i�t12 �12G0(x0)−1 =
W0(z0)eπ i�t12 �12W0(z0)−1. Similarly one checks that �23 Mγ̃2 = W1(z0)eπ i�t23 �23W1(z0)−1. Thus by
conjugating by W0(z0)−1 we see that the representation of B3 on V is equivalent to the one given by
g1 �→ eπ i�t12 �12, g2 �→ �(�t12, �t23)

−1eπ i�t23 �23�(�t12, �t23).
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To prove Eq. 2.2 consider the system KZ4 in the real simply connected domain
{x1 < x2 < x3 < x4}. Put

T = t12 + t13 + t14 + t23 + t24 + t34.

Note that T commutes with tij for all i and j. We consider five solutions of KZ4 in
our domain of the form (x4 − x1)

�T F(u, v), where u and v are certain fractions of
x j − xi corresponding to five asymptotic zones. Each asymptotic zone is associated
to a vertex of the pentagon diagram according to the following rule: if Vi and
V j are between parentheses and Vk is outside, then |x j − xi| � |xk − xi|. E.g. the
zone corresponding to ((V1 ⊗ V2) ⊗ V3) ⊗ V4 is x2 − x1 � x3 − x1 � x4 − x1, and
we claim that there exist a unique GL-valued solution W1 of KZ4 of the form

W1(x1, x2, x3, x4) = (x4 − x1)
�T F1

(
x2 − x1

x3 − x1
,

x3 − x1

x4 − x1

)

,

and a function H1(·, ·) analytic on D2 such that H1(0, 0) = 1 and

F1(u, v) = H1(u, v)u�t12v�(t12+t13+t23) for u, v ∈ (0, 1).

Indeed, one checks that F1 must satisfy the system of equations

u
∂ F1

∂u
= �

(

t12 + u
u − 1

t23 + uv

uv − 1
t24

)

F1,

v
∂ F1

∂v
= �

(

t12 + t13 + t23 + uv

uv − 1
t24 + v

v − 1
t34

)

F1. (3.9)

By Proposition 3.3 this system has a unique solution of the required form. Similarly
there exist solutions W2, W3, W4, W5 such that

W2(x1, x2, x3, x4) = (x4 − x1)
�T F2

(
x3 − x2

x3 − x1
,

x3 − x1

x4 − x1

)

,

W3(x1, x2, x3, x4) = (x4 − x1)
�T F3

(
x3 − x2

x4 − x2
,

x4 − x2

x4 − x1

)

,

W4(x1, x2, x3, x4) = (x4 − x1)
�T F4

(
x4 − x3

x4 − x2
,

x4 − x2

x4 − x1

)

,

W5(x1, x2, x3, x4) = (x4 − x1)
�T F5

(
x2 − x1

x4 − x1
,

x4 − x3

x4 − x1

)

and holomorphic functions Hi(·, ·), i = 2, 3, 4, 5, in a neighbourhood of zero with
Hi(0, 0) = 1 and such that for positive u, v we have

F2(u, v) = H2(u, v)u�t23v�(t12+t13+t23),

F3(u, v) = H3(u, v)u�t23v�(t23+t24+t34),

F4(u, v) = H4(u, v)u�t34v�(t23+t24+t34),

F5(u, v) = H5(u, v)u�t12v�t34 .
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Explicitly, one checks that F2, F3, F4 and F5 satisfy

⎧
⎪⎪⎨

⎪⎪⎩

u
∂ F2

∂u
= �

(

t23 + u
u − 1

t12 + uv

1 − v + uv
t24

)

F2,

v
∂ F2

∂v
= �

(

t12 + t13 + t23 + uv − v

1 − v + uv
t24 + v

v − 1
t34

)

F2,

(3.10)

⎧
⎪⎪⎨

⎪⎪⎩

u
∂ F3

∂u
= �

(

t23 + uv

uv − v + 1
t13 + u

u − 1
t34

)

F3,

v
∂ F3

∂v
= �

(

t23 + t24 + t34 + v

v − 1
t12 + v − uv

v − uv − 1
t13

)

F3,

(3.11)

⎧
⎪⎪⎨

⎪⎪⎩

u
∂ F4

∂u
= �

(

t34 + uv

uv − 1
t13 + u

u − 1
t23

)

F4,

v
∂ F4

∂v
= �

(

t23 + t24 + t34 + v

v − 1
t12 + uv

uv − 1
t13

)

F4,

⎧
⎪⎪⎨

⎪⎪⎩

u
∂ F5

∂u
= �

(

t12 + u
u + v − 1

t23 + u
u − 1

t24

)

F5,

v
∂ F5

∂v
= �

(

t34 + v

v − 1
t13 + v

u + v − 1
t23

)

F5.

It turns out that the solutions Wi are related as follows:

W1 = W2(� ⊗ 1), (3.12)

W2 = W3(ι ⊗ �̂ ⊗ ι)(�), (3.13)

W3 = W4(1 ⊗ �),

W4 = W5(ι ⊗ ι ⊗ �̂)(�−1),

W5 = W1(�̂ ⊗ ι ⊗ ι)(�−1),

which immediately implies Eq. 2.2. We shall only check Eqs. 3.12 and 3.13.
To prove Eq. 3.12 denote by � the operator such that W1 = W2�. Then

F1(u, v) = F2(1 − u, v)�.

For any fixed u ∈ (0, 1) the functions v �→ F1(u, v)v−�(t12+t13+t23) and v �→ F2(1 −
u, v)v−�(t12+t13+t23) extend analytically to a neighbourhood of zero. It follows that
v�(t12+t13+t23)�v−�(t12+t13+t23) extends analytically as well. By Remark 3.2 this is possible
only when � commutes with t12 + t13 + t23. It follows that

F1(u, v)v−�(t12+t13+t23) = F2(1 − u, v)v−�(t12+t13+t23)�.

Letting v = 0 in this equality and introducing g1(u) = F1(u, v)v−�(t12+t13+t23)|v=0 =
H1(u, 0)u�t12 and g2(u) = F2(u, v)v−�(t12+t13+t23)|v=0 = H2(u, 0)u�t23 , we then get

g1(u) = g2(1 − u)�.
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Furthermore, letting v = 0 in Eq. 3.9 and in the first equation of Eq. 3.10, we see that
g1 and g2 satisfy

u
dg1

du
= �

(

t12 + u
u − 1

t23

)

g1, u
dg2

du
= �

(

t23 + u
u − 1

t12

)

g2.

The functions g1(u)u−�t12 = H1(u, 0) and g2(u)u−�t23 = H2(u, 0) extend to analytic
functions on the unit disc with value 1 at 0. Thus by definition

� = �(�t12, �t23) = � ⊗ 1.

To prove Eq. 3.13 denote again by � the element such that W2 = W3�. Then

F2(u, v) = F3

(
uv

1 − v + uv
, 1 − v + uv

)

�.

As in the argument for Eq. 3.12, but now fixing v instead of u, we first conclude that
� commutes with t23. Thus

F2(u, v)u−�t23v−�t23

= F3

(
uv

1 − v + uv
, 1 − v + uv

) (
uv

1 − v + uv

)−�t23

(1 − v + uv)−�t23�.

So letting u = 0 and introducing gi(v) = Fi(u, v)u−�t23v−�t23 |u=0 for i = 2, 3, we get

g2(v) = g3(1 − v)�.

Furthermore, from the second equations in Eqs. 3.10 and 3.11 we obtain

v
dg2

dv
= �

(

t12 + t13 + v

v − 1
(t24 + t34)

)

g2,

v
dg3

dv
= �

(

t24 + t34 + v

v − 1
(t12 + t13)

)

g3.

The functions g2(v)v−�(t12+t13) = H2(0, v) and g3(v)v−�(t24+t34) = H3(0, v) extend to
analytic functions in the unit disc with value 1 at 0. Therefore

� = �(�t12 + �t13, �t24 + �t34).

As t12 + t13 = (ι ⊗ �̂ ⊗ ι)(t12) and t24 + t34 = (ι ⊗ �̂ ⊗ ι)(t23), we get

� = (ι ⊗ �̂ ⊗ ι)(�(�t12, �t23)) = (ι ⊗ �̂ ⊗ ι)(�).

To prove Eq. 2.3 observe that the second relation in Eq. 2.3 follows from the
first one by flipping the first and the third factors and using that t = t21 and �321 =
�−1. The latter equality is easily obtained from the change of variables z �→ 1 − z
in Eq. 3.2.

Turning to the proof of the first identity in Eq. 2.3, consider the system KZ3 in the
simply connected space

� = {(z1, z2, z3) ∈ Y3 | �z1 ≤ �z2 ≤ �z3}.
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Consider the real domain {(x1, x2, x3) | x1 < x2 < x3} and two GL-valued solutions of
KZ3 in this domain of the form

W0(x1, x2, x3) = (x3 − x1)
�(t12+t23+t13) H0

(
x2 − x1

x3 − x1

)(
x2 − x1

x3 − x1

)�t12

,

W1(x1, x2, x3) = (x3 − x1)
�(t12+t23+t13) H1

(
x3 − x2

x3 − x1

)(
x3 − x2

x3 − x1

)�t23

.

Similarly we have solutions of KZ3 in the real domain {(x1, x2, x3) | x1 < x3 < x2}
such that

W2(x1, x2, x3) = (x2 − x1)
�(t12+t23+t13) H2

(
x3 − x1

x2 − x1

)(
x3 − x1

x2 − x1

)�t13

,

W3(x1, x2, x3) = (x2 − x1)
�(t12+t23+t13) H3

(
x2 − x3

x2 − x1

)(
x2 − x3

x2 − x1

)�t23

,

and solutions in the real domain {(x1, x2, x3) | x3 < x1 < x2} such that

W4(x1, x2, x3) = (x2 − x3)
�(t12+t23+t13) H4

(
x1 − x3

x2 − x3

)(
x1 − x3

x2 − x3

)�t13

,

W5(x1, x2, x3) = (x2 − x3)
�(t12+t23+t13) H5

(
x2 − x1

x2 − x3

)(
x2 − x1

x2 − x3

)�t12

.

We require the functions Hi to be analytic on the unit disc with value 1 at 0. The
functions Wi extend uniquely to solutions of KZ3 on �. By definition of � we
immediately have

W0 = W1�, W2 = W3�132, W4 = W5�312. (3.14)

We next compare W2 and W4. Consider the set

�2 = {(z1, z2, z3) ∈ � : |z3 − z1| < |z2 − z1|}.
It has two connected components, �+

2 and �−
2 , corresponding to the two possible

orientations of the pair of vectors (z2 − z1, z3 − z1) (if the vectors are colinear, first
perturb (z1, z2, z3) in �). The initial real domain of definition of W2 is contained in
�+

2 , so

W2(z1, z2, z3) = (z2 − z1)
�(t12+t23+t13) H2

(
z3 − z1

z2 − z1

)(
z3 − z1

z2 − z1

)�t13

for (z1, z2, z3) ∈ �+
2 . (3.15)

Similarly the set �4 = {(z1, z2, z3) ∈ � : |z3 − z1| < |z2 − z3|} has two connected
components �+

4 and �−
4 , with �+

4 containing the initial domain of definition of W4,
and

W4(z1, z2, z3) = (z2 − z3)
�(t12+t23+t13) H4

(
z1 − z3

z2 − z3

)(
z1 − z3

z2 − z3

)�t13

for (z1, z2, z3) ∈ �+
4 . (3.16)
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In the latter expression (z1 − z3)
�t13 means the function on � obtained by analytic

continuation of (x1 − x3)
�t13 from the real domain {x3 < x1 < x2}. On the other hand,

(z3 − z1)
�t13 in Eq. 3.15 is obtained by analytic continuation from {x1 < x3 < x2}.

Going from the first real domain to the second within � changes the argument of
x1 − x3 by −π , so that (x1 − x3)

�t13 in the second domain is (x3 − x1)
�t13 e−iπ�t13 . In

other words, we can rewrite Eq. 3.16 as

W4(z1, z2, z3) = (z2 − z3)
�(t12+t23+t13) H4

(
z1 − z3

z2 − z3

)(
z3 − z1

z2 − z3

)�t13

e−π i�t13 (3.17)

for (z1, z2, z3) ∈ �+
4 , and now all the power functions on the right hand sides of

Eqs. 3.15 and 3.17 are obtained by analytic continuation from the real domain
{x1 < x3 < x2}.

We are now in a position to compute the operator � such that W2 = W4�. For a
real point (x1, x2, x3) such that x1 < x3 < x2 and x3 − x1 < x2 − x3, which belongs to
�+

2 ∩ �+
4 , put

x = x3 − x1

x2 − x1
.

Then by virtue of Eqs. 3.15 and 3.17 the equality W2 = W4� implies

H2(x)x�t13 = (1 − x)�(t12+t23+t13) H4

(
x

x − 1

)(
x

1 − x

)�t13

e−π i�t13�.

Since H2 and H4 are analytic in a neighbourhood of zero and H2(0) = H4(0) = 1,
we see that the function x�t13 e−π i�t13�x−�t13 extends to an analytic function in a
neighbourhood of zero with value 1 at 0. By Remark 3.2 this is possible only when
e−π i�t13� = 1.

Similar considerations apply to the pairs (W1, W3) and (W0, W5), and we get

W0 = W5eπ i�(t13+t23), W1 = W3eπ i�t23 , W2 = W4eπ i�t13 . (3.18)

Equations 3.14 and 3.18 imply

e−π i�(t13+t23)�312eπ i�t13�−1
132eπ i�t23� = 1.

As (�̂ ⊗ ι)(t) = t13 + t23, this is exactly the first identity in Eq. 2.3. 
�

4 Theorem of Kazhdan and Lusztig

For q ∈ C \ {0} not a root of unity consider the quantized universal enveloping
algebra Uqg. To fix notation recall that it is generated by elements Ei, Fi, Ki, K−1

i ,
1 ≤ i ≤ r, satisfying the relations

Ki K−1
i = K−1

i Ki = 1, Ki K j = K jKi, Ki E jK−1
i = q

aij

i E j, Ki F jK−1
i = q

−aij

i F j,

Ei F j − F jEi = δij
Ki − K−1

i

qi − q−1
i

,

1−aij∑

k=0

(−1)k
[

1 − aij

k

]

qi

Ek
i E jE

1−aij−k
i = 0,

1−aij∑

k=0

(−1)k
[

1 − aij

k

]

qi

Fk
i F jF

1−aij−k
i = 0,
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where
[

m
k

]

qi

= [m]qi !
[k]qi ![m−k]qi ! , [m]qi ! = [m]qi [m − 1]qi . . . [1]qi , [n]qi = qn

i −q−n
i

qi−q−1
i

and qi =
qdi . This is a Hopf algebra with coproduct �̂q and counit ε̂q defined by

�̂q(Ki) = Ki ⊗ Ki, �̂q(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, �̂q(Fi) = Fi ⊗ K−1
i + 1 ⊗ Fi,

ε̂q(Ei) = ε̂q(Fi) = 0, ε̂q(Ki) = 1.

If V is a finite dimensional Uqg-module and λ ∈ P ⊂ h∗ is an integral weight,
denote by V(λ) the space of vectors v ∈ V of weight λ, so that Kiv = qλ(hi)

i v for
all i, where hi ∈ h is such that α j(hi) = aij. Recall that V is called admissible if
V = ⊕λ∈PV(λ). Consider the tensor category of finite dimensional admissible Uqg-
modules. It is a semisimple category with simple objects indexed by dominant
integral weights λ ∈ P+. For each λ ∈ P+ we fix an irreducible Uqg-module Vq

λ with

highest weight λ. Denote by Ĉ[Gq] the discrete bialgebra defined by our category, so

Ĉ[Gq] ∼= ⊕λ∈P+ End(Vq
λ ). Denote by U(Gq) the multiplier algebra M(Ĉ[Gq]).

The discrete bialgebra Ĉ[Gq] is quasitriangular. The universal R-matrix R�

depends on the choice of � ∈ C such that q = eπ i�. From now on we write qx instead
of eπ i�x, provided the choice of � is clear from the context. The R-matrix R� can
can be defined by an explicit formula, see e.g. [3, Theorem 8.3.9], but for us it will be
enough to remember that it is characterized by �̂

op
q = R��̂q(·)R−1

�
and the following

property. Let λ, μ ∈ P+. Denote by λ̄ ∈ P+ the weight −w0λ, where w0 is the longest
element in the Weyl group. Then −λ is the lowest weight of Vq

λ̄
, so there exists a

nonzero vector ζ
q
λ̄

∈ Vq
λ̄
(−λ) such that Fiζ

q
λ̄

= 0. Denote also by ξ
q
μ a highest weight

vector of Vq
μ, so Eiξ

q
μ = 0. Then

R�

(
ζ

q
λ̄

⊗ ξq
μ

) = q−(λ,μ)ζ
q
λ̄

⊗ ξq
μ. (4.1)

This indeed characterizes R� since ξ
q
μ ⊗ ζ

q
λ̄

is a cyclic vector in Vq
μ ⊗ Vq

λ̄
. Notice that

there exists d ∈ N such that d(λ, μ) ∈ Z for all λ, μ ∈ P. Therefore for each q we get
only finitely many different R-matrices R�.

Denote by C(g, �) the strict braided monoidal category of admissible finite
dimensional Uqg-modules with braiding defined by R�.

Finally, if q > 0 then Ĉ[Gq] is a discrete ∗-bialgebra, with the ∗-operation defined
on Uqg by for example K∗

i = Ki, E∗
i = Fi Ki, F∗

i = K−1
i Ei. Furthermore, q = eπ i�

for a unique � ∈ iR. Then R∗
�

= (R�)21, so (Ĉ[Gq], �̂q, ε̂q,R�) is a quasitriangular
discrete ∗-bialgebra.

Since the irreducible Uqg-modules and g-modules are both parameterized by
dominant integral weights, we have a canonical isomorphism between the centers
of Ĉ[G] and Ĉ[Gq]. We can now formulate the main result.

Theorem 4.1 Let q > 0 and � ∈ iR be such that q = eπ i�. Then there exists a uni-
tary twist F ∈ U(G × G) such that the quasitriangular discrete ∗-quasi-bialgebras
(Ĉ[G], �̂, ε̂, �(�t12, �t23), eπ i�t)F and (Ĉ[Gq], �̂q, ε̂q, 1,R�) are ∗-isomorphic, via an
isomorphism extending the canonical identif ication of the centers.

We call an element F in the above theorem a unitary Drinfeld twist.
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We shall say that a statement holds for generic � if it holds for � outside a
countable set.

Lemma 4.2 Assume a unitary Drinfeld twist exists for generic � ∈ iR. Then a unitary
Drinfeld twist exists for all � ∈ iR.

Proof It suffices to show that if �n → � ∈ iR∗ and a unitary Drinfeld twist exists for
every �n then it exists for �.

For each n fix a ∗-isomorphism ϕn : U(Gqn) → U(G), where qn = eπ i�n , and a
unitary Drinfeld twist Fn. By compactness of finite dimensional unitary groups,
passing to a subsequence we may assume that {Fn}n converges (in the strong operator
topology) to a unitary F ∈ W∗(G)⊗̄W∗(G).

Denote the generators of Uqng by Ei(qn), Fi(qn), Ki(qn). Denote also by
π

qn
λ : Uqng → End(Vqn

λ ), resp. πλ : Ug → End(Vλ), an irreducible ∗-representation
of Uqng, resp. Ug, with highest weight λ. We claim that the sequences {(πλ ◦
ϕn)(Ei(qn))}n are bounded for any λ. Indeed, since ϕn extends the canonical iden-
tification of the centers by assumption, the representation πλ ◦ ϕn is unitarily equiva-
lent to π

qn
λ . Normalize the scalar product on Vqn

λ by requiring that the highest weight
vector ξ

qn
λ has norm one. Then the scalar products

(
π

qn
λ (Fi1(qn) . . . Fik(qn))ξ

qn
λ , π

qn
λ (F j1(qn) . . . F jl (qn))ξ

qn
λ

)

converge to similar scalar products for q = eπ i�, which can easily be checked by
induction on k + l using F∗

i = K−1
i Ei and the quantum Serre relations. Choose a

set of multiindices (i1, . . . , ik) such that the vectors (π
q
λ (Fi1(q) . . . Fik(q))ξ

q
λ form a

basis in Vq
λ . It then follows that the same expressions for qn define a basis in Vqn

λ

whenever n is sufficiently large. By applying the orthonormalization procedure we
obtain an orthonormal basis in Vqn

λ . The matrix coefficients of π
qn
λ (Ei(qn)) in this

basis are determined by the scalar products
(
π

qn
λ (Ei(qn))π

qn
λ (Fi1(qn) . . . Fik(qn))ξ

qn
λ , π

qn
λ (F j1(qn) . . . F jl (qn))ξ

qn
λ

)
.

It follows that they converge to the corresponding matrix coefficients of π
q
λ (Ei(q)).

In particular, the sequence {πqn
λ (Ei(qn))}n is bounded, and hence so is {(πλ ◦

ϕn)(Ei(qn))}n. Similar arguments apply to the other generators of Uqng.
By passing to a subsequence, we may therefore assume that the operators (πλ ◦

ϕn)(T(qn)), where T(qn) is any of the generators Ei(qn), Fi(qn), Ki(qn) of Uqng,
converge for every dominant integral weight λ. For each λ the operators we get in
the limit define a ∗-representation π̃λ : Uqg → End(Vλ). It is a representation with
highest weight λ, so for dimension reasons it must be equivalent to the irreducible
representation with highest weight λ. The representations π̃λ define a ∗-isomorphism
ϕ : U(Gq) → U(G). As {(πλ ◦ ϕn)(T(qn))}n converges to (πλ ◦ ϕ)(T(q)) for each gen-
erator T(qn) of Uqng, the limit F of {Fn}n is a unitary Drinfeld twist with respect to
ϕ (e.g. the identity �(�t12, �t23)F = 1 holds because �(�nt12, �nt23) → �(�t12, �t23)).


�

Therefore it suffices to prove Theorem 4.1 for generic � ∈ iR. Furthermore,
by Proposition 2.3 it is enough to show that (Ĉ[G], �̂, ε̂, �(�t12, �t23), eπ i�t)F and
(Ĉ[Gq], �̂q, ε̂q, 1,R�) are isomorphic for a (not necessarily unitary) twist F ∈ U(G ×
G). By Proposition 2.1(ii) the existence of such an isomorphism can be reformulated
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in categorical terms as follows, where we now consider complex parameters instead
of only purely imaginary ones.

Theorem 4.3 For generic � ∈ C and q = eπ i� there exists a C-linear braided monoidal
equivalence F : D(g, �) → C(g, �) such that F maps an irreducible g-module with
highest weight λ onto an irreducible Uqg-module with highest weight λ, and the
composition of F with the forgetful functor C(g, �) → Vec is naturally isomorphic to
the forgetful functor D(g, �) → Vec.

We will start proving this theorem in the next section. In the remaining part of this
section we want to make a few remarks that will not be important later.

The result holds for all � /∈ Q∗ by [8, 12, 13]. Recall that since Uqg is a Hopf
algebra, the category C(g, �) is rigid, with a right dual to V defined by V∨ = V∗,
af = f (Ŝq(a) ·), where Ŝq is the coinverse. It follows that D(g, �) is a rigid tensor
category as well. Let us show that rigidity for all � /∈ Q∗ follows already from
Theorem 4.3;3 in particular, (Ĉ[G], �̂, ε̂, �(�t12, �t23), eπ i�t) is a discrete quasi-Hopf
algebra for all � /∈ Q∗ by Proposition 2.5. As we have said, this result will not be used
later, but it is in fact the first step in extending Theorem 4.3 to all � /∈ Q∗.

For an element β = ∑
i niαi of the root lattice put Kβ = ∏

i Kni
i ∈ Uqg and hβ =∑

i nidihi ∈ h, so that λ(hβ) = (λ, β). For a finite dimensional g-module V denote by
d(V) the dimension of V and by dq(V) the quantity Tr(qh2ρ ), where ρ is half the sum
of the positive roots. We use the same notation dq(V) for the quantum dimension
Tr(K2ρ) of a module V in C(g, �).

Recall that we denote by iv : C → V ⊗ V∗ and ev : V∗ ⊗ V → C the standard maps
making V∗ a right dual of V in Vec.

Corollary 4.4 Let � /∈ Q∗, q = eπ i�, and V be an irreducible g-module. Then a right
dual of V in D(g, �) can be def ined by V∨ = V∗ with the usual g-module structure
given by X f = − f (X·) for X ∈ g, and iV = iv , eV = dq(V)

d(V)
ev .

Proof We shall only check that the composition

V
iV⊗ι−−→ (V ⊗ V∗) ⊗ V

�−→ V ⊗ (V∗ ⊗ V)
ι⊗eV−−→ V

is the identity map. By continuity it suffices to prove this for generic �.
Assume V is an irreducible module with highest weight λ. The map eV coincides

with the composition

V∗ ⊗ V
�qt−−→ V ⊗ V∗ q(λ+2ρ,λ)dq(V)�V−−−−−−−−−→ C,

where �V is the unique left inverse of iV in D(g, �), that is, �V(v ⊗ f ) = d(V)−1 f (v).
To see this one just has to check how both maps act on the one-dimensional
submodule iV(C) and then observe that t acts on this submodule as multiplication
by −(λ + 2ρ, λ), which follows from Eq. 3.8.

3As well as from the original result of Drinfeld in the formal deformation case.
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It follows that we equivalently have to show that the composition

V
iV⊗ι−−→ (V ⊗ V∗) ⊗ V

�−→ V ⊗ (V∗ ⊗ V)
ι⊗�qt−−−→ V ⊗ (V ⊗ V∗)

ι⊗q(λ+2ρ,λ)dq(V)�V−−−−−−−−−−→ V

is the identity map. This computation can be done in the equivalent strict tensor
category C(g, �). In other words, we have to check that for an irreducible module V
with highest weight λ in C(g, �) the composition

V
i′V⊗ι−−→ V ⊗ V∗ ⊗ V

ι⊗�R�−−−−→ V ⊗ V ⊗ V∗ ι⊗q(λ+2ρ,λ)dq(V)�′
V−−−−−−−−−−→ V (4.2)

is the identity map, where i′V : C → V ⊗ V∗ is an isomorphism onto the submodule
with trivial Uqg-action and �′

V is the unique left inverse of i′V . To show this, first of
all notice that as i′V is unique up to a scalar, the composition does not depend on the
choice of i′V . Hence we may assume that i′V is given by the same formula as iv . Then
the left inverse map �′

V in C(g, �) is given by

V ⊗ V∗ → C, v ⊗ f �→ dq(V)−1 f (K2ρv),

as can be checked using that the coinverse Ŝq has the property Ŝ2
q(a) = K2ρaK−1

2ρ .

Computing composition (4.2) we are then left to check that Ŝq((R�)0)K2ρ(R�)1

acts on V as multiplication by q−(λ+2ρ,λ). As V is irreducible, we know that
Ŝq((R�)0)K2ρ(R�)1 acts as a scalar, so it suffices to check how it acts on a highest
weight vector, which is easy to compute using the explicit formula for the R-matrix.


�

5 Representing the Forgetful Functor

To prove Theorem 4.3 we first of all have to introduce a tensor structure on the
forgetful functor D(g, �) → Vec. The goal is to represent this functor by an object,
then by Lemma 2.2 a weak tensor structure on the functor is equivalent to a
comonoid structure on the representing object.

It is clear that within D(g, �) we do not have a representing object. If we
however allow infinite dimensional modules then there is an obvious choice, the
universal enveloping algebra Ug. Namely, for any g-module V we have a canonical
isomorphism

Homg(Ug, V) → V, f �→ f (1).

It is however more convenient to consider the Lie algebra g̃ = g ⊕ h. Viewing g-
modules as g̃-modules (with the second copy of h acting trivially), the forgetful
functor is clearly naturally isomorphic to Homg̃(U g̃, ·). Recall that g̃ comes with a
structure of a Manin triple. Namely, denote by b+ and b− the Borel subalgebras
of g, and by n± ⊂ b± their nilpotent subalgebras. Consider b+ and b− as Lie
subalgebras of g̃ via the embeddings η± : b± → g ⊕ h, η±(x) = (x, ±x̄), where x �→ x̄
is the projection g = n+ ⊕ h ⊕ n− → h. Then (g̃, b+, b−) is a Manin triple with the
symmetric form on g̃ given by

(
(x1, y1), (x2, y2)

) = (x1, x2) − (y1, y2). Denote by t̃
the element of g̃ ⊗ g̃ defined by this symmetric form.

Identifying Ub+ with U g̃ ⊗Ub− C, we consider Ub+ as a g̃-module, which we de-
note by M+. Similarly define M− as U g̃ ⊗Ub+ C. Then M = M+ ⊗ M− is isomorphic
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to U g̃ as a g̃-module by the Poincare-Birkhoff-Witt theorem, so M represents the
forgetful functor. We now want to define a comonoid structure on M.

Denote by 1+ the canonical cyclic vector of M+. Then there exists a unique g̃-
module map δ+ : M+ → M+ ⊗ M+ such that 1+ �→ 1+ ⊗ 1+. This is nothing else
than the comultiplication �̂ : Ub+ → Ub+ ⊗ Ub+. In particular, δ+ is coassociative.
Ignore for the moment that M+ is infinite dimensional and observe that δ+ is
also coassociative with respect to �̃ = �(�t̃12, �t̃23), that is, (ι ⊗ δ+)δ+ = �̃(δ+ ⊗ ι)δ+.
Indeed, formally it is enough to check this on the vector 1+, and this follows immedi-
ately as �̃ acts trivially on the vector 1+ ⊗ 1+ ⊗ 1+ since the vector is annihilated
by t̃12 and t̃23. We thus see that M+ is a comonoid. For similar reasons M− is a
comonoid. Now we want to define a comonoid structure on M = M+ ⊗ M−, and
there is basically one way to define a morphism δ : M → M ⊗ M using δ+ and δ−,
namely, as the composition

M+ ⊗ M−
δ+⊗δ−−−−→ (M+ ⊗ M+) ⊗ (M− ⊗ M−)

(�̃⊗ι)�̃−1
12,3,4−−−−−−→ (M+ ⊗ (M+ ⊗ M−)) ⊗ M−

ι⊗�eπ i�t̃⊗ι−−−−−−→ (M+ ⊗ (M− ⊗ M+)) ⊗ M−
�̃12,3,4(�̃

−1⊗ι)−−−−−−−−→ (M+ ⊗ M−) ⊗ (M+ ⊗ M−). (5.1)

As M+ and M− are infinite dimensional, it is not obvious how to make sense of this
construction. So our first goal is to find a representing module which is approximated
by finite dimensional ones.

For every dominant integral weight μ fix an irreducible g-module Vμ with highest
weight μ. Fix also a highest weight vector ξμ ∈ Vμ. We assume that V0 = C and
ξ0 = 1. The construction of the representing object is based on the following standard
representation theoretic fact, see e.g. [25]: if V is a finite dimensional g-module and
λ an integral weight then the map

Homg(Vμ̄ ⊗ Vλ+μ, V) → V(λ), f �→ f (ζμ̄ ⊗ ξλ+μ), (5.2)

is an isomorphism for sufficiently large dominant integral weights μ, where V(λ) ⊂ V
is the subspace of vectors of weight λ and ζμ̄ is a lowest weight vector in Vμ̄. Remark
that the above map is always injective as the vector ζμ̄ ⊗ ξλ+μ is cyclic.

We need to make a consistent choice of lowest weight vectors. For this recall that
if we fix Chevalley generators ei, fi, hi, 1 ≤ i ≤ r, of g then for any g-module V there
is an action of the braid group Bg associated to g on V, see e.g. [15]. Consider the
canonical section Wg → Bg and denote by θ ∈ Bg the transformation corresponding
to the longest element w0 in the Weyl group Wg. Then θ : V → V is a natural
isomorphism having the following properties. If V and W are g-modules then the
action of θ on V ⊗ W coincides with θ ⊗ θ . Next, θ maps V(λ) onto V(w0λ). In
particular, θξμ is a lowest weight vector in Vμ, which we denote by ζμ. Finally, for
all 1 ≤ i ≤ r we have θ fi = −eīθ , where ī is such that αī = ᾱi = −w0αi.

For an integral weight λ and dominant integral weights μ and η such that λ + μ is
dominant consider the composition of morphisms

trημ,λ+μ : Vμ̄+η̄ ⊗ Vλ+μ+η

Tμ̄,η̄⊗Tη,λ+μ−−−−−−→ Vμ̄ ⊗ Vη̄ ⊗ Vη ⊗ Vλ+μ

ι⊗Sη⊗ι−−−−→ Vμ̄ ⊗ Vλ+μ, (5.3)
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where the morphisms T and S are uniquely determined by

Tμ,η : Vμ+η → Vμ ⊗ Vη, ξμ+η �→ ξμ ⊗ ξη,

and

Sη : Vη̄ ⊗ Vη → C, ζη̄ ⊗ ξη �→ 1.

Notice that Tμ,ηζμ+η = ζμ ⊗ ζη by the properties of θ . It follows that

trημ,λ+μ(ζμ̄+η̄ ⊗ ξλ+μ+η) = ζμ̄ ⊗ ξλ+μ,

and this completely determines trημ,λ+μ. Using these morphisms define the inverse
limit g-module

Mλ = lim←−
μ

Vμ̄ ⊗ Vλ+μ.

We consider Mλ as a topological g-module with a base of neighborhoods of zero
formed by the kernels of the canonical morphisms Mλ → Vμ̄ ⊗ Vλ+μ. Observe that
trημ,λ+μ is surjective since its image contains the cyclic vector ζμ̄ ⊗ ξλ+μ. It follows
that the morphisms Mλ → Vμ̄ ⊗ Vλ+μ are surjective. Hence, if V is a g-module
with discrete topology, then any continuous morphism Mλ → V factors through
Vμ̄ ⊗ Vλ+μ for some μ, so that the space Homg(Mλ, V) of such morphisms is the
inductive limit of Homg(Vμ̄ ⊗ Vλ+μ, V).4 In particular, for any finite dimensional g-
module V the maps (5.2) induce a linear isomorphism

Homg(Mλ, V) → V(λ).

Therefore the topological g-module M = ⊕λ∈P Mλ, where P is the lattice of integral
weights, represents the forgetful functor.

There is an obvious deficiency in the construction of the module Mλ: we did not
take into account the associativity morphisms in the composition (5.3). So a more
natural morphism in D(g, �) is the composition

Vμ̄+η̄ ⊗ Vλ+μ+η → (Vμ̄ ⊗ Vη̄) ⊗ (Vη ⊗ Vλ+μ)
(�⊗ι)�−1

12,3,4−−−−−−→ (Vμ̄ ⊗ (Vη̄ ⊗ Vη))

⊗ Vλ+μ → Vμ̄ ⊗ Vλ+μ.

Remark that we could instead use (ι ⊗ �−1)�1,2,34 as the middle morphism, but by
the coherence theorem of Mac Lane we would get the same composition.

The problem now is that we do not get a coherent system of morphisms Vμ̄+η̄ ⊗
Vλ+μ+η → Vμ̄ ⊗ Vλ+μ. It turns out that this can be rectified by rescaling. First we
need a lemma.

Lemma 5.1 Denote by g�
μ,η the image of ζμ̄+η̄ ⊗ ξμ+η under the composition

Vμ̄+η̄ ⊗ Vμ+η

Tμ̄,η̄⊗Tη,μ−−−−−→ Vμ̄ ⊗ Vη̄ ⊗ Vη ⊗ Vμ

(ι⊗Sη⊗ι)B−−−−−−→ Vμ̄ ⊗ Vμ

Sμ−→ C,

4Alternatively one can consider Mλ as an object in the category pro-C(g) obtained by free completion
of C(g) under inverse limits. Then by definition Hom(Mλ, V) is the inductive limit of Homg(Vμ̄ ⊗
Vλ+μ, V).
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where B = (� ⊗ ι)�−1
12,3,4. Then for generic � the map (μ, η) �→ g�

μ,η is a C∗-valued
symmetric normalized 2-cocycle on the semigroup P+ of dominant integral weights,
that is,

g�

μ,η = g�

η,μ, g�

0,η = g�

μ,0 = 1, g�

λ+μ,ηg�

λ,μ = g�

λ,μ+ηg�

μ,η.

In fact using that D(g, �) is rigid one can show that g�
μ,η �= 0 for all � /∈ Q∗.

Proof It is easy to see that g0
μ,η = 1. As g�

μ,η is analytic in � outside a discrete set, we
conclude that g�

μ,η �= 0 for generic �.
That g�

0,η = g�

μ,0 = 1 is immediate as the associator is equal to 1 as long as one of
the modules is trivial.

To show that g�
μ,η is a cocycle first observe that the compositions

Vλ+μ+η

Tλ+μ,η−−−→ Vλ+μ ⊗ Vη

Tλ,μ⊗ι−−−→ Vλ ⊗ Vμ ⊗ Vη
�−→ Vλ ⊗ Vμ ⊗ Vη

and

Vλ+μ+η

Tλ,μ+η−−−→ Vλ ⊗ Vμ+η

ι⊗Tμ,η−−−→ Vλ ⊗ Vμ ⊗ Vη

coincide. To see this we just have to check how these morphisms act on the highest
weight vector and then observe that � acts trivially on ξλ ⊗ ξμ ⊗ ξη, since both t12

and t23 preserve the one-dimensional space spanned by this vector and in particular
commute on this space. Next observe that the composition in the formulation of the
lemma coincides with g�

μ,ηSμ+η by definition. It turns out that these two properties
are enough to establish the cocycle property g�

λ+μ,ηg�

λ,μ = g�

λ,μ+ηg�
μ,η. To show this we

can and shall strictify the category D(g, �) and thus omit � in all computations. For
example the equality of the above two compositions now reads as

(Tλ,μ ⊗ ι)Tλ+μ,η = (ι ⊗ Tμ,η)Tλ,μ+η. (5.4)

Then the morphisms

Vλ̄+μ̄+η̄ ⊗ Vλ+μ+η → C

given by

Sλ(ι ⊗ Sμ ⊗ ι)(ι ⊗ ι ⊗ Sη ⊗ ι ⊗ ι)(ι ⊗ Tμ̄,η̄ ⊗ Tη,μ ⊗ ι)
(
Tλ̄,μ̄+η̄ ⊗ Tμ+η,λ

)

and

Sλ(ι ⊗ Sμ ⊗ ι)
(
Tλ̄,μ̄ ⊗ Tμ,λ

)
(ι ⊗ Sη ⊗ ι)

(
Tλ̄+μ̄,η̄ ⊗ Tη,λ+μ

)

coincide. On the other hand, the first morphism is equal to

Sλ

(
ι ⊗ g�

μ,ηSμ+η ⊗ ι
)(

Tλ̄,μ̄+η̄ ⊗ Tμ+η,λ

) = g�

μ,ηg�

λ,μ+ηSλ+μ+η,

whereas the second morphism equals

g�

λ,μSλ+μ

(
ι ⊗ Sη ⊗ ι

)(
Tλ̄+μ̄,η̄ ⊗ Tη,λ+μ

) = g�

λ,μg�

λ+μ,ηSλ+μ+η.

Since Sλ+μ+η �= 0 we get g�
μ,ηg�

λ,μ+η = g�

λ,μg�

λ+μ,η.
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It remains to check that the cocycle is symmetric. First observe that Tμ,η coincides
with the composition

Vμ+η

Tη,μ−−→ Vη ⊗ Vμ

q−(μ,η)�qt−−−−−→ Vμ ⊗ Vη,

where q = eπ i�. To see this we again look at the action on the highest weight vector.
Then the claim follows from

t(ξη ⊗ ξμ) = (μ, η)ξη ⊗ ξμ, (5.5)

which is a consequence of Eq. 3.8 and the fact that C acts on Vλ as multiplication by
(λ, λ + 2ρ). We now strictify D(g, �) and do all computations omitting �. Denote by
σ the braiding in our new strict category. By definition we have

Sμ

(
ι ⊗ Sη ⊗ ι

)(
Tμ̄,η̄ ⊗ Tη,μ

) = g�

μ,ηSμ+η.

As

Tμ,η = q(μ,η)σ−1Tη,μ, (5.6)

we can rewrite this as

g�

μ,ηSμ+η = Sμ(ι ⊗ Sη ⊗ ι)(σ−1 ⊗ σ)
(
Tη̄,μ̄ ⊗ Tμ,η

)
.

By the hexagon identities σ12,3 = (σ ⊗ ι)(ι ⊗ σ) and σ−1
1,23 = (σ−1 ⊗ ι)(ι ⊗ σ−1) we

have

σ−1 ⊗ σ = (
σ−1

1,23 ⊗ ι
)
(ι ⊗ σ12,3).

Therefore by naturality of σ we get

g�

μ,ηSμ+η = Sμ(ι ⊗ Sη ⊗ ι)(σ−1
1,23 ⊗ ι)(ι ⊗ σ12,3)

(
Tη̄,μ̄ ⊗ Tμ,η

)

= Sμ(Sη ⊗ ι ⊗ ι)(ι ⊗ σ12,3)
(
Tη̄,μ̄ ⊗ Tμ,η

)

= Sη(ι ⊗ ι ⊗ Sμ)(ι ⊗ σ12,3)
(
Tη̄,μ̄ ⊗ Tμ,η

)

= Sη(ι ⊗ Sμ ⊗ ι)
(
Tη̄,μ̄ ⊗ Tμ,η

)

= g�

η,μSμ+η.

Hence g�
μ,η = g�

η,μ. 
�

It is well-known that a symmetric cocycle must be a coboundary. We formulate
this in the following a bit more precise form.

Lemma 5.2 Let (μ, η) �→ cμ,η be a C∗-valued symmetric normalized 2-cocycle on P+.
Then for any nonzero complex numbers b 1, . . . , br there exists a unique map P+ �
μ �→ bμ ∈ C∗ such that

cμ,η = bμ+ηb−1
μ b−1

η , b 0 = 1, bωi = bi for i = 1, . . . , r.

Here ω1, . . . , ωr are the fundamental weights.
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Proof It is clear that the map b is unique if it exists. To show existence, for a weight
μ ∈ P+, μ = k1ω1 + . . . + krωr, put |μ| = k1 + . . . + kr. Define bμ by induction on
|μ| as follows. If μ − ωi is dominant for some i then put bμ = cμ−ωi,ωi bμ−ωi bωi . We
have to check that bμ is well-defined. In other words, if μ = ν + ωi + ω j then we must
show that

cν+ω j,ωi b ν+ω jbωi = cν+ωi,ω jb ν+ωi bω j .

Using the cocycle identities

cν+ω j,ωi cν,ω j = cν,ωi+ω jcωi,ω j and cν+ωi,ω jcν,ωi = cν,ω j+ωi cω j,ωi

and that cωi,ω j = cω j,ωi , we equivalently have to check that

cν,ωi b ν+ω jbωi = cν,ω jb ν+ωi bω j .

Since cν,ωi = b ν+ωi b
−1
ν b−1

ωi
and cν,ω j = b ν+ω jb

−1
ν b−1

ω j
by the inductive assumption, the

identity indeed holds.
Therefore we have constructed a map b such that b 0 = 1, bωi = bi and cμ,ωi =

bμ+ωi b
−1
μ b−1

ωi
for i = 1, . . . , r and μ ∈ P+. By induction on |η| one can easily check

that the identity cμ,η = bμ+ηb−1
μ b−1

η holds for all μ, η ∈ P+. 
�

For generic � fix a map P+ � μ �→ g�
μ ∈ C∗ such that

g�

μ,ηg�

μg�

η = g�

μ+η.

In Section 7 we shall require an additional property of this map, which determines
the cochain g�

μ up to a character of the quotient P/Q of the weight lattice by the root
lattice, but in this section as well as in the next one any g�

μ will do.
Define S�

μ = g�
μSμ : Vμ̄ ⊗ Vμ → C. We modify Eq. 5.3 by introducing the maps

trη,�

μ,λ+μ : Vμ̄+η̄ ⊗ Vλ+μ+η

Tμ̄,η̄⊗Tη,λ+μ−−−−−−→ Vμ̄ ⊗ Vη̄ ⊗ Vη ⊗ Vλ+μ

(ι⊗S�
η ⊗ι)B−−−−−−→ Vμ̄ ⊗ Vλ+μ,

(5.7)

where B = (� ⊗ ι)�−1
12,3,4.

Lemma 5.3 The morphisms (5.7) are coherent, that is, the composition

Vμ̄+η̄+ν̄ ⊗ Vλ+μ+η+ν

trν,�
μ+η,λ+μ+η−−−−−→ Vμ̄+η̄ ⊗ Vλ+μ+η

trη,�
μ,λ+μ−−−→ Vμ̄ ⊗ Vλ+μ

coincides with trη+ν,�

μ,λ+μ.

Proof We strictify D(g, �) once again. Then the composition trη,�

μ,λ+μ trν,�
μ+η,λ+μ+η

equals

(
ι ⊗ S�

η ⊗ ι
)(

Tμ̄,η̄ ⊗ Tη,λ+μ

)(
ι ⊗ S�

ν ⊗ ι
)(

Tμ̄+η̄,ν̄ ⊗ Tν,λ+μ+η

)

= (
ι ⊗ S�

η ⊗ ι
)(

ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)(

Tμ̄,η̄ ⊗ ι ⊗ ι ⊗ Tη,λ+μ

)(
Tμ̄+η̄,ν̄ ⊗ Tν,λ+μ+η

)
.
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Using Eq. 5.4 this can be written
(
ι ⊗ S�

η ⊗ ι
)(

ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)(

ι ⊗ Tη̄,ν̄ ⊗ Tν,η ⊗ ι
)(

Tμ̄,η̄+ν̄ ⊗ Tη+ν,λ+μ

)
.

By definition of g�
η,ν and using that g�

η,νg�
η g�

ν = g�
η+ν we have

S�

η

(
ι ⊗ S�

ν ⊗ ι
)(

Tη̄,ν̄ ⊗ Tν,η

) = S�

η+ν .

Therefore the above expression equals
(
ι ⊗ S�

η+ν ⊗ ι
)(

Tμ̄,η̄+ν̄ ⊗ Tη+ν,λ+μ

) = trη+ν,�

μ,λ+μ . 
�

Using the morphisms trη,�

μ,λ+μ we can therefore define a g-module

M�

λ = lim←−
μ

Vμ̄ ⊗ Vλ+μ.

Again we consider M�

λ as a topological g-module with a base of neighbourhoods of
zero given by the kernels of the maps M�

λ → Vμ̄ ⊗ Vλ+μ, while any module in D(g, �)

is considered with discrete topology.

Proposition 5.4 For λ ∈ P and generic � ∈ C the topological module M�

λ is isomor-
phic to Mλ. In particular, for any such � the functor D(g, �) → Vec, V �→ V(λ), is
naturally isomorphic to Homg

(
M�

λ , ·).

Proof Fix a regular dominant integral weight μ (that is, μ lies in the interior of the
Weyl chamber). Then nμ dominates any other weight for sufficiently large n. Choose
n0 ∈ N such that n0μ + λ ≥ 0. Then Mλ is isomorphic to the inverse limit of

Vn0μ̄ ⊗ Vλ+n0μ

trμn0μ,λ+n0μ←−−−−− V(n0+1)μ̄ ⊗ Vλ+(n0+1)μ

trμ(n0+1)μ,λ+(n0+1)μ←−−−−−−−−− V(n0+2)μ̄ ⊗ Vλ+(n0+2)μ ←− . . . ,

and M�

λ is the inverse limit of

Vn0μ̄ ⊗ Vλ+n0μ

trμ,�
n0μ,λ+n0μ←−−−−− V(n0+1)μ̄ ⊗ Vλ+(n0+1)μ

trμ,�

(n0+1)μ,λ+(n0+1)μ←−−−−−−−−− V(n0+2)μ̄ ⊗ Vλ+(n0+2)μ ←− . . . .

It is therefore enough to find isomorphisms fn of Vnμ̄ ⊗ Vλ+nμ onto itself such that
for all n ≥ n0 we have

fn trμnμ,λ+nμ = trμ,�
nμ,λ+nμ fn+1.

We construct fn by induction on n. Take fn0 to be the identity map. Assuming
that fn is constructed, observe that trμnμ,λ+nμ is surjective since it maps the vector
ζ(n+1)μ̄ ⊗ ξλ+(n+1)μ onto the cyclic vector ζnμ̄ ⊗ ξλ+nμ. It follows that for generic � the
map trμ,�

nμ,λ+nμ is surjective as well. Therefore both maps fn trμnμ,λ+nμ and trμ,�
nμ,λ+nμ are

surjective. This is enough to conclude that fn+1 exists. Indeed, the claim is that if
g1 and g2 are surjective morphisms V → W of finite dimensional g-modules then
there exists an isomorphism f of V onto itself such that g1 f = g2. To see this we can
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reduce to the situation when V = U ⊗ Cn and W = U ⊗ Cm for some irreducible g-
module U . Then gi = ι ⊗ hi, where hi : Cn → Cm is a linear surjective map. Clearly
we can find an invertible linear map h : Cn → Cn such that h1h = h2, and then put
f = ι ⊗ h. 
�

6 A Comonoid Structure on the Representing Object

In the previous section we showed that for generic � ∈ C the topological g-module

M� = ⊕λ∈P M�

λ

represents the forgetful functor D(g, �) → Vec. In this section we shall turn the
functor Homg(M�, ·) into a tensor functor. To do this we introduce a comonoid
structure on M�.

Define

M�

λ1
⊗̂M�

λ2
= lim←−−−

μ1 ,μ2

(
Vμ̄1 ⊗ Vλ1+μ1

) ⊗ (
Vμ̄2 ⊗ Vλ2+μ2

)

and then

M�⊗̂M� =
∏

λ1,λ2∈P

M�

λ1
⊗̂M�

λ2
.

Higher tensor powers of M� are defined similarly. We want to define

δ� : M� → M�⊗̂M�.

The restriction of δ� to M�

λ composed with the projection M�⊗̂M� → M�

λ1
⊗̂M�

λ2
will

be nonzero only if λ = λ1 + λ2, so δ� is determined by maps

δ�

λ1,λ2
: M�

λ1+λ2
→ M�

λ1
⊗̂M�

λ2
.

Motivated by Eq. 5.1 we define these morphisms using the compositions

m�

μ,η,λ1,λ2
: Vμ̄+η̄ ⊗ Vλ1+λ2+μ+η

Tμ̄,η̄⊗Tλ1+μ,λ2+η−−−−−−−−−→ (Vμ̄ ⊗ Vη̄) ⊗ (Vλ1+μ ⊗ Vλ2+η)

q(λ1+μ,η) B−1(ι⊗�qt⊗ι)B−−−−−−−−−−−−−→ (Vμ̄ ⊗ Vλ1+μ) ⊗ (Vη̄ ⊗ Vλ2+η),

(6.1)

where q = eπ i� and B = (� ⊗ ι)�−1
12,3,4.

Lemma 6.1 The morphisms m� are consistent with the morphisms tr·,� def ining the
inverse limits, so they def ine morphisms δ�

λ1,λ2
: M�

λ1+λ2
→ M�

λ1
⊗̂M�

λ2
.

Proof We have to check that
(

trν,�
μ,λ1+μ ⊗ trω,�

η,λ2+η

)
m�

μ+ν,η+ω,λ1,λ2
= m�

μ,η,λ1,λ2
trν+ω,�

μ+η,λ1+λ2+μ+η . (6.2)

Since

trν,�
μ,λ1+μ ⊗ trω,�

η,λ2+η = (
trν,�

μ,λ1+μ ⊗ι ⊗ ι
)(

ι ⊗ ι ⊗ trω,�
η,λ2+η

)
,
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it suffices to check this assuming that either ν or ω is zero. We shall only consider the
case ω = 0. We therefore have to check that

(
trν,�

μ,λ1+μ ⊗ι ⊗ ι
)
m�

μ+ν,η,λ1,λ2
= m�

μ,η,λ1,λ2
trν,�

μ+η,λ1+λ2+μ+η . (6.3)

We strictify D(g, �). Denote by σ the braiding in the strict tensor category. In the
computation below we omit subindices of the morphisms T since they are completely
determined by the target modules. We will keep track of some of them to get the right
power of q. Thus by definition of tr·,� and m� the left hand side of Eq. 6.3 is equal to

q(λ1+μ+ν,η)
(
ι ⊗ S�

ν ⊗ ι ⊗ ι ⊗ ι
)
(Tμ̄,ν̄ ⊗ T ⊗ ι ⊗ ι)(ι ⊗ σ ⊗ ι)(Tμ̄+ν̄,η̄ ⊗ T)

= q(λ1+μ+ν,η)
(
ι ⊗ S�

ν ⊗ ι ⊗ ι ⊗ ι
)
(ι ⊗ ι ⊗ σ1,23 ⊗ ι)(Tμ̄,ν̄ ⊗ ι ⊗ T ⊗ ι)(Tμ̄+ν̄,η̄ ⊗ T).

Using the identity (Tμ̄,ν̄ ⊗ ι)Tμ̄+ν̄,η̄ = (ι ⊗ Tν̄,η̄)Tμ̄,ν̄+η̄, see Eq. 5.4, the above expres-
sion can be written as

q(λ1+μ+ν,η)
(
ι ⊗ S�

ν ⊗ ι ⊗ ι ⊗ ι
)
(ι ⊗ ι ⊗ σ1,23 ⊗ ι)(ι ⊗ Tν̄,η̄ ⊗ ι ⊗ T)(Tμ̄,ν̄+η̄ ⊗ T).

By Eq. 5.6 we have Tν̄,η̄ = q−(ν̄,η̄)σ Tη̄,ν̄ = q−(ν,η)σ Tη̄,ν̄ , so we get

q(λ1+μ,η)
(
ι ⊗ S�

ν ⊗ ι ⊗ ι ⊗ ι
)
(ι ⊗ ι ⊗ σ1,23 ⊗ ι)(ι ⊗ σ T ⊗ ι ⊗ T)(T ⊗ T).

By the hexagon identity we have (ι ⊗ σ1,23)(σ ⊗ ι ⊗ ι) = σ1,234, so the above expres-
sion equals

q(λ1+μ,η)
(
ι ⊗ S�

ν ⊗ ι ⊗ ι ⊗ ι
)
(ι ⊗ σ1,234 ⊗ ι)(ι ⊗ T ⊗ ι ⊗ T)(T ⊗ T).

Using again that (T ⊗ ι)T = (ι ⊗ T)T, we get

q(λ1+μ,η)
(
ι ⊗ S�

ν ⊗ ι ⊗ ι ⊗ ι
)
(ι ⊗ σ1,234 ⊗ ι)(T ⊗ ι ⊗ ι ⊗ T)(T ⊗ T)

= q(λ1+μ,η)(ι ⊗ σ ⊗ ι)
(
ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)
(T ⊗ ι ⊗ ι ⊗ T)(T ⊗ T)

= q(λ1+μ,η)(ι ⊗ σ ⊗ ι)(T ⊗ T)
(
ι ⊗ S�

ν ⊗ ι
)
(T ⊗ T),

which is exactly the right hand side of Eq. 6.3. 
�

Using the morphisms δ�

λ1,λ2
we can in an obvious way define morphisms

(δ� ⊗ ι)δ�, (ι ⊗ δ�)δ� : M� → M�⊗̂M�⊗̂M�.

Lemma 6.2 We have �(δ� ⊗ ι)δ� = (ι ⊗ δ�)δ�.

Proof For λ1, λ2, λ3 ∈ P we have to check that

�
(
δ�

λ1,λ2
⊗ ι

)
δ�

λ1+λ2,λ3
= (

ι ⊗ δ�

λ2,λ3

)
δ�

λ1,λ2+λ3
.

This reduces to showing that

�12,34,56
(
m�

μ1,μ2,λ1,λ2
⊗ ι ⊗ ι

)
m�

μ1+μ2,μ3,λ1+λ2,λ3

= (
ι ⊗ ι ⊗ m�

μ2,μ3,λ2,λ3

)
m�

μ1,μ2+μ3,λ1,λ2+λ3
.

Let us first check that the powers of q in the definition of m� match. On the left
hand side we have q(λ1+μ1,μ2)+(λ1+λ2+μ1+μ2,μ3), whereas on the right hand side we get
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q(λ2+μ2,μ3)+(λ1+μ1,μ2+μ3), which obviously coincide. Strictifying and omitting subindices
in T, as we did in the proof of the previous lemma, it remains to show that

(ι ⊗ σ ⊗ ι ⊗ ι ⊗ ι)(T ⊗ T ⊗ ι ⊗ ι)(ι ⊗ σ ⊗ ι)(T ⊗ T)

= (ι ⊗ ι ⊗ ι ⊗ σ ⊗ ι)(ι ⊗ ι ⊗ T ⊗ T)(ι ⊗ σ ⊗ ι)(T ⊗ T).

By naturality of the braiding, the left hand side equals

(ι ⊗ σ ⊗ ι ⊗ ι ⊗ ι)(ι ⊗ ι ⊗ σ1,23 ⊗ ι)(T ⊗ ι ⊗ T ⊗ ι)(T ⊗ T),

whereas the right hand side equals

(ι ⊗ ι ⊗ ι ⊗ σ ⊗ ι)(ι ⊗ σ12,3 ⊗ ι ⊗ ι)(ι ⊗ T ⊗ ι ⊗ T)(T ⊗ T).

As (T ⊗ ι)T = (ι ⊗ T)T, we thus only need to check that

(σ ⊗ ι ⊗ ι)(ι ⊗ σ1,23) = (ι ⊗ ι ⊗ σ)(σ12,3 ⊗ ι),

which is immediate from the hexagon identities σ1,23 = (ι ⊗ σ)(σ ⊗ ι) and σ12,3 =
(σ ⊗ ι)(ι ⊗ σ). 
�

We next introduce a morphism ε� : M� → C by requiring it to be nonzero only
on M�

0 , where we set it to be the canonical morphism M�

0 → V0̄ ⊗ V0 = C, so that
ε� : M�

0 → C is determined by the morphisms

trμ,�

0,0 = S�

0 : Vμ̄ ⊗ Vμ → C.

Lemma 6.3 We have (ε� ⊗ ι)δ� = ι = (ι ⊗ ε�)δ�.

Proof We have to check that on M�

λ we have (ε� ⊗ ι)δ�

0,λ = ι = (ι ⊗ ε�)δ�

λ,0. This
follows from the fact that m�

0,η,0,λ and m�

μ,0,λ,0 are the identity maps. 
�

Therefore M� is a comonoid, so Homg(M�, ·) becomes a weak tensor functor
D(g, �) → Vec.

Proposition 6.4 For generic � ∈ C the weak tensor functor Homg(M�, ·) : D(g, �) →
Vec is a tensor functor.

Proof Let V and W be finite dimensional g-modules. We have to show that for
generic � the map

Homg(M�, V) ⊗ Homg(M�, W) → Homg(M�, V ⊗ W), f ⊗ g �→ ( f ⊗ g)δ�,

is a linear isomorphism. As Homg(M�, V) = ⊕λ∈P Homg(M�

λ , V) (notice that the
direct sum is finite, because Homg(M�

λ , V) �= 0 only if V(λ) �= 0), we equivalently
have to check that for any λ ∈ P the map

⊕

λ1+λ2=λ

Homg

(
M�

λ1
, V

) ⊗ Homg

(
M�

λ2
, W

) → Homg

(
M�

λ , V ⊗ W
)
,

fλ1 ⊗ gλ2 �→ ( fλ1 ⊗ gλ2)δ
�

λ1,λ2
,
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is an isomorphism for generic �. As Homg(M�
λ , V) is the inductive limit of

Homg(Vμ̄ ⊗ Vλ+μ, V), it suffices to check that for fixed λ ∈ P and all sufficiently large
μ1 and μ2 the map

⊕

λ1+λ2=λ

Homg(Vμ̄1 ⊗ Vλ1+μ1 , V) ⊗ Homg(Vμ̄2 ⊗ Vλ2+μ2 , W)

→ Homg(Vμ̄1+μ̄2 ⊗ Vλ1+λ2+μ1+μ2 , V ⊗ W),

which maps fλ1 ⊗ gλ2 onto ( fλ1 ⊗ gλ2)m
�

μ1,μ2,λ1,λ2
, is an isomorphism for generic �.

As the map is analytic in � outside a discrete set, it suffices to check that it is an
isomorphism for � = 0. For sufficiently large μ1 we have isomorphisms Homg(Vμ̄1 ⊗
Vλ1+μ1 , V) → V(λ1), f �→ f (ζμ̄1 ⊗ ξλ1+μ1), and similar isomorphisms for W and V ⊗
W. It is then easy to verify that under these isomorphisms the above map (for � = 0)
becomes

⊕

λ1+λ2=λ

V(λ1) ⊗ W(λ2) → (V ⊗ W)(λ), v ⊗ w �→ v ⊗ w,

which is clearly an isomorphism. 
�

Recall that the construction of the comonoid M� depends on the choice of a 1-
cochain g�

μ with coboundary g�
μ,η.

Lemma 6.5 Up to an isomorphism the comonoid M� does not depend on the
choice of g�

μ.

Proof Assume that g̃�
μ is another cochain. Denote by M̃� the new comonoid.

The map χ : P+ → C∗ defined by χ(μ) = g̃�
μ(g�

μ)−1 is a homomorphism. Then it
is straightforward to check that the morphisms Vμ̄ ⊗ Vλ+μ → Vμ̄ ⊗ Vλ+μ given by
multiplication with χ(μ) induce an isomorphism of M̃� and M� which respects their
comonoid structures. 
�

So far we have constructed for generic � ∈ C a tensor functor D(g, �) → Vec.
Up to natural isomorphisms of tensor functors the construction is canonical. Fur-
thermore, disregarding the tensor structure the functor is naturally isomorphic to
the forgetful functor. By the discussion after Proposition 2.1 (or by combining
Propositions 2.4 and 2.1(ii)) it already follows that for generic � a twisting of
(Ĉ[G], �̂, ε̂, �(�t12, �t23), eπ i�t) is isomorphic to a discrete bialgebra, or equivalently,
there exists a twist F� ∈ U(G × G) such that �(�t12, �t23)F� = 1. In the next section
we will show that this bialgebra is isomorphic to Ĉ[Gq] by turning the tensor functor
D(g, �) → Vec into an equivalence of the braided monoidal categories D(g, �)

and C(g, �).
In the remaining part of the section we will summarize how one gets a twist F�

such that �(�t12, �t23)F� = 1 in the form of an “algorithm”.

1. For μ, η ∈ P+ compute the image g�
μ,η of ζμ̄+η̄ ⊗ ξμ+η under the composition

Vμ̄+η̄ ⊗ Vμ+η

Tμ̄,η̄⊗Tη,μ−−−−−→ Vμ̄ ⊗ Vη̄ ⊗ Vη ⊗ Vμ

(ι⊗Sη⊗ι)B−−−−−−→ Vμ̄ ⊗ Vμ

Sμ−→ C,
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where B is (� ⊗ ι)�−1
12,3,4. Fix nonzero numbers z1, . . . , zr. For μ = ωi1 + · · · + ωik

put

g�

μ = zi1

k−1∏

l=1

g�

ωi1 +···+ωil ,ωil+1
zil+1 .

2. Fix a regular dominant integral weight μ. For each λ ∈ P choose nλ ∈ N such that
nλμ + λ ≥ 0. Then inductively choose isomorphisms f λ

n , n ≥ nλ, of Vnμ̄ ⊗ Vλ+nμ

onto itself such that f λ
nλ

is the identity map and for each n ≥ nλ the following
diagram commutes:

Vnμ̄ ⊗ Vλ+nμ

trμnμ,λ+nμ←−−−− V(n+1)μ̄ ⊗ Vλ+(n+1)μ

f λ
n

⏐
⏐
�

⏐
⏐
� f λ

n+1

Vnμ̄ ⊗ Vλ+nμ

trμ,�
nμ,λ+nμ←−−−− V(n+1)μ̄ ⊗ Vλ+(n+1)μ,

where trμ,�
nμ,λ+nμ is the composition

V(n+1)μ̄ ⊗ Vλ+(n+1)μ

Tnμ̄,μ̄⊗Tμ,λ+nμ−−−−−−−−→ Vnμ̄ ⊗ Vμ̄ ⊗ Vμ ⊗ Vλ+nμ

(ι⊗g�
μ Sμ⊗ι)B−−−−−−−→ Vnμ̄ ⊗ Vλ+nμ

with B = (� ⊗ ι)�−1
12,3,4, and trμnμ,λ+nμ is defined similarly with g�

μ and � trivial.
3. Let η, ν ∈ P+. Then F� is defined by requiring that it acts on the space Vη ⊗ Vν

by the operator F�
η,ν such that for weights λ1 and λ2 with Vη(λ1) �= 0, Vν(λ2) �= 0

and λ = λ1 + λ2 the following diagram commutes:

Homg (Vnμ̄ ⊗ Vλ1+nμ, Vη) ⊗ Homg (Vmμ̄ ⊗ Vλ2+mμ, Vν ) ��

��

Homg (V(n+m)μ̄ ⊗ Vλ+(n+m)μ, Vη ⊗ Vν )

��
Vη(λ1) ⊗ Vν (λ2)

(F�
η,ν )−1

�� (Vη ⊗ Vν )(λ)

where the left vertical arrow is the map

f ⊗ g �→ f f λ1
n (ζnμ̄ ⊗ ξλ1+nμ) ⊗ gf λ2

m (ζmμ̄ ⊗ ξλ2+mμ),

the right vertical arrow is the map

f �→ f f λ1+λ2
n+m (ζ(n+m)μ̄ ⊗ ξλ+(n+m)μ)

and finally the top horizontal arrow maps f ⊗ g onto the composition

V(n+m)μ̄ ⊗ Vλ+(n+m)μ

Tnμ̄,mμ̄⊗Tλ1+nμ,λ2+mμ−−−−−−−−−−−→ (
Vnμ̄ ⊗ Vmμ̄

) ⊗ (
Vλ1+nμ ⊗ Vλ2+mμ

)

q(λ1+nμ,mμ) B−1(ι⊗�qt⊗ι)B−−−−−−−−−−−−−−−→ (
Vnμ̄ ⊗ Vλ1+nμ

) ⊗ (
Vmμ̄ ⊗ Vλ2+mμ

)

f⊗g−−→ Vη ⊗ Vν
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with q = eπ i� and B = (� ⊗ ι)�−1
12,3,4. Here n and m can be any natural numbers

large enough so that n ≥ nλ1 , m ≥ nλ2 , n + m ≥ nλ1+λ2 and the vertical arrows are
isomorphisms.

7 Representing Uqg by Endomorphisms of the Functor

In this section we will show that Uqg, q = eπ i�, can be represented by endomor-
phisms of the functor Homg(M�, ·), so Homg(M�, ·) can be considered as a functor
D(g, �) → C(g, �). For this it is natural to try to define an action of the opposite
algebra (Uqg)op on M�. We will show a bit less, namely, that there is an action of a
larger algebra Uqg̃ such that the corresponding action on the functor factors through
Uqg.

Denote by Uqg̃ the universal algebra generated by elements Ei, Fi, Ki, K−1
i , 1 ≤

i ≤ r, such that

Ki K−1
i = K−1

i Ki = 1, Ki K j = K jKi, Ki E jK−1
i = q

−aij

i E j,

Ki F jK−1
i = q

aij

i F j, Ei F j − F jEi = −δij
Ki − K−1

i

qi − q−1
i

.

This is a Hopf algebra with coproduct �̂q defined by

�̂q(Ki) = Ki ⊗ Ki, �̂q(Ei) = Ei ⊗ 1 + Ki ⊗ Ei, �̂q(Fi) = Fi ⊗ K−1
i + 1 ⊗ Fi.

The action of Uqg̃ on M� = ⊕λ∈P M�

λ will be such that

Ei M�

λ ⊂ M�

λ−αi
, Fi M�

λ ⊂ M�

λ+αi
, Ki|M�

λ
= qλ(hi)

i .

From now on we shall write λ(i) instead of λ(hi) to simplify notation. Therefore
λ(1), . . . , λ(r) are the coefficients of λ in the basis ω1, . . . , ωr.

Recalling that M�

λ is the inverse limit of Vμ̄ ⊗ Vλ+μ, to define Fi we need
consistent morphisms

Vμ̄+η̄ ⊗ Vλ+μ+η → Vμ̄ ⊗ Vλ+αi+μ.

These will be defined using morphisms Vλ+μ+η → Vη ⊗ Vλ+αi+μ, or in other words,
morphisms

Vμ+η−αi → Vμ ⊗ Vη.

Up to a scalar there exists only one such morphism. Indeed, if μ(i), η(i) ≥ 1, then the
weight space (Vμ ⊗ Vη)(μ + η − αi) is spanned by the vectors fiξμ ⊗ ξη and ξμ ⊗ fiξη.
The vector

μ(i)ξμ ⊗ fiξη − η(i) fiξμ ⊗ ξη

is the only vector in this space, up to a scalar, which is killed by ei. The corresponding
morphism is defined by

τi;μ,η : Vμ+η−αi → Vμ ⊗ Vη, ξμ+η−αi �→ μ(i)ξμ ⊗ fiξη − η(i) fiξμ ⊗ ξη. (7.1)
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Remark that we also have

τi;μ,η(ζμ+η−αi) = −μ(i)ζμ ⊗ eīζη + η(i)eīζμ ⊗ ζη, (7.2)

as can be easily checked using the properties of θ discussed in Section 5.
Up to a scalar the morphism Vμ̄+η̄ ⊗ Vλ+μ+η → Vμ̄ ⊗ Vλ+αi+μ will be defined as

the composition

Vμ̄+η̄ ⊗ Vλ+μ+η

Tμ̄,η̄⊗τi;η,λ+αi+μ−−−−−−−−→ Vμ̄ ⊗ Vη̄ ⊗ Vη ⊗ Vλ+αi+μ

(ι⊗S�
η ⊗ι)B−−−−−−→ Vμ̄ ⊗ Vλ+αi+μ,

where B = (� ⊗ ι)�−1
12,3,4. To find the right normalization we want these maps to

define the usual action of g on the forgetful functor for � = 0. It is not difficult to
check that for � = 0 we have to divide the above map by η(i). More importantly,
we want the above maps to be consistent with tr·,� for all �. We are then forced to
find out how the associator � composes with morphisms Vμ+η+ν−αi → Vμ ⊗ Vη ⊗ Vν

obtained by combining the maps τ and T. The space of all possible morphisms is
isomorphic to the two-dimensional subspace of Vμ ⊗ Vη ⊗ Vν of vectors of weight
μ + η + ν − αi killed by ei. Therefore we have to compute the operator �(A, B) for
two-by-two matrices A and B.

Lemma 7.1 Let A =
(

a + b 0
c 0

)

and B =
(−b − c a

0 0

)

be such that the numbers

a, b , c, a + b , a + c, b + c, a + b + c are non-integral. Consider the eigenvectors

e1 =
(

a + b
c

)

, e2 =
(

0
b

)

of A and the eigenvectors

f1 =
(

a
b + c

)

, f2 =
(

b
0

)

of B. Then
(

b −c
0 b + c

) (
e1

e2

)

=
(

0 a + b
b −a

)(
f1

f2

)

and

�(A, B)

(
sin πb − sin πc

0 sin π(b + c)

)

×
⎛

⎜
⎝

1

�(1+a+b)�(1+c)�(1− (a+b +c))
0

0
1

�(1+a)�(1+b)�(1− (a+b))

⎞

⎟
⎠

(
e1

e2

)

=
(

0 sin π(a + b)

sin πb − sin πa

)

×
⎛

⎜
⎝

1

�(1+a)�(1+b +c)�(1− (a+b +c))
0

0
1

�(1+b)�(1+c)�(1− (b +c))

⎞

⎟
⎠

(
f1

f2

)

.
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Proof The equation v′ = ( A
x + B

x−1

)
v, where v : (0, 1) → C2, has the form

⎧
⎪⎨

⎪⎩

v′
0 =

(
a + b

x
− b + c

x − 1

)

v0 + a
x − 1

v1

v′
1 = c

x
v0.

It follows that u = v1 satisfies the Gauss differential equation

x(1 − x)u′′ + (γ − (α + β + 1)x)u′ − αβu = 0, (7.3)

where α = −a, β = c, γ = 1 − a − b . Denote by � the space of solutions of this
equation on (0, 1). By our discussion on page 14 the operator �(A, B) can be written
as π−1

1 π0, where the linear isomorphisms π0, π1 : C2 → � are defined as follows. If ξ

is an eigenvector of A with eigenvalue λ then π0(ξ) is the unique solution u ∈ � such
that the vector valued function

(0, 1) � x �→ x−λ

⎛

⎝

x
c

u′(x)

u(x)

⎞

⎠

extends to a holomorphic function on the unit disc with value ξ at x = 0. Similarly,
if ξ is an eigenvector of B with eigenvalue λ then π1(ξ) is the unique solution u ∈ �

such that the vector valued function

(0, 1) � x �→ x−λ

⎛

⎝

1 − x
c

u′(1 − x)

u(1 − x)

⎞

⎠

extends to a holomorphic function on the unit disc with value ξ at x = 0.
Recall that the Euler hypergeometric function F(α, β, γ ; ·) is the unique solution

u of Eq. 7.3 which is analytic on the unit disc and such that u(0) = 1, u′(0) = αβ/γ .
Consider the following four solutions of Eq. 7.3:

u1 = x1−γ (1 − x)γ−α−β F(1 − α, 1 − β, 2 − γ ; x),

u2 = F(α, β, γ ; x),

u3 = F(α, β, 1 + α + β − γ ; 1 − x),

u4 = x1−γ (1 − x)γ−α−β F(1 − α, 1 − β, 1 − α − β + γ ; 1 − x).

Then it is immediate that the isomorphisms π0 and π1 are given by

π0(e1) = cu1, π0(e2) = bu2, π1( f1) = (b + c)u3, π1( f2) = − bc
1 − b − c

u4.

We have the following identity, see e.g. [6]:

�(α)�(β)

�(α + β − γ + 1)
u3 = �(α)�(β)�(1 − γ )

�(α − γ + 1)�(β − γ + 1)
u2 + �(γ − 1)u1.

Substituting x for 1 − x and γ for 1 + α + β − γ we also get

�(α)�(β)

�(γ )
u2 = �(α)�(β)�(γ − α − β)

�(γ − α)�(γ − β)
u3 + �(α + β − γ )u4.
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A direct but tedious computation using these identities together with the identities
�(1 + x) = x�(x) and �(x)�(1 − x) = π/ sin πx yields the result. 
�

Define morphisms

τ�

i;μ,η = τi;μ,η

�(1 + �diμ(i))�(1 + �diη(i))�(1 − �di(μ(i) + η(i)))
: Vμ+η−αi → Vμ ⊗ Vη,

(7.4)

where τi;μ,η is defined by Eq. 7.1.
The subspace of Vμ ⊗ Vη ⊗ Vν of vectors of weight μ + η + ν − αi killed by ei is

spanned by the vectors

η(i)ξμ ⊗ ξη ⊗ fiξν − ν(i)ξμ ⊗ fiξη ⊗ ξν and μ(i)ξμ ⊗ fiξη ⊗ ξν − η(i) fiξμ ⊗ ξη ⊗ ξν.

This space is invariant under the operators t12 and t23. In the above basis these
operators have the form

t12 =
(

(μ, η) 0
diν(i) (μ, η) − diμ(i) − diη(i)

)

, t23 =
(

(η, ν) − diη(i) − diν(i) diμ(i)
0 (η, ν)

)

.

To see this first recall that t(ξμ ⊗ ξη) = (μ, η)ξμ ⊗ ξη by Eq. 5.5. Using g-invariance
of t we therefore get

t( fiξμ ⊗ ξη + ξμ ⊗ fiξη) = fit(ξμ ⊗ ξη) = (μ, η)( fiξμ ⊗ ξη + ξμ ⊗ fiξη). (7.5)

Using (μ, αi) = diμ(i) and (αi, ρ) = di and arguing as for Eq. 5.5 we get

t|τi;μ,η(Vμ+η−αi )
= (μ, η) − diμ(i) − diη(i), (7.6)

whence

t(μ(i)ξμ ⊗ fiξη − η(i) fiξμ ⊗ ξη)

= ((μ, η) − diμ(i) − diη(i))
(
μ(i)ξμ ⊗ fiξη − η(i) fiξμ ⊗ ξη

)
.

By virtue of this identity and Eq. 7.5 we conclude that

t
(

fiξμ ⊗ ξη

) = ((μ, η) − diη(i)) fiξμ ⊗ ξη + diμ(i)ξμ ⊗ fiξη.

Applying the flip we also get

t
(
ξη ⊗ fiξμ

) = ((μ, η) − diη(i))ξη ⊗ fiξμ + diμ(i) fiξη ⊗ ξμ.

These two identities and Eq. 5.5 imply the above matrix forms of t12 and t23.
Recall now that �(A, B) = �(A − α, B − β) for any scalars α and β. So replacing

t12 by t12 − ((μ, η) − diμ(i) − diη(i))1 and t23 by t23 − (η, ν)1 we are in a position to
apply Lemma 7.1 with a = �diμ(i), b = �diη(i) and c = �diν(i). One checks that
the vectors e1, e2, f1, f2 in the lemma are exactly the images of �diη(i)ξμ+η+ν−αi

under the morphisms (Tμ,η ⊗ ι)τi;μ+η,ν , (τi;μ,η ⊗ ι)Tμ+η−αi,ν , (ι ⊗ Tη,ν)τi;μ,η+ν and
(ι ⊗ τi;η,ν)Tμ,η+ν−αi , respectively. As

sin π�dix = qx
i − q−x

i

2
√−1

= qi − q−1
i

2
√−1

[x]qi ,
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Lemma 7.1 can therefore be reformulated as the following identity between mor-
phisms Vμ+η+ν−αi → Vμ ⊗ Vη ⊗ Vν :

�(�t12, �t23)

([η(i)]qi −[ν(i)]qi

0 [η(i) + ν(i)]qi

) (
(Tμ,η ⊗ ι)τ�

i;μ+η,ν

(τ�

i;μ,η ⊗ ι)Tμ+η−αi,ν

)

=
(

0 [μ(i) + η(i)]qi

[η(i)]qi −[μ(i)]qi

) (
(ι ⊗ Tη,ν)τ

�

i;μ,η+ν

(ι ⊗ τ�

i;η,ν)Tμ,η+ν−αi

)

. (7.7)

It is remarkable that the proof of this identity is the first and only place where one
uses nontrivial specific properties of � beyond being an associator; the only special
property which we used before Lemma 7.1 was that � acts trivially on the highest
weight space of Vμ ⊗ Vη ⊗ Vν .

Proposition 7.2 The morphisms

Vμ̄+η̄ ⊗ Vλ+μ+η

[η(i)]−1
qi

Tμ̄,η̄⊗τ�

i;η,λ+αi+μ−−−−−−−−−−−−→ Vμ̄ ⊗ Vη̄ ⊗ Vη ⊗ Vλ+αi+μ

(ι⊗S�
η ⊗ι)B−−−−−−→ Vμ̄ ⊗ Vλ+αi+μ, (7.8)

where B = (� ⊗ ι)�−1
12,3,4, are consistent with tr·,� and hence def ine a morphism

Fi : M�

λ → M�

λ+αi
. Similarly the morphisms

Vμ̄+η̄ ⊗ Vλ+μ+η

[η(i)]−1
qi

τ�

ī;μ̄+ᾱi ,η̄
⊗Tη,λ+μ−−−−−−−−−−−−→Vμ̄+ᾱi ⊗ Vη̄ ⊗ Vη ⊗ Vλ+μ

(ι⊗S�
η ⊗ι)B−−−−−−→Vμ̄+ᾱi ⊗ Vλ+μ

(7.9)

def ine a morphism Ei : M�

λ → M�

λ−αi
.

Furthermore, for generic � we can choose the 1-cochain g�
μ such that for each i the

composition

V2ω̄i−ᾱi ⊗ V2ωi−αi

τ�

ī;ω̄i ,ω̄i
⊗τ�

i;ωi ,ωi−−−−−−−→ Vω̄i ⊗ Vω̄i ⊗ Vωi ⊗ Vωi

(ι⊗Sωi ⊗ι)B−−−−−−→ Vω̄i ⊗ Vωi

Sωi−→ C

(7.10)

coincides with − g�

2ωi−αi(
g�

ωi

)2 [2]qi S2ωi−αi . If g�
μ is chosen this way then the morphisms Ei and

Fi together with the morphism Ki : M� → M� acting on M�

λ as multiplication by qλ(i)
i ,

def ine an action of the algebra Uqg̃ on M�. This action respects the comonoid structure
of M� in the sense that δ�(ωx) = �̂q(ω)δ�(x) and ε�(ωx) = ε̂q(ω)ε�(x) for all ω ∈ Uqg̃

and x ∈ M�.

Proof Denote the morphism Eq. 7.8 by �
η,�

i;μ,λ+αi+μ. For consistency we have to check
that

trη,�

μ,λ+αi+μ �
ν,�
i;μ+η,λ+αi+μ+η = �

η+ν,�

i;μ,λ+αi+μ and �
η,�

i;μ,λ+αi+μ trν,�
μ+η,λ+αi+μ+η = �

η+ν,�

i;μ,λ+αi+μ.
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We shall only check the first identity. Once again we strictify D(g, �). As we have
done before, we shall often skip the lower indices of maps when they are determined
by the target modules. By definition we have

�
η+ν,�

i;μ,λ+αi+μ = 1

[η(i) + ν(i)]qi

(
ι ⊗ S�

η+ν ⊗ ι
)
(T ⊗ τ�

i ).

Using that S�
η+ν = S�

η (ι ⊗ S�
ν ⊗ ι)(T ⊗ Tν,η) by definition, we can rewrite the right

hand side as

1

[η(i) + ν(i)]qi

(ι ⊗ S�

η ⊗ ι)(ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι)(ι ⊗ T ⊗ Tν,η ⊗ ι)(T ⊗ τ�

i ). (7.11)

On the other hand,

trη,�

μ,λ+αi+μ �
ν,�
i;μ+η,λ+αi+μ+η

= 1

[ν(i)]qi

(
ι ⊗ S�

η ⊗ ι
)(

T ⊗ T)
(
ι ⊗ S�

ν ⊗ ι
)(

T ⊗ τ�

i

)

= 1

[ν(i)]qi

(
ι ⊗ S�

η ⊗ ι
)(

ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)
(T ⊗ ι ⊗ ι ⊗ T)

(
T ⊗ τ�

i

)

Using that (T ⊗ ι)T = (ι ⊗ T)T by Eq. 5.4 we can rewrite this as

1

[ν(i)]qi

(
ι ⊗ S�

η ⊗ ι
)(

ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)
(ι ⊗ T ⊗ ι ⊗ T)

(
T ⊗ τ�

i

)
. (7.12)

It follows from Eq. 7.7 that up to a scalar factor the difference

1

[η(i) + ν(i)]qi

(Tν,η ⊗ ι)τ�

i − 1

[ν(i)]qi

(ι ⊗ T)τ�

i

(in our strictified category) is equal to (τ�

i ⊗ ι)T. Therefore to show that Eqs. 7.11
and 7.12 are equal we have to check that the morphism

(
ι ⊗ S�

η ⊗ ι
)(

ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)(

ι ⊗ T ⊗ τ�

i ⊗ ι
)
(T ⊗ T) :

Vμ̄+η̄+ν̄ ⊗ Vλ+μ+η+ν → Vμ̄ ⊗ Vλ+αi+μ

is zero. In fact already S�
η

(
ι ⊗ S�

ν ⊗ ι
)(

T ⊗ τ�

i

) = 0 since zero is the only morphism
from Vη̄+ν̄ ⊗ Vη+ν−αi to C.

Thus Fi is well-defined. Similarly one proves that Ei is well-defined.
Next we have to check that under a specific choice of g�

μ the morphisms Ei, Fi, Ki

satisfy the defining relations of Uqg̃. The only nontrivial relation is

Ei F j − F jEi = −δij
Ki − K−1

i

qi − q−1
i

. (7.13)

The rest clearly holds without any assumptions on the cochain by using that
α j(i) = aij.

The composition Eq. 7.10 coincides with S2ωi−αi up to a scalar factor since the
space of morphisms V2ω̄i−ᾱi ⊗ V2ωi−αi → C is one-dimensional. This factor is nonzero
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for generic � since it is equal to −2 for � = 0. Indeed, by virtue of Eqs. 7.1 and 7.2 we
have to show that the image of

(−ζω̄i ⊗ eiζω̄i + eiζω̄i ⊗ ζω̄i) ⊗ (ξωi ⊗ fiξωi − fiξωi ⊗ ξωi)

under the map Sωi(ι ⊗ Sωi ⊗ ι) equals −2. This follows from Sωi(eiζω̄i ⊗ fiξωi) = −1
used twice, which in turn follows from the identities

eiζω̄i ⊗ fiξωi = ei(ζω̄i ⊗ fiξωi) − ζω̄i ⊗ ei fiξωi = ei(ζω̄i ⊗ fiξωi) − ζω̄i ⊗ ξωi .

So to show that we can make the specific choice of the cochain g�
μ stated in the

formulation we just have to check that the ratios g�

2ωi−αi
/
(
g�

ωi

)2 can take arbitrary
values. As we already remarked in the proof of Lemma 6.5, the cochain g�

μ is defined
up to multiplication by a homomorphism χ : P → C∗. If we replace g�

μ by g�
μχ(μ)

then g�

2ωi−αi
/
(
g�

ωi

)2 changes by the factor χ(αi)
−1. Therefore the claim follows from

the fact that any homomorphism from the root lattice Q into C∗ can be extended
to the weight lattice P. This is well-known and easy to see using infinite divisibility
of C∗.

Assuming now that the cochain g�
μ is chosen as stated we want to check Eq. 7.13.

Denoting the composition Eq. 7.9 by �
η,�

i;μ+αi,λ+μ, to prove Eq. 7.13 for i = j it suffices
to show that

�
ωi,�
i;μ+αi,λ+αi+μ�

ωi,�
i;μ+ωi,λ+αi+μ+ωi

− �
ωi,�
i;μ+αi,λ+αi+μ�

ωi,�
i;μ+αi+ωi,λ+μ+ωi

= −[λ(i)]qi tr2ωi−αi,�
μ+αi,λ+μ+αi

. (7.14)

The first term on the left hand side in our strictified category is

(
ι ⊗ S�

ωi
⊗ ι

)(
τ�

ī ⊗ T
)(

ι ⊗ S�

ωi
⊗ ι

)(
T ⊗ τ�

i

)

= (
ι ⊗ S�

ωi
⊗ ι

)
(ι ⊗ ι ⊗ S�

ωi
⊗ ι ⊗ ι

)(
τ�

ī ⊗ ι ⊗ ι ⊗ T
)(

T ⊗ τ�

i

)
.

Expressing similarly the second term we get that the left hand side of Eq. 7.14 equals

(
ι ⊗ S�

ωi
⊗ ι

)(
ι ⊗ ι ⊗ S�

ωi
⊗ ι ⊗ ι

)((
τ�

ī ⊗ ι ⊗ ι ⊗ T
)(

T ⊗ τ�

i

) − (
T ⊗ ι ⊗ ι ⊗ τ�

i

)(
τ�

ī ⊗ T
))

.

Next we use identities Eq. 7.7 to express
(
τ�

ī
⊗ ι ⊗ ι ⊗ T

)(
T ⊗ τ�

i

)
and (T ⊗ ι ⊗ ι ⊗

τ�

i )(τ�

ī
⊗ T) in the form (ι ⊗ ∗ ⊗ ∗ ⊗ ι)(∗ ⊗ ∗). A tedious but straightforward com-

putation keeping track of subindices shows that the terms (ι ⊗ T ⊗ T ⊗ ι)
(
τ�

ī
⊗ τ�

i

)

cancel, and what is left is the term [λ(i)]qi
[2]qi

(
ι ⊗ τ�

ī
⊗ τ�

i ⊗ ι
)
(T ⊗ T) and scalar multiples

of
(
ι ⊗ T ⊗ τ�

i ⊗ ι
)(

τ�

ī
⊗ T

)
and

(
ι ⊗ τ�

ī
⊗ T ⊗ ι

)(
T ⊗ τ�

i

)
. The last two terms vanish

when composed with
(
ι ⊗ S�

ωi
⊗ ι

)(
ι ⊗ ι ⊗ S�

ωi
⊗ ι ⊗ ι

)
for the same reason as in the

proof of consistency of � ·,�. Therefore the left hand side of Eq. 7.14 equals

[λ(i)]qi

[2]qi

(
ι ⊗ S�

ωi
⊗ ι

)(
ι ⊗ ι ⊗ S�

ωi
⊗ ι ⊗ ι

)(
ι ⊗ τ�

ī ⊗ τ�

i ⊗ ι
)
(T ⊗ T).
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We have S�
ωi

(
ι ⊗ S�

ωi
⊗ ι

)(
τ�

ī
⊗ τ�

i

) = −[2]qi S
�

2ωi−αi
by our choice of the cochain g�

μ, so
the above expression is equal to

−[λ(i)]qi

(
ι ⊗ S�

2ωi−αi
⊗ ι

)
(T ⊗ T),

which by definition is the right hand side of Eq. 7.14.
The relation Ei F j − F jEi = 0 for i �= j is proved similarly by showing that

�
η,�

i;μ+αi,λ+α j+μ�
ν,�
j;μ+η,λ+α j+μ+η − �

η,�

j;μ+αi,λ+α j+μ�
ν,�
i;μ+αi+η,λ+μ+η = 0.

We only remark that in this case the morphism S�
η

(
ι ⊗ S�

ν ⊗ ι
)(

τ�

ī
⊗ τ�

j

)
vanishes as

there are no nonzero morphisms Vη̄+ν̄−ᾱi ⊗ Vη+ν−α j → C.
It remains to show that the action of Uqg̃ respects the comonoid structure of M�.

We shall only check that δ�(Fix) = �̂q(Fi)δ
�(x), that is,

δ�

λ1,λ2
Fi = q−λ2(i)

i (Fi ⊗ ι)δ�

λ1−αi,λ2
+ (ι ⊗ Fi)δ

�

λ1,λ2−αi
.

The morphisms δ� are induced by the morphisms m� defined by Eq. 6.1. Therefore
it suffices to check that

m�

μ,η,λ1,λ2
�

ν,�
i;μ+η,λ1+λ2+μ+η

= q−λ2(i)
i (�

ν,�
i;μ,λ1+μ ⊗ ι ⊗ ι)m�

μ+ν,η,λ1−αi,λ2
+ (ι ⊗ ι ⊗ �

ν,�
i;η,λ2+η)m

�

μ,η+ν,λ1,λ2−αi
.

(7.15)

The left hand side multiplied by [ν(i)]qi in our strictified category with braiding σ is

q(λ1+μ,η)(ι ⊗ σ ⊗ ι)(Tμ̄,η̄ ⊗ Tλ1+μ,λ2+η)
(
ι ⊗ S�

ν ⊗ ι
)(

Tμ̄+η̄,ν̄ ⊗ τ�

i;ν,λ1+λ2+μ+η

)

= q(λ1+μ,η)(ι ⊗ σ ⊗ ι)
(
ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)(

Tμ̄,η̄ ⊗ ι ⊗ ι ⊗ Tλ1+μ,λ2+η

)

× (
Tμ̄+η̄,ν̄ ⊗ τ�

i;ν,λ1+λ2+μ+η

)
.

We claim that
(
ι ⊗ Tλ1+μ,λ2+η

)
τ�

i;ν,λ1+λ2+μ+η = q−λ2(i)−η(i)
i

(
τ�

i;ν,λ1+μ ⊗ ι
)
Tλ1−αi+μ+ν,λ2+η

+ q(λ1+μ,ν)(σ−1 ⊗ ι)
(
ι ⊗ τ�

i;ν,λ2+η

)
Tλ1+μ,λ2−αi+η+ν .

(7.16)
We postpone the proof of this equality. Using it we see that the left hand side of
Eq. 7.15 multiplied by [ν(i)]qi is the sum of the term

q(λ1+μ,η)q−λ2(i)−η(i)
i (ι ⊗ σ ⊗ ι)

(
ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)

× (
Tμ̄,η̄ ⊗ ι ⊗ τ�

i;ν,λ1+μ ⊗ ι
)(

Tμ̄+η̄,ν̄ ⊗ Tλ1−αi+μ+ν,λ2+η

)

= q(λ1+μ+ν,η)q−λ2(i)−η(i)
i (ι ⊗ σ ⊗ ι)

(
ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)

× (
ι ⊗ σ−1Tν̄,η̄ ⊗ τ�

i ⊗ ι
)(

Tμ̄,η̄+ν̄ ⊗ T
)

= q(λ1+μ+ν,η)q−λ2(i)−η(i)
i (ι ⊗ σ ⊗ ι)

(
ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)
(ι ⊗ σ−1 ⊗ ι ⊗ ι ⊗ ι)

× (
T ⊗ ι ⊗ τ�

i ⊗ ι
)
(T ⊗ T), (7.17)
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where we have used (T ⊗ ι)T = (ι ⊗ T)T twice and that Tη̄,ν̄ = q(η,ν)σ−1Tν̄,η̄ by
Eqs. 5.4 and 5.6, and the term

q(λ1+μ,η+ν)(ι ⊗ σ ⊗ ι)
(
ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)
(ι ⊗ ι ⊗ ι ⊗ σ−1 ⊗ ι)

(
T ⊗ ι ⊗ ι ⊗ τ�

i

)
(T ⊗ T)

= q(λ1+μ,η+ν)(ι ⊗ σ ⊗ ι)
(
ι ⊗ ι ⊗ S�

ν ⊗ ι ⊗ ι
)
(ι ⊗ ι ⊗ ι ⊗ σ−1 ⊗ ι)

(
ι ⊗ T ⊗ ι ⊗ τ�

i

)
(T ⊗ T).

(7.18)

On the other hand, the first term on the right hand side of Eq. 7.15 multiplied by
[ν(i)]qi equals

q−λ2(i)
i q(λ1−αi+μ+ν,η)

(
ι ⊗ S�

ν ⊗ ι ⊗ ι ⊗ ι
)
(T ⊗ τ�

i ⊗ ι ⊗ ι)(ι ⊗ σ ⊗ ι)(T ⊗ T).

By naturality of σ this expression can be written as

q−λ2(i)
i q(λ1−αi+μ+ν,η)

(
ι ⊗ S�

ν ⊗ ι ⊗ ι ⊗ ι
)(

ι ⊗ ι ⊗ σ1,23 ⊗ ι
)
(T ⊗ ι ⊗ τ�

i ⊗ ι)(T ⊗ T).

As (αi, η) = diη(i), to see that this is equal to Eq. 7.17 we just have to check that

σ
(
ι ⊗ S�

ν ⊗ ι
)(

σ−1 ⊗ ι ⊗ ι
) = (

S�

ν ⊗ ι ⊗ ι
)
(ι ⊗ σ1,23).

Writing σ : U ⊗ V → V ⊗ U as (ι ⊗ σ)(σ ⊗ ι) : U ⊗ C ⊗ V → C ⊗ V ⊗ U and using
naturality of σ we have

σ
(
ι ⊗ S�

ν ⊗ ι
) = (

S�

ν ⊗ ι ⊗ ι
)
(ι ⊗ ι ⊗ σ)(σ1,23 ⊗ ι).

As (ι ⊗ ι ⊗ σ)(σ1,23 ⊗ ι) = (ι ⊗ σ1,23)(σ ⊗ ι ⊗ ι) by the hexagon identities, we get the
required equality.

Similarly it is proved that Eq. 7.18 coincides with the second term on the right
hand side of Eq. 7.15 multiplied by [ν(i)]qi .

Therefore it remains to check identity Eq. 7.16. Replacing λ1 + μ by μ and λ2 + η

by η, we have to show that

(ι ⊗ Tμ,η)τ
�

i;ν,μ+η = q−η(i)
i

(
τ�

i;ν,μ ⊗ ι
)
Tμ+ν−αi,η + q(μ,ν)(σ−1 ⊗ ι)

(
ι ⊗ τ�

i;ν,η

)
Tμ,η+ν−αi .

It follows from identities Eq. 7.7 that

[μ(i) + ν(i)]qi(ι ⊗ Tμ,η)τ
�

i;ν,μ+η

= [ν(i)]qi(Tν,μ ⊗ ι)τ�

i;μ+ν,η + [μ(i) + η(i) + ν(i)]qi

(
τ�

i;ν,μ ⊗ ι
)
Tμ+ν−αi,η.

Therefore we equivalently have to check that

[ν(i)]qi(σ Tν,μ ⊗ ι)τ�

i;μ+ν,η + [μ(i) + η(i) + ν(i)]qi

(
στ�

i;ν,μ ⊗ ι
)
Tμ+ν−αi,η

= q−η(i)
i [μ(i) + ν(i)]qi

(
στ�

i;ν,μ ⊗ ι
)
Tμ+ν−αi,η

+ q(μ,ν)[μ(i) + ν(i)]qi

(
ι ⊗ τ�

i;ν,η

)
Tμ,η+ν−αi .

But up to the factor q(μ,ν) this is exactly the identity

[ν(i)]qi(Tμ,ν ⊗ ι)τ�

i;μ+ν,η − [η(i)]qi

(
τ�

i;μ,ν ⊗ ι
)
Tμ+ν−αi,η

= [μ(i) + ν(i)]qi

(
ι ⊗ τ�

i;ν,η

)
Tμ,η+ν−αi
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from Eq. 7.7, if we take into account that σ Tν,μ = q(μ,ν)Tμ,ν by Eq. 5.6 and

στ�

i;ν,μ = −q(μ,ν)q−μ(i)−ν(i)
i τ�

i;μ,ν,

which in turn follows from Eq. 7.6 and �τi;ν,μ = −τi;μ,ν . 
�

Remark 7.3 If we replace the cochain g�
μ by the cochain g�

μχ(μ), where χ : P → C∗
is a homomorphism, then by Lemma 6.5 the comonoid remains unaltered up to
an isomorphism. One can easily check that if use the same formulas to define the
morphisms Fi and Ei with the new cochain then the morphism Fi remains unchanged,
while Ei changes to χ(αi)Ei.

Lemma 7.4 Let V be a f inite dimensional g-module. Assume the cochain g�
μ is chosen

as in Proposition 7.2. Then for generic � the action of Uqg̃ on M� def ines an action of
Uqg on Homg(M�, V).

Proof The action of Uqg̃ on M� by g-endomorphisms defines an action of (Uqg̃)op

on Homg(M�, V). To show that this action defines an action of Uqg we just have to
check that the relations

1−aij∑

k=0

(−1)k
[

1 − aij

k

]

qi

Ek
i E jE

1−aij−k
i = 0 and

1−aij∑

k=0

(−1)k
[

1 − aij

k

]

qi

Fk
i F jF

1−aij−k
i = 0

(7.19)
are satisfied for i �= j.

We may assume that V = Vλ for some λ. The morphisms trμ,�

0,λ : Vμ̄ ⊗ Vλ+μ →
V0 ⊗ Vλ = Vλ define a morphism ξ�

λ : M�

λ → Vλ, which we consider as a vector in
Homg(M�, Vλ). We have Eiξ

�

λ = ξ�

λ ◦ Ei = 0 as there are no nonzero morphisms
M�

λ+αi
→ Vλ, so ξ�

λ is a highest weight vector in Homg(M�, Vλ). In particular, if we
denote by Gij ∈ (Uqg̃)op the left hand side of the first equation in Eq. 7.19 then
Gijξ

�

λ = 0. Using the relations in Uqg̃ it can be checked that Gij commutes with Fl

for all l. Therefore to prove that Gij = 0 on Homg(M�, Vλ) it suffices to show that
Homg(M�, Vλ) is spanned by Fi1 . . . Fimξ�

λ = ξ�

λ ◦ Fim ◦ · · · ◦ Fi1 . By Remark 7.3 the
latter property is independent of the choice of g�

μ, so we may assume that g�
μ is an

analytic function in � with g0
μ = 1, e.g. by choosing g�

ωk
= 1 for all k.

Choose a finite set I of multiindices (i1, . . . , im) such that the vectors fi1 . . . fimξλ

form a basis of Vλ. Since dim Homg(M�, Vλ) ≤ dim Vλ it then suffices to check that
for generic � the vectors Fi1 . . . Fimξ�

λ , (i1, . . . , im) ∈ I, are linearly independent. The
vectors

Fi1 . . . Fimξ�

λ ∈ Homg

(
M�

λ−αi1 −···−αim
, Vλ

)

are defined by morphisms Vμ̄ ⊗ Vλ−αi1 −···−αim +μ → Vλ. Therefore it suffices to check
that the latter morphisms are linearly independent for generic �. Since they depend
analytically on �, it is enough to check linear independence for � = 0. Under
the injective maps Homg(Vμ̄ ⊗ Vλ−η+μ, Vλ) → Vλ(λ − η), f �→ f (ζμ̄ ⊗ ξλ−η+μ), the
morphisms are mapped onto the vectors fi1 . . . fimξλ, which are linearly independent
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by assumption. To see that we indeed get the vectors fi1 . . . fimξλ we just have to
observe that trμ0,λ : Vμ̄ ⊗ Vλ+μ → Vλ is mapped onto ξλ and that the diagrams

Homg(Vμ̄ ⊗ Vν+αk+μ, Vλ)

◦�η,0
k;μ,ν+αk+μ

��

��

Homg(Vμ̄+η̄ ⊗ Vν+μ+η, Vλ)

��
Vλ(ν + αk)

fk
�� Vλ(ν)

commute, where the top arrow is defined by the morphism

�
η,0
k;μ,ν+αk+μ

: Vμ̄+η̄ ⊗ Vν+μ+η → Vμ̄ ⊗ Vν+αk+μ

given by Eq. 7.8 (with � = 0 and g0
μ = 1).

Therefore we have proved the first relation in Eq. 7.19. The second is proved
similarly by considering the lowest weight vector ζ�

λ ∈ Homg(M�

−λ̄
, Vλ) defined by

trμ−λ̄,�

λ̄,0
: Vμ̄ ⊗ V−λ̄+μ → Vλ ⊗ V0 = Vλ. 
�

Thus for generic � we have a well-defined action of Uqg on Homg(M�, V), so
Homg(M�, ·) can be considered as a functor D(g, �) → C(g, �). By Proposition 6.4
and the last part of Proposition 7.2 it is a tensor functor. Furthermore, by Proposi-
tion 5.4 for generic � the module M� is isomorphic to the module M representing the
forgetful functor. Therefore the following theorem finishes the proof of Theorem 4.3
and thus also of Theorem 4.1.

Theorem 7.5 If the cochain g�
μ is chosen as in Proposition 7.2 then for generic � and

q = eπ i� the functor Homg(M�, ·) is a C-linear braided monoidal equivalence of the
categories D(g, �) and C(g, �). This functor maps an irreducible g-module with highest
weight λ onto an irreducible Uqg-module with highest weight λ.

Proof We have already proved that for generic � the functor F� = Homg(M�, ·) is
a tensor functor. Furthermore, by the proof of Lemma 7.4 for any λ ∈ P the Uqg-
module F�(Vλ) has a highest weight vector ξ�

λ of weight λ. Since the dimension of this
module is not bigger than that of Vλ, we conclude that F�(Vλ) must be an irreducible
Uqg-module with highest weight λ. Therefore the image of the functor contains all
simple objects in C(g, �) up to isomorphism. Since the functor F� respects direct
sums, we conclude that it is an equivalence of tensor categories.

It remains to check that the functor respects braiding, that is, the diagram

F�(U) ⊗ F�(V)
�R�

��

F�

2

��

F�(V) ⊗ F�(U)

F�

2

��

F�(U ⊗ V)

F�(�qt)
�� F�(V ⊗ U)

commutes. It suffices to consider U = Vλ̄ and V = Vμ. Consider the lowest weight
vector ζ�

λ̄
∈ F�(Vλ̄) and the highest weight vector ξ�

μ ∈ F�(Vμ) defined in the proof
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of Lemma 7.4. It suffices to compute how the morphisms in the above diagram act
on ζ�

λ̄
⊗ ξ�

μ . By Eq. 4.1 we have R�(ζ�

λ̄
⊗ ξ�

μ ) = q−(λ,μ)ζ�

λ̄
⊗ ξ�

μ . Recalling that F�

2 is
defined using δ� : M� → M�⊗̂M�, we just have to check that

q−(λ,μ)
(
ξ�

μ ⊗ ζ�

λ̄

)
δ� = �qt(ζ�

λ̄
⊗ ξ�

μ

)
δ�

as morphisms M� → Vμ ⊗ Vλ̄. Recall that δ� is induced by the morphisms m�

defined by Eq. 6.1. Since ξ�
μ and ζ�

λ̄
are defined by the morphisms trη,�

0,μ and trν,�
λ,0 ,

respectively, by equality Eq. 6.2 it suffices to show the following equality of endo-
morphisms of Vμ ⊗ Vλ̄:

q−(λ,μ)m�

0,λ,μ,−λ = �qtm�

λ,0,−λ,μ.

This is immediate by definition Eq. 6.1, since the associator � acts trivially on a tensor
product of three modules if at least one module is trivial. 
�
Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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